
Chapter 15

Stretch, fold, prune

I.1. Introduction to conjugacy problems for diffeomor-

phisms. This is a survey article on the area of global anal-

ysis defined by differentiable dynamical systems or equiv-

alently the action (differentiable) of a Lie group G on a

manifold M. Here Diff(M) is the group of all diffeomor-

phisms of M and a diffeomorphism is a differentiable map

with a differentiable inverse. (. . . ) Our problem is to study

the global structure, i.e., all of the orbits of M.

—Stephen Smale, Differentiable Dynamical Systems

W
e have learned that the Rössler attractor is very thin, but otherwise the re-

turn maps that we found were disquieting – figure 3.3 did not appear to

be a one-to-one map. This apparent loss of invertibility is an artifact of

projection of higher-dimensional return maps onto their lower-dimensional sub-

spaces. As the choice of a lower-dimensional subspace is arbitrary, the resulting

snapshots of return maps look rather arbitrary, too. Such observations beg a ques-

tion: Does there exist a natural, intrinsic coordinate system in which we should

plot a return map?

We shall argue in sect. 15.1 that the answer is yes: The intrinsic coordinates

are given by the stable/unstable manifolds, and a return map should be plotted as

a map from the unstable manifold back onto the immediate neighborhood of the

unstable manifold. In chapter 5 we established that Floquet multipliers of periodic

orbits are (local) dynamical invariants. Here we shall show that every equilibrium

point and every periodic orbit carries with it stable and unstable manifolds which

provide topologically invariant global foliation of the state space. They will en-

able us to partition the state space in a dynamically invariant way, and assign

symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of tra-

jectories, and separates the admissible and inadmissible itineraries. We illustrate

how this works on Hénon map example 15.3. Determining which symbol se-

quences are absent, or ‘pruned’ is a formidable problem when viewed in the state
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space, [x1, x2, ..., xd] coordinates. It is equivalent to the problem of determining

the location of all homoclinic tangencies, or all turning points of the Hénon attrac-

tor. They are dense on the attractor, and show no self-similar structure in the state

space coordinates. However, in the ‘danish pastry’ representation of sect. 15.3

(and the ‘pruned danish,’ in American vernacular, of sect. 15.4), the pruning prob-

lem is visualized as crisply as the New York subway map; any itinerary which

strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the

preceding chapter. Skip most of this chapter unless you really need to get into

nitty-gritty details of symbolic dynamics.

fast track:

chapter 16, p. 293

15.1 Goin’ global: stable/unstable manifolds

The complexity of this figure will be striking, and I shall

not even try to draw it.

— H. Poincaré, on his discovery of homoclinic tan-

gles, Les méthodes nouvelles de la méchanique céleste

The Jacobian matrix Jt transports an infinitesimal neighborhood, its eigenvalues

and eigen-directions describing deformation of an initial infinitesimal frame of

neighboring trajectories into a distorted frame time t later, as in figure 4.1.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
����� δ

δ+   x

J

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

x0

x0

f (   )t

x(t)+     x

Nearby trajectories separate exponentially along the unstable directions, approach

each other along the stable directions, and creep along the marginal directions.

The fixed point q Jacobian matrix J(x) eigenvectors (5.8) form a rectilinear

coordinate frame in which the flow into, out of, or encircling the fixed point is

linear in the sense of sect. 4.3.

J

+   x δ

δp

x0

0x +      x

The continuations of the span of the local stable, unstable eigen-directions into

global curvilinear invariant manifolds are called the stable, respectively unstable

manifolds. They consist of all points which march into the fixed point forward,
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respectively backward in time

W s =
{

x ∈ M : f t(x) − xq → 0 as t → ∞
}

Wu =
{

x ∈ M : f −t(x) − xq → 0 as t → ∞
}

. (15.1)

Eigenvectors e(i) of the monodromy matrix J(x) play a special role - on them the

action of the dynamics is the linear multiplication by Λi (for a real eigenvector)

along 1-dimensional invariant curve W
u,s
(i)

or spiral in/out action in a 2-D surface

(for a complex pair). For t → ±∞ a finite segment on W s
(c)

