
Chapter 14

Charting the state space

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville, Moby Dick, chapter 32

In this chapter and the next we learn to partition state space in a topologically
invariant way, and identify topologically distinct orbits.

We start in sect. 14.1 with a simple and intuitive example, a 3-disk game
of pinball. The qualitative dynamics of stretching/shrinking strips of surviving
state space regions enables us to partition the state space and assign symbolic
dynamics itineraries to trajectories. For the 3-disk game of pinball all possible
symbol sequences enumerate all possible orbits.

In sect. 14.2 we use Rössler and Lorenz flows to motivate modeling of higher-
dimensional flows by iteration of 1-dimensional maps. For these two flows the
1-dimensional maps capture essentially all of the higher-dimensional flow dyna-
mics, both qualitatively and quantitatively. 1-dimensional maps suffice to explain
the two key aspects of qualitative dynamics; temporal ordering, or itinerary with
which a trajectory visits state space regions (sect. 14.3), and the spatial ordering
between trajectory points (sect. 14.4), which is the key to determining the admis-
sibility of an orbit with a prescribed itinerary. In a generic dynamical system not
every symbol sequence is realized as a dynamical trajectory; as one looks further
and further, one discovers more and more ‘pruning’ rules which prohibit fami-
lies of itineraries. For 1-dimensional ‘stretch & fold’ maps the kneading theory
(sect. 14.5) provides the definitive answer as to which temporal itineraries are
admissible as trajectories of the dynamical system. Finally, sect. 14.6 is meant
serve as a guide to the basic concepts of symbolic dynamics.

Deceptively simple, this subject can get very difficult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestrian level, postponing the
discussion of higher-dimensional, cyclist level issues to chapter 15.

Even though by inclination you might only care about the serious stuff, like
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Figure 14.1: A coarse partition ofM into regionsM0,
M1, andM2, labeled by ternary alphabetA = {1, 2, 3}.

Rydberg atoms or mesoscopic devices, and resent wasting time on formal things,
this chapter and chapters 17 and 18 are good for you. Study them.

14.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)

What can a flow do to points in state space? This is a very difficult question to
answer because we have assumed very little about the evolution function f t; con-
tinuity, and differentiability a sufficient number of times. Trying to make sense of
this question is one of the basic concerns in the study of dynamical systems. The
first answer was inspired by the motion of the planets: they appear to repeat their
motion through the firmament, so the ancients’ attempts to describe dynamical
systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point x0 of a dynamical system is a return of
that point to a neighborhood of where it started. How close the point x0 must
return is up to us: we can choose a volume of any size and shape, and call it the
neighborhoodM0, as long as it encloses x0. For chaotic dynamical systems, the
evolution might bring the point back to the starting neighborhood infinitely often.
That is, the set{

y ∈ M0 : y = f t(x0), t > t0
}

(14.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-
gests another way of describing how points move in state space, the important
first step on the way to a theory of dynamical systems: qualitative, topological
dynamics, or symbolic dynamics. As the subject can get quite technical, a sum-
mary of the basic notions and definitions of symbolic dynamics is relegated to
sect. 14.6; check that section and references cited in remark 14.1 whenever you
run into baffling jargon.

We start by dividing the state space up into regions MA,MB, . . . ,MZ , as in
figure 14.1. This can be done in many ways, not all equally clever. Any such
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Figure 14.2: A trajectory with itinerary 021012.

Figure 14.3: A 1-step memory refinement of the par-
tition of figure 14.1, with each region Mi subdivi-
ded into Mi0, Mi1, and Mi2, labeled by nine ‘words’
{00, 01, 02, · · · , 21, 22}.
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division of state space into distinct regions constitutes a partition, and we associate
with each region (sometimes referred to as a state) a symbol s from an N-letter
alphabet or state set A = {A, B,C, · · · ,Z}. Along the trajectory, different regions
will be visited. The visitation sequence - forthwith referred to as the itinerary -
can be represented by the letters of the alphabetA. If, as in the example sketched
in figure 14.2, the state space is divided into three regionsM0,M1, andM2, the
‘letters’ are the integers {0, 1, 2}, and the itinerary for the trajectory sketched in
the figure is 0 7→ 2 7→ 1 7→ 0 7→ 1 7→ 2 7→ · · · .

In general only a subset of points inMB reachesMA. This observation offers
a systematic way to refine a partition by introducing m-step memory: the region
Msm···s1 s0 consists of the subset of points of Ms0 whose itinerary for the next m
time steps will be s0 7→ s1 7→ · · · 7→ sm, see figure 14.3.

example 14.1

p. 257

example 14.2

p. 257

Figure 14.4: Two pinballs that start out very close
to each other exhibit the same qualitative dynamics
_2313_ for the first three bounces, but due to the expo-
nentially growing separation of trajectories with time,
follow different itineraries thereafter: one escapes af-
ter _2313_, the other one escapes after _23132321_.
(Notation _2313_ is explained in sect. 14.6.)
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Figure 14.5: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x = (arclength, parallel momentum) = (s, p),
where p = sin θ. (a) Strips of initial points M12,
M13 which reach disks 2, 3 in one bounce, re-
spectively. (b) 1-step memory refinement of parti-
tion (see figure 14.3): strips of initial pointsM121,
M131, M132 and M123 which reach disks 1, 2, 3
in two bounces, respectively. Disk radius : center
separation ratio a:R = 1:2.5. (Y. Lan)
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If there is no way to reach partition Mi from partition M j, and conversely,
partitionM j from partitionMi, the state space consists of at least two disconne-
cted pieces, and we can analyze it piece by piece. An interesting partition should
be dynamically connected, i.e., one should be able to go from any region Mi to
any other regionM j in a finite number of steps. A dynamical system with such a
partition is said to be metrically indecomposable.

In general one also encounters transient regions - regions to which the dy-
namics does not return once they are exited. Hence we have to distinguish be-
tween (uninteresting to us) wandering trajectories that never return to the initial
neighborhood, and the non–wandering set (2.3) of the recurrent trajectories. We
are implicitly assuming that the transients are sufficiently short-lived not to be of
experimental interest.

However, knowing that a point from Mi reaches {M j, · · · ,Mk} in one step
is not quite good enough. We would be happier if we knew that the map of the
entire initial region f (Mi) overlaps nicely with the entireM j; otherwise we have
to subpartition M j into the subset f (Mi) and the reminder, and often we will
find ourselves partitioning ad infinitum, a difficult topic that we shall return to
sect. 15.4.

Such considerations motivate the notion of a Markov partition, a partition
for which no memory of preceding steps is required to fix the transitions allo-
wed in the next step. Finite Markov partitions can be generated by expanding
d-dimensional iterated mappings f : M → M, ifM can be divided into N regi-
ons {M0,M1, . . . ,MN−1} such that in one step points from an initial region Mi

either fully cover a regionM j, or miss it altogether,

either M j ∩ f (Mi) = ∅ or M j ⊂ f (Mi) . (14.2)

Whether such partitions can be found is not clear at all - the borders need to be
lower-dimensional sets invariant under dynamics, and there is no guarantee that
these are topologically simple objects. However, the game of pinball (and many
other non-wandering repeller sets) is especially nice: the issue of determining the
partition borders does not arise, as the survivors live on disconnected pieces of the
state space, separated by a chasm of escaping trajectories.

