
Appendix A8

Hamiltonian dynamics

The symplectic structure of Hamilton’s equations buys us much more than
the incompressibility, or the phase space volume conservation alluded to in
sect. 8.1.

A8.1 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)

The evolution equations for any p, q dependent quantity Q = Q(q, p) are given
by (19.28). In terms of the Poisson brackets, the time-evolution equation for Q =

Q(q, p) is given by (19.30). We now recast the symplectic condition (8.6) in a form
convenient for using the symplectic constraints on M. Writing x(t) = x′ = [p′, q′]
and the Jacobian matrix and its inverse
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∂q
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∂p′
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 ∂q
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 , (A8.1)

we can spell out the symplectic invariance condition (8.6):
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From (8.20) we obtain
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. (A8.3)
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Taken together, (A8.3) and (A8.2) imply that the flow conserves the {p, q} Poisson
brackets

{qi, q j} =
∂qi

∂p′k

∂q j

∂q′k
−
∂q j

∂p′k

∂qi

∂q′k
= 0

{pi, p j} = 0 , {pi, q j} = δi j , (A8.4)

i.e., the transformations induced by a Hamiltonian flow are canonical, preserving
the form of the equations of motion. The first two relations are symmetric under
i, j interchange and yield D(D − 1)/2 constraints each; the last relation yields D2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = d(2D + 1) elements of M
are linearly independent, as it behooves group elements of the symplectic group
S p(2D).

We have now succeeded in making the full set of constraints explicit - as we
shall see in appendix A19, this will enable us to implement dynamics in such a
way that the symplectic invariance will be automatically preserved.

A8.2 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrix J of the flow (4.5), but the monodromy matrix M,
which enters the trace formula. This matrix gives the time dependence of a dis-
placement perpendicular to the flow on the energy manifold. Indeed, we discover
some trivial parts in the Jacobian matrix J. An initial displacement in the direc-
tion of the flow x = ω∇H(x) transfers according to δx(t) = xt(t)δt with δt time
independent. The projection of any displacement on δx on ∇H(x) is constant, i.e.,
∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system on the orbit x(t) in form of
the (non singular) transformation U(x(t)):

J̃(x(t)) = U−1(x(t)) J(x(t)) U(x(0)) (A8.5)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU − U̇) (A8.6)

Note that the properties a) – c) are only fulfilled for J̃ and L̃ if U itself is symplec-
tic.

Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (A8.5) at any time t. Setting
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U = (xt
>, xE

>, x1
>, . . . , x2d−2

>) gives

J̃ =


1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... M
0 ∗

 ; L̃ =


0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗

 , (A8.7)

The matrix M is now the monodromy matrix and the equation of motion are given
by

Ṁ = l M. (A8.8)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE , x2) =


ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2

 (A8.9)

with x> = (x, y; u, v) and q = |∇H| = |ẋ|. The matrix U is non singular and
symplectic at every phase space point x, except the equilibrium points ẋ = 0. The
matrix elements for l are given (A8.11). One distinguishes 4 classes of eigenvalues
of M.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ.

• loxodromic, if Λ = e±µ±iω with µ and ω real. This is the most general case,
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e., M is a [2×2] matrix, the eigenvalues are determined
by

λ =
tr (M) ±

√
tr (M)2 − 4
2

, (A8.10)

i.e., tr (M) = 2 separates stable and unstable behavior.
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The l matrix elements for the local transformation (A8.9) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1
q2 [(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (A8.11)

with hi, hi j is the derivative of the Hamiltonian H with respect to the phase space
coordinates and q = |∇H|2.
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