, respectively Wu
(e)

converges to the linearized map eigenvector e(c), respectively e(e), where (c), (e)

stand respectively for ‘contracting,’ ‘expanding.’ In this sense each eigenvector

defines a (curvilinear) axis of the stable, respectively unstable manifold.

example 15.2

p. 283

Actual construction of these manifolds is the converse of their definition (15.1):

one starts with an arbitrarily small segment of a fixed point eigenvector and lets

evolution stretch it into a finite segment of the associated manifold. As a periodic

point x on cycle p is a fixed point of f Tp(x), the fixed point discussion that follows

applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consider ith expanding eigen-

value, eigenvector pair (Λi, e
(i)) computed from J = Jp(x) evaluated at a fixed

point x,

J(x)e(i)(x) = Λie
(i)(x) , x ∈ Mp , Λi > 1 . (15.2)

Take an infinitesimal eigenvector e(i)(x), ||e(i)(x)|| = ε ≪ 1, and its return Λie
(i)(x)

after one period Tp. Sprinkle the straight interval between [ε,Λiε] ⊂ Wu
(i)

with a

large number of points x(k), for example equidistantly spaced on logarithmic scale

between ln ε and lnΛi + ln ε . The successive returns of these points f Tp(x(k)),

f 2Tp(x(k)), · · · , f mTp(x(k)) trace out the 1d curve Wu
(i)

within the unstable manifold.

As separations between points tend to grow exponentially, every so often one

needs to interpolate new starting points between the rarified ones. Repeat for

−e(i)(x).

Contracting real and positive Floquet multiplier. Reverse the action of the

map backwards in time. This turns a contracting direction into an expanding one,

tracing out the curvilinear stable manifold W s
(i)

as a continuation of e(i).

Expanding/contracting real negative Floquet multiplier. As above, but every

even iterate f 2Tp(x(k)), f 4Tp(x(k)), f 6Tp(x(k)) continues in the direction e(i), every

odd one in the direction −e(i).

Complex Floquet multiplier pair, expanding/contracting. The complex Flo-

quet multiplier pair {Λ j,Λ j+1 = Λ
∗
j
} has Floquet exponents (4.8) of form λ( j) =
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Figure 15.1: A 2d unstable manifold obtained by

continuation from the linearized neighborhood of a

complex eigenvalue pair of an unstable equilibrium

of plane Couette flow, a projection from a 61,506-

dimensional state space ODE truncation of the (∞-

dimensional) Navier-Stokes PDE. (J.F. Gibson, 8

Nov. 2005 blog entry [30.5])

µ( j) ± iω( j), with the sign of µ(k j)
, 0 determining whether the linear neighbor-

hood is out / in spiralling. The orthogonal pair of real eigenvectors {Re e( j), Im e( j)}

spans a plane. T = 2π/ω( j) is the time of one turn of the spiral, JT Re e( j)(x) =

|Λ j|Re e( j)(x) . As in the real cases above, sprinkle the straight interval between

[ε, |Λ j|ε] along Re e( j)(x) with a large number of points x(k). The flow will now

trace out the 2d invariant manifold as an out / in spiralling strip. Two low-

dimensional examples are the unstable manifolds of the Lorenz flow, figure 14.8 (a),

and the Rössler flow, figure 14.7 (a). For a highly non-trivial example, see fig-

ure 15.1.

The unstable manifolds of a flow are du-dimensional. Taken together with the

marginally stable direction along the flow, they are rather hard to visualize. A

more insightful visualization is offered by (d−1)-dimensional Poincaré sections

(3.2) with the marginal flow direction eliminated (see also sect. 3.1.2). Stable,

unstable manifolds for maps are defined by

Ŵ s =
{

x ∈ P : Pn(x) − xq → 0 as n→ ∞
}

Ŵu =
{

x ∈ P : P−n(x) − xq → 0 as n→ ∞
}

, (15.3)

where P(x) is the (d−1)-dimensional return map (3.1). In what follows, all invari-

ant manifolds Wu, W s will be restricted to their Poincaré sections Ŵu, Ŵ s.

example 15.3

p. 283

In general the full state space eigenvectors do not lie in a Poincaré section; the

eigenvectors ê( j) tangent to the section are given by (5.20). Furthermore, while in

the linear neighborhood of fixed point x the trajectories return with approximate

periodicity Tp, this is not the case for the globally continued manifolds; τ(x), or

the first return times (3.1) differ, and the Ŵu
( j)

restricted to the Poincaré section is

obtained by continuing trajectories of the points from the full state space curve

Wu
( j)

to the section P.