The itinerary of a billiard trajectory is finite for a scattering trajectory, co-
ming in from infinity and escaping after a finite number of collisions, infinite for
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Figure 14.6: For the 3-disk game of pinball no itinera-
ries are pruned as long as the inter-disk spacing exce-
eds R : a > 2.04821419 . . . . (from K.T. Hansen [11])

a trapped trajectory, and infinitely repeating for a periodic orbit. A finite length
trajectory is not uniquely specified by its finite itinerary, but an isolated unstable
cycle is: its itinerary is an infinitely repeating block of symbols. For hyperbo-
lic flows the intersection of the future and past itineraries, the bi-infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · specifies a unique orbit. Almost all infinite length trajecto-
ries (orbits) are aperiodic. Still, the longer the trajectory is, the closer to it is a
periodic orbit whose itinerary shadows the trajectory for its whole length: think
of the state space as the unit interval, aperiodic orbits as normal numbers, and
periodic ones as fractions whose denominators correspond to cycle periods (as is,
for example, literally the case for the Farey map, to be discussed in sect. 29.3.4).

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks, see figure 14.6), pruned (for example, for touching or
overlapping disks), or only a first coarse-graining of the topology (as, for example,
for smooth potentials with islands of stability) requires a case-by-case investiga-
tion, a discussion we postpone until sect. 14.5 and chapter 15. For now, we assume
that the disks are sufficiently separated that there is no additional pruning beyond
the prohibition of self-bounces.

Inspecting figure 14.5 we see that the relative ordering of regions with diffe-
ring finite itineraries is a qualitative, topological property of the flow. This ob-
servation motivates searches for simple, ‘canonical’ partitions which exhibit in
a simple manner the spatial ordering common to entire classes of topologically
similar nonlinear flows.

14.2 From d-dimensional flows to 1-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic flows
and their symbolic dynamics. This is brought out more clearly by the 1-dimen-
sional visualization of ‘stretch & fold’ flows to which we turn now.

We construct here the return maps (3.4) for two iconic flows, the Rössler and
the Lorenz, in order to show how ODEs in higher dimensions can be modeled by
low-dimensional maps. In the examples at hand the strong dissipation happens to
render the dynamics essentially 1-dimensional, both qualitatively and quantitati-
vely. However, as we shall show in chapter 15, strong dissipation is not essential
-the hyperbolicity is- so the method applies to Hamiltonian (symplectic areas pre-
serving) flows as well. The key idea is to replace the original, arbitrarily concocted
coordinates by intrinsic, dynamically invariant curvilinear coordinates erected on
neighborhoods of unstable manifolds.
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Figure 14.7: (a) The Rössler flow, figure 3.3, is
an example of a recurrent flow that stretches and
folds. Shift the origin to equilibrium x− computed
in (2.29), (x, y, z) = (p0 − x−, p1 − y−, p2 − z−).
(b) p0 = 0, p1 > 0 Poincaré section of the x− un-
stable manifold.
(c) s → P(s) Rössler ‘stretch & fold’ return map,
where s is the arc-length distance measured along
the Poincaré section of unstable manifold of equi-
librium point x−. See also figure 14.12.
(R. Paškauskas, A. Basu and J. Newman)
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fast track:

sect. 14.3, p. 244

Suppose concentrations of certain chemical reactants worry you, or the variati-
ons in the Vladivostok temperature, humidity, pressure and winds affect your
mood. Such quantities vary within some fixed range, and so do their rates of
change. Even if we are studying an open system such as the 3-disk pinball game,
we tend to be interested in a finite region around the disks and ignore the escapees.
So a typical dynamical system that we care about is bounded. If the price to keep
going is high - for example, we try to stir up some tar, and observe it come to a
dead stop the moment we cease our labors - the dynamics tends to settle into a
simple state. However, as the resistance to change decreases - the tar is heated up
and we are more vigorous in our stirring - the dynamics becomes unstable. What
happens next?

Just by looking at figure 14.7 you get the idea - Rössler flow winds around the
stable manifold of the ‘central’ equilibrium, stretches and folds, and the dynamics
on the Poincaré section of the flow can be reduced to a 1-dimensional map.

example 14.3

p. 257

The next, Lorenz flow example is similar, but the folding mechanism is very
different: the unstable manifold of one of the equilibria collides with the stable
manifold of the other one, forcing a robust heteroclinic connection between the
two.
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example 14.4

p. 257

Heteroclinic connections. The simplest example of intersection of invariant
manifolds is an orbit on the unstable manifold of an unstable equilibrium that
falls into a stable equilibrium (a sink). In general, two manifolds can intersect in

remark 14.3
a stable way (i.e., robustly with respect to small changes of system parameters) if
the sum of their dimensions is greater than or equal to the dimension of the state
space, hence an unstable manifold of dimension k is likely to intersect a stable
manifold whose codimension in state space is less than or equal to k. Whether
the two manifolds actually intersect is a subtle question that is central to the issue
of “structural stability” of ergodic dynamical systems. Trajectories that leave an
equilibrium or periodic orbit along its unstable manifold and reach another equi-
librium or periodic orbit along its stable manifold are called heteroclinic if the two
invariant solutions are distinct or homoclinic if the initial and the final invariant
solutions are the same.

What have we learned from the above two exemplary 3-dimensional flows?
If a flow is locally unstable but globally bounded, any open ball of initial points
will be stretched out and then folded back. If the equilibria are hyperbolic, the
trajectories will be attracted along some eigen-directions and ejected along others.
The unstable manifold of one equilibrium can avoid stable manifolds of other
equilibria, as is the case for Rössler, or plow into them head on, as is the case for
Lorenz. A typical trajectory wanders through state space, always attracted to the
next equilibrium or periodic orbit neighborhood, and then ejected again. What
is important is the motion along the unstable manifolds – that is where 1d maps
come from.

At this juncture we proceed to show how this works on the simplest example:
unimodal mappings of the interval. The erudite reader may skim through this cha-
pter and then take a more demanding path, via the Smale horseshoes of chapter 15.
Unimodal maps are easier, but less physically compelling. Smale horseshoes offer
the high road, more complicated, but the right tool to generalize what we learned
from the 3-disk dynamics, and begin analysis of general dynamical systems. It is
up to you - unimodal maps suffice to get quickly to the heart of this treatise.