For long times the unstable manifolds wander throughout the connected er-

godic component, and are no more informative than an ergodic trajectory. For

example, the line with equitemporal knots in figure 15.1 starts out on a smoothly
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curved neighborhood of the equilibrium, but after a ‘turbulent’ episode decays

into an attractive equilibrium point. The trick is to stop continuing an invariant

manifold while the going is still good.

fast track:

sect. 15.2, p. 267

Learning where to stop is a bit of a technical exercise, the reader might prefer

to skip next section on the first reading.

15.1.1 Parametrization of invariant manifolds

As the flow is nonlinear, there is no ‘natural’ linear basis to represent it. Wistful

hopes like ‘POD modes,’ ‘Karhunen-Loève,’ and other linear changes of bases do

not cut it. The invariant manifolds are curved, and their coordinatizations are of

necessity curvilinear, just as the maps of our globe are, but infinitely foliated and

thus much harder to chart.

Let us illustrate this by parameterizing a 1d slice of an unstable manifold by its

arclength. Sprinkle evenly points {x(1), x(2), · · · , x(N−1)} between the equilibrium

point xq = x(0) and point x = x(N), along the 1d unstable manifold continuation

x(k) ∈ Ŵu
( j)

of the unstable ê( j) eigendirection (we shall omit the eigendirection

label ( j) in what follows). Then the arclength from equilibrium point xq = x(0) to

x = x(N) is given by

s = lim
N→∞

N
∑

k=1

(

gi j dx
(k)

i
dx

(k)

j

)1/2
, dx

(k)

i
= x

(k)

i
− x

(k−1)

i
. (15.4)

For the lack of a better idea (perhaps the dynamically determined g = J⊤J would

be a more natural metric?) let us measure arclength in the Euclidean metric, gi j =

δi j, so

s = lim
N→∞

N
∑

k=1

(

dx(k) · dx(k)
)1/2
. (15.5)

By definition f τ(x)(x) ∈ Ŵu
( j)

, so f t(x) induces a 1d map s(s0, τ) = s( f τ(x0)(x0)).

Turning points are points on the unstable manifold for which the local un-

stable manifold curvature diverges for forward iterates of the map, i.e., points at

which the manifold folds back onto itself arbitrarily sharply. For our purposes,

approximate turning points suffice. The 1d curve Ŵu
( j)

starts out linear at xq, then

gently curves until –under the influence of other unstable equilibria and/or peri-

odic orbits– it folds back sharply at ‘turning points’ and then nearly retraces itself.

This is likely to happen if there is only one unstable direction, as we saw in the

Rössler attractor example 14.4, but if there are several, the ‘turning point’ might

get stretched out in the non-leading expanding directions.
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The trick is to figure out a good base segment to the nearest turning point

L = [0, sb], and after the foldback assign to s(x, t) > sb the nearest point s on

the base segment. If the stable manifold contraction is strong, the 2nd coordinate

connecting s(x, t)→ s can be neglected. We saw in example 14.4 how this works.

You might, by nature and temperament, take the dark view: Rössler has helpful

properties, namely insanely strong contraction along a 1-dimensional stable direc-

tion, that are not present in real problems, such as turbulence in a plane Couette

flow, and thus the lessons of chapter 14 of no use when it comes to real plumb-

ing. For this reason, both of the training examples to come, the billiards and the

Hénon map are of Hamiltonian, phase-space preserving type, and thus as far from

being insanely contracting as possible. Yet, to a thoughtful reader, they unfold

themselves as pages of a book.

Assign to each d-dimensional point x̂ ∈ Lq a coordinate s = s(x̂) whose value

is the Euclidean arclength (15.4) to xq measured along the 1-dimensional Pq sec-

tion of the xq unstable manifold. Next, for a nearby point x̂0 < Lq determine

the point x̂1 ∈ Lq which minimizes the Euclidean distance (x̂0 − x̂1)2, and as-

sign arc length coordinate value s0 = s(x̂1) to x̂0. In this way, an approximate

1-dimensional intrinsic coordinate system is built along the unstable manifold.

This parametrization is useful if the non–wandering set is sufficiently thin that its

perpendicular extent can be neglected, with every point on the non–wandering set

assigned the nearest point on the base segment Lq.

Armed with this intrinsic curvilinear coordinate parametrization, we are now

in a position to construct a 1-dimensional model of the dynamics on the non–

wandering set. If x̂n is the nth Poincaré section of a trajectory in neighborhood of

xq, and sn is the corresponding curvilinear coordinate, then sn+1 = f τn (sn) models

the full state space dynamics x̂n → x̂n+1. We approximate f (sn) by a smooth,

continuous 1-dimensional map f : Lq → Lq by taking x̂n ∈ Lq, and assigning to

x̂n+1 the nearest base segment point sn+1 = s(x̂n+1).

15.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 267,

about ‘the action (differentiable) of a Lie group G on a manifold M,’ time has

come to bring Smale to everyman. If you still remain mystified by the end of

this chapter, reading chapter 19 might help; for example, the Liouville operators

form a Lie group of symplectic, or canonical transformations acting on the (p, q)

manifold.

If a flow is locally unstable but globally bounded, any open ball of initial

points will be stretched out and then folded. An example is a 3-dimensional in-

vertible flow sketched in figure 14.7 (a) which returns a Poincaré section of the

flow folded into a ‘horseshoe’ (we shall belabor this in figure 15.4). We now exercise 15.1

offer two examples of locally unstable but globally bounded flows which return

an initial area stretched and folded into a ‘horseshoe,’ such that the initial area

smale - 16jan2014 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 15. STRETCH, FOLD, PRUNE 268

Figure 15.2: Binary labeling of trajectories of the

symmetric 3-disk pinball; a bounce in which the tra-

jectory returns to the preceding disk is labeled 0, and a

bounce which results in continuation to the third disk

is labeled 1.

Figure 15.3: The 3-disk game of pinball of fig-

ure 14.5, generated by starting from disk 1, pre-

ceded by disk 2, coded in binary, as in figure 15.2.

(a) Strips Msi. j
which have survived a bounce in

the past and will survive a bounce in the future.

(b) Iteration corresponds to the decimal point shift;

for example, all points in the rectangle [1.01] map

into the rectangles [0.10], [0.11] in one iteration.

(a)

si
nØ

1

0

−1
−2.5 0 2.5s

0.0 1.1

0. .01. .1

0.1

1.0

(b)

si
n

θ

s

1.

0.01

0.010.01

0.

0.00

is intersected at most twice. We shall refer to such mappings with at most 2n

transverse self-intersections at the nth iteration as the once-folding maps.

The first example is the 3-disk game of pinball figure 14.5, which, for suf-

ficiently separated disks (see figure 14.6), is an example of a complete Smale

horseshoe. We start by exploiting its symmetry to simplify it, and then partition

its state space by its stable / unstable manifolds.

example 15.4

p. 284

The 3-disk repeller does not really look like a ‘horseshoe;’ the ‘fold’ is cut

out of the picture by allowing the pinballs that fly between the disks to fall off the

table and escape. Next example captures the ‘stretch & fold’ horseshoe dynamics

of return maps such as Rössler’s, figure 3.2.

example 15.5

p. 284

What is the significance of the subscript such as .011 which labels the M.011

future strip? The two strips M.0,M.1 partition the state space into two regions

labeled by the two-letter alphabet A = {0, 1}. S + = .011 is the future itinerary

for all x ∈ M.011. Likewise, for the past strips all x ∈ Ms−m···s−1s0. have the past

itinerary S - = s−m · · · s−1s0 . Which partition we use to present pictorially the

regions that do not escape in m iterations is a matter of taste, as the backward

strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.3) of M., is the union of all points whose forward
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Figure 15.4: The Hénon map (15.20) for a = 6,

b = −1: fixed point 0 with segments of its sta-

ble, unstable manifolds W s , Wu, and fixed point

1. (a) Their intersection bounds the region M. =

0BCD which contains the non–wandering set Ω.