14.3 Temporal ordering: Itineraries

In this section we learn to name topologically distinct trajectories for the simple,
but instructive case; 1-dimensional maps of an interval. The simplest such map is
the“coin flip” of figure 14.8: the unit interval is stretched, cut, and overlaid over
itself.

example 14.5

p. 259
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Figure 14.8: The n = 2 and 4 intervals state space
partitions for the Bernoulli shift map (14.17), together
with the fixed points 0, 1 and the 2-cycle 01.
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Figure 14.9: (a) The full tent map (14.20) parti-
tion {M00,M01,M11,M10} together with the fixed
points x0, x1.
(b) A unimodal repeller with the survivor intervals
after 1 and 2 iterations. Intervals marked s1 s2 · · · sn

consist of points that do not escape in n iterations,
and follow the itinerary S + = s1 s2 · · · sn. Indica-
ted are the fixed points 0, 1, the 2-cycle 01, and the
3-cycle 011. Note that here, unlike the Bernoulli
map example of figure 14.8, the spatial ordering
does not respect the binary ordering; for example
x00 < x01 < x11 < x10.
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More physically motivated mapping of this type is unimodal; interval is stre-
tched and folded only once, with at most two points mapping into a point in the
refolded interval, as in the Rössler return map figure 14.7 (b). A unimodal map
f (x) is a 1-dimensional function R→ R defined on an intervalM ∈ R with a mo-
notonically increasing (or decreasing) branch, a critical point (or interval) xc for
which f (xc) attains the maximum (minimum) value, followed by a monotonically
decreasing (increasing) branch. Uni-modal means that the map is a 1-humped map
with one critical point within intervalM. Multi-modal maps, with several critical
points within intervalM, can be described with a straight-forward generalization
of the methods we describe next.

example 14.6

p. 259

example 14.7

p. 260

For 1d maps the critical value denotes either the maximum or the minimum
value of f (x) on the defining interval; we assume here that it is a maximum,
f (xc) ≥ f (x) for all x ∈ M. The critical point xc that yields the critical value f (xc)
belongs to neither the left nor the right partitionMi and is instead denoted by its
own symbol s = C. As we shall see, its images and preimages serve as partition
boundary points.
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Figure 14.10: An alternating binary tree relates the
itinerary labeling of the unimodal map intervals, fi-
gure 14.9, to their spatial ordering. The dotted line
stands for 0, the full line for 1; the binary sub-tree wh-
ose root is a full line with symbol 1 reverses the ori-
entation, due to the orientation-reversing fold in figu-
res 14.7 and 14.9. See also figure 17.5.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iteration
xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or to the
right of xc generates a temporally ordered topological itinerary (14.9) for a given
trajectory,

sn =


1 if xn > xc
C if xn = xc
0 if xn < xc

. (14.3)

We refer to S +(x0) = .s1s2s3 · · · as the future itinerary. Our next task is to answer
the reverse problem: given an itinerary, what is the spatial ordering of points that
belong to the corresponding state space trajectory?

14.4 Spatial ordering

A well-known theorem states that combinatorial factors
are impossible to explain [1].

—G. ’t Hooft and M. Veltman, DIAGRAMMAR

Suppose you have succeeded in constructing a covering symbolic dynamics, such
as the one we constructed for a well-separated 3-disk system. Now start moving
the disks toward each other. At some critical separation (see figure 14.6) a disk
will start blocking families of trajectories traversing the other two disks. The
order in which trajectories disappear is determined by their relative ordering in
space; the ones closest to the intervening disk will be pruned first. Determining
inadmissible itineraries requires that we relate the spatial ordering of trajectories
to their time ordered itineraries.

exercise 15.8

The easiest point of departure is to start by working out this relation for the
symbolic dynamics of 1-dimensional mappings. As it appears impossible to pre-
sent this material without getting bogged down in a sea of 0’s, 1’s and subscripted
subscripts, we announce the main result before embarking upon its derivation:

The admissibility criterion (sect. 14.5) eliminates all itineraries that
section 14.5

cannot occur for a given unimodal map.

For the Bernoulli shift converting itineraries into a topological ordering is easy;
the binary expansion of coordinate γ is also its temporary itinerary. The tent map
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(14.20), figure 14.9 (a) is a bit harder. It consists of two straight segments joined
at x = 1/2. The symbol sn defined in (14.3) equals 0 if the function increases,
and 1 if it decreases. Iteration forward in time generates the time itinerary. More
importantly, the piecewise linearity of the map makes the converse possible: de-
termine analytically an initial point given its itinerary, a property that we now use
to define a topological coordinatization common to all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combinatorics
cannot be taught. The best one can do is to state the answer and hope that you will
figure it out by yourself.

The tent map point γ(S +) with future itinerary S + is given by converting the
itinerary of sn’s into a binary number γ by the following algorithm:

wn+1 =

{
wn if sn+1 = 0
1 − wn if sn+1 = 1 , w1 = s1

γ(S +) = 0.w1w2w3 . . . =

∞∑
n=1

wn/2n . (14.4)

This follows by inspection from the binary tree of figure 14.10. Once you figure
exercise 14.4

this out, feel free to complain that the way the rule is stated here is incomprehen-
sible, and show us how you did it better.

example 14.9

p. 260

We refer to γ(S +) as the (future) topological coordinate. The wt’s are the digits
in the binary expansion of the starting point γ for the full tent map in figure 14.9 (a)
(see (14.20)). In the left half-interval the map f (x) acts by multiplication by 2,
while in the right half-interval the map acts as a flip as well as multiplication by
2, reversing the ordering, and generating in the process the sequence of sn’s from
the binary digits wn.

The mapping x0 → S +(x0) → γ0 = γ(S +) is a topological conjugacy that
maps the trajectory of an initial point x0 under the iteration of a given unimodal
map to that initial point γ0 for which the trajectory of the ‘canonical’ unimodal
map, the full tent map (14.20), has the same itinerary. The virtue of this conjugacy
is that γ(S +) preserves the ordering for any unimodal map in the sense that if
y > x, then γ(S +(y)) > γ(S +(x)).

example 14.8

p. 260

example 14.10

p. 261

Critical points are special - they define the boundary between intervals, i.e.,
the state space is split into M0 [left part], xc [critical point] and M1 [right part]
intervals. For the dike map figure 14.11 and the repeller figure 14.9, xc is the
whole interval of points along the flat top of the map, but usually it is a point. As
illustrated by figures 14.9 and 14.8, for a unimodal map the preimages f −n(xc) of
the critical point xc serve as partition boundary points. But not all preimages–one
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Figure 14.11: The dike map is obtained by slicing off

the top portion of the tent map in figure 14.9 (a). Any
full tent map orbit that visits the primary pruning inte-
rval (κ, 1] is inadmissible. The admissible orbits form
the Cantor set obtained by removing from the unit in-
terval the primary pruning interval and all its iterates.
Any admissible orbit has the same topological coordi-
nate and itinerary as the corresponding full tent map
map orbit.

has to ensure that they are within the set of all admissible orbits by checking them
against the kneading sequence of the map, to be explained next.