(b) The intersection of the forward image f (M.)

withM. consists of two (future) strips M0., M1.,

with points BCD brought closer to fixed point 0

by the stable manifold contraction. (c) The inter-

section of the forward image f (M.) with the back-

ward backward f −1(M.) is a four-region cover of

Ω. (d) The intersection of the twice-folded for-

ward horseshoe f 2(M.) with backward horseshoe

f −1(M.). (e) The intersection of f 2(M.) with

f −2(M.) is a 16-region cover of Ω. Iteration yields

the complete Smale horseshoe non–wandering set

Ω, i.e., the union of all non-wandering points of f ,

with every forward fold intersecting every back-

ward fold. (P. Cvitanović and Y.

Matsuoka)

(a) −1.0 0.0 1.0

−1.0

0.0

1.0

0
W

u

W
s

B

C

D

1

(b) -1.0 0.0 1.0

-1.0

0.0

1.0

.1

0

.0D

B

C



(c)

0.1

0.0

1.0

1.1



(d)
0.01

0.00

1.00

1.01

1.11

0.11

0.10

1.10



(e)

01.10

01.01

11.00

10.10



and backward trajectories remain trapped for all time, given by the intersections

of all images and preimages ofM:

Ω =

{

x | x ∈ lim
m,n→∞

f m(M.)
⋂

f −n(M.)

}

. (15.6)

Two important properties of the Smale horseshoe are that it has a complete

binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold f n(M) intersects transver-

sally every backward fold f −m(M), so a unique bi-infinite binary sequence can be

associated to every element of the non–wandering set. A point x ∈ Ω is labeled

by the intersection of its past and future itineraries S (x) = · · · s−2s−1s0.s1s2 · · ·,

where sn = s if f n(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z. remark A1.1

The system is said to be structurally stable if all intersections of forward and

backward iterates ofM remain transverse for sufficiently small perturbations f →

f + δ of the flow, for example, for slight displacements of the disks in the pinball

problem, or sufficiently small variations of the Hénon map parameters a, b. While section 1.8

structural stability is exceedingly desirable, it is also exceedingly rare. About this,

more later. section 24.2

15.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering sym-

bolic dynamics, such as a well-separated 3-disk system. Now start moving the

disks toward each other. At some critical separation a disk will start blocking

families of trajectories traversing the other two disks. The order in which trajec-

tories disappear is determined by their relative ordering in space; the ones closest
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Figure 15.5: Kneading orientation preserving danish

pastry: mimic the horsheshoe dynamics of figure 15.6

by: (1) squash the unit square by factor 1/2, (2) stretch

it by factor 2, and (3) fold the right half back over the

left half.

B

A

A

B

B

A

to the intervening disk will be pruned first. Determining inadmissible itineraries

requires that we relate the spatial ordering of trajectories to their time ordered

itineraries. exercise 15.8

So far we have rules that, given a state space partition, generate a temporally

ordered itinerary for a given trajectory. Our next task is the converse: given a

set of itineraries, what is the spatial ordering of corresponding points along the

trajectories? In answering this question we will be aided by Smale’s visualization

of the relation between the topology of a flow and its symbolic dynamics by means

of ‘horseshoes,’ such as figure 15.4.

15.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baker’s transformation appropriate

to Hénon type mappings, yields a binary coordinatization of all possible periodic

points.

The symbolic dynamics of once-folding map is given by the danish pastry

transformation. This generates both the longitudinal and transverse alternating

binary tree. The longitudinal coordinate is given by the head of a symbolic se-

quence; the transverse coordinate is given by the tail of the symbolic sequence.

The dynamics on this space is given by symbol shift permutations; volume pre-

serving, with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non–wandering sets, fatten the in-

tersection regions until they completely cover a unit square, as in figure 15.7. exercise 15.3

exercise 15.4We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’ dynam-

ical system as the symbol square. The symbol square is a topologically accurate

representation of the non–wandering set and serves as a street map for labeling its

pieces. Finite memory of m steps and finite foresight of n steps partitions the sym-

bol square into rectangles [s−m+1 · · · s0.s1s2 · · · sn], such as those of figure 15.6. In

the binary dynamics symbol square the size of such rectangle is 2−m × 2−n; it cor-

responds to a region of the dynamical state space which contains all points that

share common n future and m past symbols. This region maps in a nontrivial way

in the state space, but in the symbol square its dynamics is exceedingly simple; all

of its points are mapped by the decimal point shift (14.13)

σ(· · · s−2s−1s0.s1s2s3 · · · ) = · · · s−2s−1s0s1.s2s3 · · · , (15.7)
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Figure 15.6: The dynamics maps two (past) strips

stripsM.0,M.1 into two (future) stripsM0., M1..