14.5 Kneading theory

No, you can’t always get what you want
You can’t always get what you want
You can’t always get what you want
But if you try sometime you find
You get what you kneed

—Bradford Taylor

(K.T. Hansen and P. Cvitanović)

The reason we need to be mindful of spatial ordering of temporal itineraries is
that the spatial ordering provides us with criteria that separate inadmissible orbits
from those realizable by the dynamics. For 1-dimensional mappings the kneading
theory provides a precise and definitive criterion of admissibility.

If the parameter in the quadratic map (14.19) is A > 4, or the top of unimodal
map in figure 14.9 exceeds 1, then the iterates of the critical point xc diverge for
n → ∞, and any sequence S + composed of letters si = {0, 1} is admissible, and
any value of 0 ≤ γ < 1 corresponds to an admissible orbit in the non–wandering
set of the map. The corresponding repeller is a complete binary labeled Cantor
set, the n→ ∞ limit of the nth level covering intervals sketched in figure 14.9.

For A < 4 only a subset of the points in the interval γ ∈ [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by observing
that the largest xn value in an orbit x1 → x2 → x3 → . . . has to be smaller than or
equal to the image of the critical point, the critical value f (xc). Let K = S +(xc)
be the itinerary of the critical point xc, denoted the kneading sequence of the map.
The corresponding topological coordinate is called the kneading value

κ = γ(K) = γ(S +(xc)). (14.5)
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S γ̂(S ) S γ̂(S )
0 .0 = 0 10111 .11010 = 26/31
1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31
101 .110 = 6/7 10011 .1110100010 = 10/11
100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33
1001 .1110 = 14/15
1000 .11110000 = 16/17

Table 14.1: The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

The ‘canonical’ map that has the same kneading sequence K as f (x) is the
dike map, figure 14.11,

f (γ) =


f0(γ) = 2γ γ ∈ M0 = [0, κ/2)
fc(γ) = κ γ ∈ Mc = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ M1 = (1 − κ/2, 1]

, (14.6)

obtained by slicing off all γ
(
S +(x0)

)
> κ. The dike map is the full tent map

figure 14.9 (a) with the top sliced off. It is convenient for coding the symbolic
dynamics, as those γ values that survive the pruning are the same as for the full
tent map figure 14.9 (a), and are easily converted into admissible itineraries by
(14.4).

If γ(S +) > γ(K), the point x whose itinerary is S + would exceed the critical
value, x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S +) = sup
m
γ(σm(S +)) (14.7)

be the maximal value, the highest topological coordinate reached by the orbit
x1 → x2 → x3 → . . . , where σ is the shift (see (14.12)), σ(.s1s2s3 · · · = .s2s3 · · · .

For cycles up to length 5 the maximal values are listed in table 14.1. We shall call
the interval (κ, 1] the primary pruned interval. The orbit S + is inadmissible if γ of
any shifted sequence of S + falls into this interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,
question 14.1

and γ̂(S +) be the maximal value of the orbit S +. Then the orbit S + is admissible
if and only if γ̂(S +) ≤ κ.

While a particular unimodal map may depend on many parameters, its dy-
namics determines the unique kneading value κ. We shall call κ the topological
parameter of the map. Unlike the parameters of the original dynamical system,
the topological parameter has no reason to be either smooth or continuous. The
jumps in κ as a function of the map parameter such as A in (14.19) correspond to
inadmissible values of the topological parameter. Each jump in κ corresponds to
a stability window associated with a stable cycle of a smooth unimodal map. For
the quadratic map (14.19) κ increases monotonically with the parameter A, but for
a general unimodal map such monotonicity need not hold.
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Figure 14.12: (a) Web diagram generated by kne-
ading sequence K = S +(xc) (the trajectory of the
critical point) for the unimodal Rössler return map
of figure 14.7 (c). (b) Return map for the p0 = 0,
p1 < 0 Poincaré section of the x− unstable mani-
fold. The kneading sequence is the same, as this
map is conjugate to figure 14.7 (b) by 1800 turn.
The section, however, is in the region of strong
folding, and the map is less convenient in practice.
(A. Basu and J. Newman)
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Figure 14.13: (a) Web diagram generated by the
trajectory of the critical point the unimodal Rössler
return map of figure 14.7 (b). (b) The web diagram
for the corresponding ‘canonical’ dike map (14.6)
with the same kneading sequence. (A. Basu and
J. Newman)
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example 14.11

p. 261

For further details of unimodal dynamics, the reader is referred to appen-
dix A18.1. As we shall see in sect. 15.4, for higher dimensional maps and flows
there is no single parameter that orders dynamics monotonically; as a matter of
fact, there is an infinity of parameters that need adjustment for a given symbolic
dynamics. This difficult subject is beyond our current ambition horizon.

fast track:

chapter 15, p. 264

14.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the
natural language and its functioning as a special case of
speech.

— Yuri I. Manin [16]

In this section we collect the basic notions and definitions of symbolic dynamics.
The reader might prefer to skim through this material on a first reading and return
to it later, as the need arises.
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Shifts. We associate with every initial point x0 ∈ M the future itinerary, a seque-
nce of symbols S +(x0) = s1s2s3 · · · which indicates the order in which the regions
are visited. If the trajectory x1, x2, x3, . . . of the initial point x0 is generated by

xn+1 = f (xn) , (14.8)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (14.9)

Similarly, the past itinerary S -(x0) = · · · s−2s−1s0 describes the history of x0, the
order in which the regions were visited before arriving to the point x0. To each
point x0 in the state space we thus associate a bi-infinite itinerary

S (x0) = (sk)k∈Z = S -.S + = · · · s−2s−1s0.s1s2s3 · · · , (14.10)

or simply itinerary, if we chose not to use the decimal point to indicate the present.
The itinerary will be finite for a scattering trajectory, entering and then escaping
M after a finite time, infinite for a trapped trajectory, and infinitely repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabetA is called the full shift (or topological Markov chain)

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (14.11)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

Here we refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on these se-
quences. As is clear from the definition (14.9), a forward iteration x → x′ = f (x)
shifts the entire itinerary to the left through the ‘decimal point.’ This operation,
denoted by the shift operator σ,

σ(· · · s−2s−1s0.s1s2s3 · · · ) = · · · s−2s−1s0s1.s2s3 · · · , (14.12)

demotes the current partition label s1 from the future S + to the ‘has been’ itinerary
S -. The inverse shift σ−1 shifts the entire itinerary one step to the right.

A finite sequence b = sksk+1 · · · sk+nb−1 of symbols from A is called a block
of length nb. If the symbols outside of the block remain unspecified, we denote
the totality of orbits that share this block by _sksk+1 · · · sk+nb−1_.

A state space point is a periodic point if its orbit returns to it after a finite
time; in shift space the orbit is periodic if its itinerary is an infinitely repeating
block p∞.

We shall refer to the set of periodic pointsMp that belong to a given periodic
orbit as a cycle

p = s1s2 · · · snp = {xs1 s2···snp
, xs2···snp s1 , · · · , xsnp s1···snp−1} . (14.13)
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A prime cycle p of period np is a single traversal of the orbit; its label is a block of
np symbols that cannot be written as a repeat of a shorter block (in the literature,
such cycles are sometimes called primitive; we shall refer to it as ‘prime’ throu-
ghout this text). By its definition, a cycle is invariant under cyclic permutations
of the symbols in the repeating block. A bar over a finite block of symbols de-
notes a periodic itinerary with infinitely repeating basic block; we shall omit the
bar whenever it is clear from the context that the orbit is periodic. Each periodic
point is labeled by the starting symbol s0 = snp the next (np − 1) steps of its future
itinerary. For example, the 2nd periodic point is labeled by

xs1 s2···snp
= xs1 s2···s0·s1 s2···snp

.

This - a bit strained - notation is meant to indicate that the symbol block repeats
both in the past and in the future. It is helpful for determining spatial ordering of
cycles of 2D-hyperbolic maps, to be undertaken in sect. 15.3.1.

Orbit that starts out as a finite block followed by infinite number of repeats
of another block p = (s1s2s3 . . . sn) is said to be heteroclinic to the cycle p. An
orbit that starts out as p∞ followed by a different finite block followed by (p′)∞ of
another block p′ is said to be a heteroclinic connection from cycle p to cycle p′.
If the orbit returns to the initial cycle (or equilibrium point), p = p′, the orbit is
said to be a homoclinic connection.

Partitions. A partition is called generating if every infinite symbol sequence
corresponds to a distinct point in state space. The finite Markov partition (14.2)
is an example. Constructing a generating partition for a given system is a difficult
problem. In the examples to follow, we shall concentrate on cases which that
permit finite partitions, but in practice almost any generating partition of interest
is infinite.

A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid that,
we often find it convenient to work with partitions finer than strictly necessary.
Ideally the dynamics in the refined partition assigns a unique infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · to each distinct orbit, but there might exist full shift sym-
bol sequences (14.11) which are not realized as orbits; such sequences are called
inadmissible, and we say that the symbolic dynamics is pruned. The word is
suggested by the ‘pruning’ of branches corresponding to forbidden sequences for
symbolic dynamics organized hierarchically into a tree structure, as explained in
chapter 17.

A mapping f : M → M together with a partition A induces topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (14.14)

is the set of all admissible infinite itineraries, and σ : Σ→ Σ is the shift operator
(14.12). The designation ‘subshift’ comes form the fact that Σ ⊂ AZ is the subset
of the full shift (14.11). The principal task in developing the symbolic dynamics
of a dynamical systems that occurs in applications will be to determine Σ, the
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set of all bi-infinite itineraries S that are actually realized by the given dynamical
system.

Pruning. If the dynamics is pruned, the alphabet must be supplemented by
a grammar, a set of pruning rules. After the inadmissible sequences have been
pruned, it is often convenient to parse the symbolic strings into words of variable
length - this is called coding. Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finite length,

G = {b1, b2, · · · bk} , (14.15)

where a pruned block b is a sequence of symbols b = s1s2 · · · snb , s ∈ A, of finite
length nb. In this case we can always construct a finite Markov partition (14.2) by
replacing finite length words of the original partition by letters of a new alphabet.
In particular, if the longest forbidden block is of length M + 1, we say that the
symbolic dynamics is a shift of finite type with M-step memory. In that case we
can recode the symbolic dynamics in terms of a new alphabet, with each new
letter given by an admissible block of at most length M.

A topological dynamical system (Σ, σ) for which all admissible itineraries are
generated by a finite transition matrix (see (17.1))

Σ =
{
(sk)k∈Z : Tsk sk+1 = 1 for all k

}
(14.16)

is called a subshift of finite type.

in depth:

chapter 15, p. 264

Résumé

What you kneed to know.
—Justin Lanier

From our initial chapters 2 to 4 fixation on things local: a representative point, a
short-time trajectory, a neighborhood, in this chapter we have made a courageous
leap and gone global.

The main lesson is that - if one intends to go thoughtfully about globalization
- one should trust the dynamics itself, and let it partition the state space, by means
of its (topologically invariant) unstable manifolds. This works if every equilib-
rium and periodic orbit is unstable, so one exits its local neighborhood via its
unstable manifold. We delineate the segment of the unstable manifold between
the fixed point and the point where the nonlinearity of the dynamics folds it back
on itself as the primary segment, and measure location of nearby state space points
by arclengths measured along this (curvilinear) segment. For 1-dimensional maps
the folding point is the critical point, and easy to determine. In higher dimensions,
the situation is not so clear - we shall discuss that in chapter 15.
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Trajectories exit a neighborhood of an equilibrium or periodic point along un-
stable directions, and fall along stable manifolds towards other invariant orbits,
until they again are repelled along their unstable manifolds. Such sequences of vi-
sitations can be described by symbolic dynamics. As we shall show in chapter 17,
they are encoded by transition matrices / transition graphs, and approximated dy-
namically by sequences of unstable manifold → unstable manifold maps, or, in
case of a return to the initial neighborhood, by return maps s→ f (s).

As the kneading theory of sect. 14.5 illustrates, not all conceivable symbol
sequences are actually realized (admissible). The identification of all inadmis-
sible or pruned sequences is in general not possible. However, the theory to be
developed here relies on exhaustive enumeration of all admissible itineraries up
to a given topological length; chapters 15 and 18 describe several strategies for
accomplishing this for physically realistic goals.

Commentary

Remark 14.1. Symbolic dynamics. For a brief history of symbolic dynamics, from
Hadamard in 1898, Morse and Hedlund in 1938 and onward, see notes to chapter 1 of
Kitchens monograph [14], a very clear and enjoyable mathematical introduction to topics
discussed here. Diacu and Holmes [7] provide an excellent survey of symbolic dynamics
applied to celestial mechanics. For a compact survey of symbolic dynamics techniques,
consult sects. 3.2 and 8.3 of Robinson [26]. The binary labeling of the once-folding
map periodic points was introduced by Myrberg [20–24] for 1-dimensional maps, and its
utility to 2-dimensional maps has been emphasized in refs. [9, 19]. For 1-dimensional
maps it is now customary to use the R-L notation of Metropolis, Stein and Stein [8, 17],
indicating that the point xn lies either to the left or to the right of the critical point in
figure 14.9. The symbolic dynamics of such mappings has been extensively studied by
means of the Smale horseshoes, see for example ref. [10]. Using letters rather than nu-
merals in symbol dynamics alphabets probably reflects good taste. We prefer numerals
for their computational convenience, as they speed up conversions of itineraries into the
topological coordinates (δ, γ) introduced in sect. 15.3.1. The alternating binary ordering
of figure 14.10 is related to the Gray codes of computer science [25]. Kitchens [14] co-
nvention is · · · s−2s−1.s0s1s2s3 · · ·, with ‘.’ placed differently from our convention (14.10).

Remark 14.2. Kneading theory. The admissible itineraries are studied, for example,
in refs. [6, 10, 17, 27]. We follow here the Milnor-Thurston exposition [18]. They study
the topological zeta function for piecewise monotone maps of the interval, and show that
for the finite subshift case it can be expressed in terms of a finite dimensional kneading
determinant. As the kneading determinant is essentially the topological zeta function of
sect. 18.4, we do not discuss it here. Baladi and Ruelle have reworked this theory in
a series of papers [3–5]. See also P. Dahlqvist’s appendix A18.1. Knight and Klages
refer to the set of iterates of the critical point as the ‘generating orbit’ in their study of
deterministic diffusion [15] (for deterministic diffusion, see chapter 24). They say: “The
structure of the Markov partitions varies wildly under parameter variation. The method
we employ to understand the Markov partitions involves iterating the critical point. The
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set of iterates of this point form a set of Markov partition points for the map. Hence we
call the orbit of the critical point a ‘generating orbit.’ If the generating orbit is finite for a
particular value of parameters, we obtain a finite Markov partition. We can then use the
finite Markov partition to tell us about the diffusive properties of the map and hence the
structure of the diffusion coefficient.”

Question 14.1. Henriette Roux wants to know
Q ‘Criterion of admissibility’? What’s the big deal?
A It is amazing - if you know the symbolic itinerary of one trajectory, you know all
admissible itineraries. Later, when we will need to compute periodic orbits, this will
enable us to compute them all up to a given length, without any guessing, and without the
danger of missing some, potentially important ones.

Remark 14.3. Heteroclinic connections. For sketches of heteroclinic connections in
the nonlinear setting, see Abraham and Shaw illustrated classic [2]. Section 5 of ref. [12]
makes elegant use of stable manifold co-dimension counts and of invariant subspaces im-
plied by discrete symmetries of the underlying PDE to deduce the existence of a heterocli-
nic connection. Ref. [13] which defines heteroclinic connections, cycles and networks has
lotos of references. It focuses on two-dimensional unstable manifolds, discusses discrete
symmetries, robust cycles on invariant subspaces, and constructs ‘cross-sections’ that lie
within the region of approximate linear flow near equilibria.
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14.7 Examples

Example 14.1. 3-disk state space partition. (Continued from example 14.2) Embed-
ded within M12, M13 are four strips M121, M123, M131, M132 of initial conditions that
survive two bounces, and so forth. At each bounce a cone of initially nearby trajectories
disperses (see figures 1.8 and 14.4). In order to attain a desired longer and longer itinerary
of bounces, the strip of initial points x0 = (s0, p0) requires exponentially finer precision,
nested within the initial state space strips drawn in figure 14.5. Provided that the disks are
sufficiently separated, after n bounces the survivors live on 2n exponentially thin strips,
each labeled by a distinct itinerary s1s2s3 . . . sn. (continued in example 15.3)

click to return: p. 240

Example 14.2. 3-disk symbolic dynamics. Consider the motion of a free point
exercise 1.1

particle in a plane with 3 elastically reflecting convex disks, figure 14.4. After a collision
with a disk a particle either continues to another disk or escapes, so a trajectory can be la-
beled by the disk sequence. Sets of configuration space pinball trajectories of figure 14.4
become quickly hard to disentangle. As we shall see in what follows, their state space vi-
sualization in terms of Poincaré sections P = [s, p] (figure 14.5, see also figure 15.15 (b))
is much more powerful. (continued in example 14.1)

click to return: p. 240

Example 14.3. Rössler attractor return map: Stretch & fold. (Continued from
example 4.5) In the Rössler flow (2.28) of example 3.2 we sketched the attractor by
running a long chaotic trajectory, and noted that the attractor of figure 14.7 (a) is very thin.
For Rössler flow an interval transverse to the attractor is stretched, folded and fiercely
pressed back. The attractor is ‘fractal’, but for all practical purposes the return map is
1-dimensional; your printer will need a resolution better than 1013 dots per inch to start
resolving its structure. We had attempted to describe this ‘stretch & fold’ flow by a 1-dim-
ensional return map, but the maps that we plotted in figure 3.4 were disquieting; they did
not appear to be a 1-to-1 maps. This apparent non-invertibility is an artifact of projection
of a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto the 1-dimensional subspace
Rn → Rn+1. Now that we understand equilibria and their linear stability, let’s do this right.

The key idea is to measure arclength distances along the unstable manifold of the
x− equilibrium point, as in figure 14.7 (a) (arclength parametrization of unstable mani-
folds is discussed in detail in sect. 15.1.1). Luck is with us; figure 14.7 (b) return map
sn+1 = P(sn) looks much like a parabola of example 3.7, so we shall take the unimodal
map symbolic dynamics, sect. 14.3, as our guess for the covering symbolic dynamics.
(continued in example 14.11)

click to return: p. 243

Example 14.4. Lorenz flow: Stretch& crease. We now deploy the symmetry of Lo-
renz flow to streamline and complete analysis of the Lorenz strange attractor commenced
in example 11.8. There we showed that the rotational C2 = {e,R} symmetry identifies
the two equilibria EQ1 and EQ2, and the traditional ‘two-eared’ Lorenz flow figure 2.5
is replaced by the ‘single-eared’ flow of figure 11.5 (a). Furthermore, the C2 symmetry
identifies the two half-planes of any plane through the z axis, replacing a full-space Poi-
ncaré section plane by a half-plane, and the two directions of a full-space eigenvector of
EQ0 by a one-sided eigenvector, see figure 11.5 (a).

Example 4.7 explained the genesis of the xEQ1 equilibrium unstable manifold, its ori-
entation and thickness, its collision with the z-axis, and its heteroclinic connection to the
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Figure 14.14: (a) A Poincaré section of the Lo-
renz flow in the doubled-polar angle representa-
tion, figure 11.5, given by the [y′, z] plane that con-
tains the z-axis and the equilibrium EQ1. Most of
the section plane except for the two shaded trape-
zoids is removed to aid visualization of the flow.
x′ axis points toward the viewer. (b) The Poincaré
section plane. Crossings into the section are mar-
ked red (solid) and crossings out of the section are
marked blue (dashed). Outermost points of both
in- and out-sections are given by the EQ0 unstable
manifold Wu(EQ0) intersections.
(E. Siminos)
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Figure 14.15: The return map sn+1 = P(sn) parame-
terized by Euclidean arclength s measured along the
EQ1 unstable manifold, from xEQ1 to Wu(EQ0) section
point, uppermost right point of the blue (dashed) se-
gment in figure 14.14 (b). The critical point (the ‘cre-
ase’) of the map is given by the section of the hetero-
clinic orbit W s(EQ0) that descends all the way to EQ0,
in infinite time and with infinite slope.
(E. Siminos)
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xEQ0 = (0, 0, 0) equilibrium. All that remains is to describe how the EQ0 neighborhood
connects back to the EQ1 unstable manifold.

Figure 11.5 and figure 14.14 (a) show clearly how the Lorenz dynamics is pieced
together from the 2 equilibria and their unstable manifolds: Having completed the descent
to EQ0, the infinitesimal neighborhood of the heteroclinic EQ1 → EQ0 trajectory is
ejected along the unstable manifold of EQ0 and is re-injected into the unstable manifold
of EQ1. Both sides of the narrow strip enclosing the EQ0 unstable manifold lie above it,
and they get folded onto each other with a knife-edge crease (contracted exponentially for
infinite time to the EQ0 heteroclinic point), with the heteroclinic out-trajectory defining
the outer edge of the strange attractor. This leads to the folding of the outer branch of the
Lorenz strange attractor, illustrated in figure 14.14 (b), with the outermost edge following
the unstable manifold of EQ0.

Now the stage is set for construction of Poincaré sections and associated return maps.
There are two natural choices; the section at EQ0, lower part of figure 14.14 (b), and the
section (blue) above EQ1. The first section, together with the blowup of the EQ0 nei-
ghborhood, figure 4.6 (b), illustrates clearly the scarcity of trajectories (vanishing natural
measure) in the neighborhood of EQ0. The flat section above EQ1 (which is, believe it or
not, a smooth conjugacy by the flow of the knife-sharp section at EQ0) is more convenient
for our purposes. Its return map (3.4) is given by figure 14.15.

The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its critical
point’s forward trajectory yields the kneading sequence (14.5), and the admissible binary
sequences, so any number of periodic points can be accurately determined from this 1-
dimensional return map, and the 3-dimensional cycles then verified by integrating the
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Figure 14.16: The n = 2 and 4 intervals state space
partitions for the Bernoulli shift map (14.17), together
with the fixed points 0, 1 and the 2-cycle 01.
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Lorenz differential equations (2.23). As already observed by Lorenz, such a map is ever-
ywhere expanding on the strange attractor, so it is no wonder mathematicians can here
make the ergodicity rigorous. (E. Siminos and J. Halcrow)

section 23.7
click to return: p. 244

Example 14.5. Bernoulli shift map state space partition. First, an easy example:
the Bernoulli shift map, figure 14.8,

b(γ) =

{
b0(γ) = 2γ , γ ∈ M0 = [0, 1/2)
b1(γ) = 2γ − 1 , γ ∈ M1 = (1/2, 1] , (14.17)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself, with
fixed points γ0 = 0, γ1 = 1. The closely related doubling map acts on the circle

x 7→ 2x (mod 1) , x ∈ [0, 1] (14.18)

and consequently has only one fixed point, x0 = 0 = 1 (mod 1). The Bernoulli map
is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of γ =

.s1s2s3 . . . by shifting its digits, b(γ) = .s2s3 . . .. The nth preimages b−(n−1)(γ) of the
critical point γc = 1/2 partition the state space into 2n subintervals, each labeled by the
first n binary digits of points γ = .s1s2s3 . . . within the subinterval: figure 14.16 illustrates
such 4-intervals state space partition {M00,M01,M11,M10} for n = 2.

Consider a map f (x) topologically conjugate (two monotonically increasing bra-
nches) to the Bernoulli shift, with the forward orbit of x generating the itinerary s1s2s3 . . ..
Convert this itinerary into Bernoulli map point γ = .s1s2s3 . . .. These values can now be
used to spatially order points with different temporal itineraries: if γ < γ′, then x < x′.

Suppose we have already computed all (n − 1)-cycles of f (x), and would now like
to compute the cycle p = s1s2s3 . . . sn of period n. Mark γ values on the unit interval
for all known periodic points of the Bernoulli shift map, and then insert in between them
γσk p, k = 0, 1, · · · , np − 1 corresponding to periodic points of cycle p. In the dynamical
state space they will be bracketed by corresponding cycle points x j from cycles already
computed, and thus the knowledge of the topological ordering of all cycle points provides
us with robust initial guesses for periodic-orbit searches for any map with 2 monotonically
increasing branches. (continued in example 28.5)

click to return: p. 244

Example 14.6. Unimodal maps. (Continued from example 3.7) The simplest
examples of unimodal maps are the quadratic map

f (x) = Ax(1 − x) , x ∈ M = [0, 1] (14.19)
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and numerically computed return maps such as figure 14.7 (b). Such dynamical systems
are irreversible (the inverse of f is double-valued), but, as we shall show in sect. 15.2,
they may nevertheless serve as effective descriptions of invertible 2-dimensional hyper-
bolic flows. For the unimodal map such as figure 14.9 a Markov partition of the unit
intervalM is given by the two intervals {M0,M1}. (continued in example 14.7)

click to return: p. 245

Example 14.7. Full tent map, Ulam map. (Continued from example 14.6) The
simplest examples of unimodal maps with complete binary symbolic dynamics are the
full tent map, figure 14.9 (a),

f (γ) = 1 − 2|γ − 1/2| , γ ∈ M = [0, 1] , (14.20)

the Ulam map (quadratic map (14.19) with A = 4)
exercise A2.3

f (x) = 4x(1 − x) , x ∈ M = [0, 1] , (14.21)

and the repelling unimodal maps such as figure 14.9. For unimodal maps the Markov
partition of the unit intervalM is given by intervals {M0,M1}. We refer to (14.20) as the
complete tent map because its symbolic dynamics is completely binary: as both f (M0)
and f (M1) fully cover M = {M0,M1}, all binary sequences are realized as admissible
itineraries.

click to return: p. 245

Example 14.8. Periodic orbits of unimodal maps. Let

f (x) =

{
f0(x) if x < xc
f1(x) if x > xc

, (14.22)

and assume that all periodic orbits are unstable, i.e., the stability Λp = f k
a
′ (see (4.43))

satisfies |Λp| > 1. Then the periodic point xs0 s1 s2...sn−1 is the only fixed point of the unique
composition (3.14) of n maps

fsn ◦ · · · ◦ fs2 ◦ fs1 (xs0 s1 s2...sn−1 ) = xs0 s1 s2...sn−1 (14.23)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).

The nth iterate of a unimodal map has at most 2n monotone segments, and therefore
there will be 2n or fewer periodic points of length n. For the full tent map (14.20) it
has exactly 2n periodic points. A periodic orbit p of length n corresponds to an infinite

section 15.2
repetition of a length n = np symbol string block, customarily indicated by a line over
the string: p = S p = (s1s2s3 . . . sn )∞ = s1s2s3 . . . sn . As all itineraries are infinite, we
shall adopt convention that a finite string itinerary p = s1s2s3 . . . sn stands for infinite
repetition of a finite block, and routinely omit the overline. A cycle p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S ′. If the itinerary of x0 is
p = s1s2s3 . . . sn , its cyclic permutation σk p = sk sk+1 . . . sn s1 . . . sk−1 corresponds to the
point xk−1 in the same cycle.

click to return: p. 247

Example 14.9. Systematic searches for unimodal map cycles. Knowledge of the
topological coordinate (14.4) is very useful when searching for periodic orbits. Assume
that we have already determined all periodic points xa, xb, · · · of period n, and would like
to have a good initial guess for the period (n+1) periodic point xd with prescribed itinerary
S +

d := S +(xd). It is easy to determine the two closest itineraries γ(S +
a ), γ(S +

b ) that bracket
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Figure 14.17: The alternating binary tree organi-
zation of the periodic points of a unimodal map (in
this example, the Ulam map (14.21)). The itine-
rary of a point is read off the tree by starting at the
root and following the branches down to x; relative
ordering of points along the x axis is given by the
relative ordering of the corresponding nodes.

γ(S +
d ). If γ(S +

a ) < γ(S +
d ) < γ(S +

b ), then one can restrict the search for xc to xc ∈ [xa, xb].
For example, the relative ordering of all unimodal map periodic points up to n = 5 is given
in the figure 14.17. Appendix A14.1 contains further details of the symbolics dynamics
for periodic point of unimodal maps.

click to return: p. 247

Example 14.10. Periodic points of the full tent map. Each cycle p is a set of np

rational-valued full tent map periodic points γ. It follows from (14.4) that if the repea-
ting string s1s2 . . . sn contains an odd number of ‘1’s, the string of well ordered symbols
w1w2 . . .w2n has to be of the double length before it repeats itself. The cycle-point γ is a
geometrical sum which we can rewrite as the odd-denominator fraction

γ(s1s2 . . . sn) =

2n∑
t=1

wt

2t +
1

2−2n

2n∑
t=1

wt

2t + · · ·

=
22n

22n − 1

2n∑
t=1

wt

2t (14.24)

Using this we can calculate the γ̂p = γ̂(S p) for all short cycles. For orbits up to length 5
this is done in table 14.1.

click to return: p. 247

Example 14.11. Rössler return map web diagram. (Continuation of exam-
ple 14.1) The arclength distance along the unstable manifold of the x− equilibrium point
return map, figure 14.7 (b), generates the kneading sequence (14.5) as the itinerary of the
critical point plotted in figure 14.13 (a).

click to return: p. 250
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Exercises

14.1. Binary symbolic dynamics. Verify that the shor-
test prime binary cycles of the unimodal repeller of fi-
gure 14.9 are 0, 1, 01, 001, 011, · · · . Compare with
table 18.1. Sketch them in the graph of the unimodal fu-
nction f (x); compare the ordering of the periodic points
with that in figure 14.10. The point is that while overla-
yed on each other the longer cycles look like a hopeless
jumble, the periodic points are clearly and logically or-
dered by the alternating binary tree.

14.2. Generating prime cycles. Write a program that gene-
rates all binary prime cycles up to a given finite length.

14.3. A contracting baker’s map. Consider the contracting
(or “dissipative”) baker’s map defined in exercise 4.6.

The symbolic dynamics encoding of trajectories is reali-
zed via symbols 0 (y ≤ 1/2) and 1 (y > 1/2). Consider
the observable a(x, y) = x. Verify that for any periodic
orbit p = s1 . . . snp , si ∈ {0, 1} the integrated observable
is

Ap =
3
4

np∑
j=1

δs j,1 .

14.4. Unimodal map symbolic dynamics. Show that the
tent map point γ(S +) with future itinerary S + is given
by converting the sequence of sn’s into a binary number
by the algorithm (14.4). This follows by inspection from
the binary tree of figure 14.10.

14.5. Unimodal map kneading value. Consider the 1-
dimensional quadratic map

f (x) = Ax(1 − x) , A = 3.8 . (14.25)

(a) (easy) Plot (14.25), and the first 4-8 (whatever lo-
oks better) iterates of the critical point xc = 1/2.

(b) (hard) Draw corresponding intervals of the parti-
tion of the unit interval as levels of a Cantor set, as
in the symbolic dynamics partition of figure 14.9.
Note, however, that some of the intervals of fi-
gure 14.9 do not appear in this case - they are pru-
ned.

(c) (easy) Check numerically that K = S +(xc), kne-
ading sequence (the itinerary of the critical point
(14.5)) is

K = 1011011110110111101011110111110 . . .

As the orbits of a chaotic map are exponentially
unstable, so many digits seem too good to be true
- recheck this sequence using arbitrary precision
arithmetics.

(d) (medium) The tent map point γ(S +) with future
itinerary S + is given by converting the sequence of
sn’s into a binary number by the algorithm (14.4).
List the corresponding kneading value (14.5) se-
quence κ = γ(K) to the same number of digits as
K.

(e) (hard) Plot the dike map, figure 14.11, with the
same kneading sequence K as f (x). The dike map
is obtained by slicing off all γ

(
S +(x0)

)
> κ, from

the full tent map figure 14.9 (a), see (14.6).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sect. 18.5.

14.6. “Golden mean” pruned map. Consider a symmetric
tent map on the unit interval such that its highest point
belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the value |Λ| for the slope (the two different
slopes ±Λ just differ by a sign) where the maxi-
mum at 1/2 is a periodic point in a 3-cycle, as
depicted in the figure.

(b) Show that no orbit of this map can visit the region
x > (1 +

√
5)/4 more than once. Verify also that

once an orbit exceeds x > (
√

5 − 1)/4, it does not
reenter the region x < (

√
5 − 1)/4.

(c) If an orbit is in the interval (
√

5− 1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2
we use the symbol 0 and for x > 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring _00_ in it.
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(e) On a second thought, is there a periodic orbit that
violates the above _00_ pruning rule?

To continue with this line of thinking, see exercise 18.7
and exercise 22.1. See also exercise 18.6 and exe-
rcise 18.8.

14.7. Binary 3-step transition matrix. Construct an [8×8]
binary 3-step transition matrix analogous to the 2-step
transition matrix (17.11). Convince yourself that the
number of terms of contributing to tr T n is independent
of the memory length, and that this [2m×2m] trace is well
defined in the infinite memory limit m→ ∞.

14.8. Full tent map periodic points. This exercise is easy:
just making sure you know how to go back and forth be-
tween spatial and temporal ordering of trajectory points.

(a) compute the two periodic points of cycle 01 “by
hand,” by solving the fixed-point condition for the

second iterate f1 ◦ f0
(b) compute the periodic points of two 3-cycles 001

and 011 by solving the fixed-point condition for
the third iterates

(c) compute the five periodic points of cycle 10011
using (14.24)

(d) compute the five periodic points of cycle 10000

(e) derive (14.24)

(f) (optional) plot the above two 5-cycles on the graph
of the full tent map, and as many others as you find
interesting. Why? Because you can start apprecia-
ting the power of kneading theory–while the state
space orbits get more and more complicated and
impenetrable, the kneading sequence pruning rule
is as simple and as sharp as a knife.

(continued in exercise 16.1)
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