The corners are labeled to aid visualization. Note

that the BCGH strip is rotated by 180 degrees. (P.

Cvitanović and Y. Matsuoka)

(e)

0. 1.

.1

0

.0D

B

C

F

E

H

G



Figure 15.7: Kneading danish pastry: symbol

square representation of an orientation preserving

once-folding map obtained by fattening the Smale

horseshoe intersections of (a) figure 15.6 (b) fig-

ure 15.4 into a unit square. Also indicated: the

fixed points 0, 1 and the 2-cycle points {01,10}. In

the symbol square the dynamics maps rectangles

into rectangles by a decimal point shift.

(a) .1.0

0.

1.

0

1

(b)

01.

11.

00.

10.

.00 .01 .11 .10

0

01

10

1

Example 15.1 A Hénon repeller subshift: (continued from example 15.5) The

Hénon map acts on the binary partition as a shift map. Figure 15.6 illustrates ac-

tion f (M.0) = M0.. The square [01.01] gets mapped into the rectangles σ[01.01] =

[10.1] = {[10.10], [10.11]}, see figure 15.4 (e). Further examples can be gleaned from

figure 15.4.

As the horseshoe mapping is a simple repetitive operation, we expect a simple

relation between the symbolic dynamics labeling of the horseshoe strips, and their

relative placement. The symbol square points γ(S +) with future itinerary S + are

constructed by converting the sequence of sn’s into a binary number by the algo-

rithm (14.4). This follows by inspection from figure 15.9. In order to understand

this relation between the topology of horseshoes and their symbolic dynamics, it

might be helpful to backtrace to sect. 14.4 and work through and understand first

the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged;M−1
0

has the same orientation asM, whileM−1
1

has the opposite orientation. We assign exercise 15.5

to an orientation preserving once-folding map the past topological coordinate

δ = δ(S -) by the algorithm:

wn−1 =

{

wn if sn = 0
1 − wn if sn = 1

, w0 = s0

δ(S -) = 0.w0w−1w−2 . . . =

∞
∑

n=1

w1−n/2
n . (15.8)

Such formulas are best derived by solitary contemplation of the action of a folding

map, in the same way we derived the future topological coordinate (14.4).
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Figure 15.8: Kneading orientation preserving

danish pastry: symbol square representation of an

orientation preserving once-folding map obtained

by fattening the intersections of two forward iter-

ates / two backward iterates of Smale horseshoe

into a unit square.
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Figure 15.9: Kneading danish pastry: symbol square

representation of an orientation preserving once-

folding map obtained by fattening the Smale horse-

shoe intersections of figure 15.4 (e) into a unit square.

Also indicated: the fixed points 0, 1, and the 3-cycle

points {011,110,101}. In the symbol square the dynam-

ics maps rectangles into rectangles by a decimal point

shift.
.000

.001
.011

.010
.110

.111
.101

.100

100.

110.

010.

011.

111.

101.

001.

000.

110

0

1

100

001

010

101

011

The coordinate pair (δ, γ) associates a point (x, y) in the state space Cantor

set of figure 15.4 to a point in the symbol square of figure 15.9, preserving the

topological ordering. The symbol square [δ, γ] serves as a topologically faithful

representation of the non–wandering set of any once-folding map, and aids us in

partitioning the set and ordering the partitions for any flow of this type.

fast track:

chapter 16, p. 293

15.4 Prune danish

Anyone know where I can get a good prune danish in

Charlotte? I mean a real NY Jewish bakery kind of prune

danish!

— Googled

In general, not all possible symbol sequences are realized as physical trajectories.

Trying to get from ‘here’ to ‘there’ we might find that a short path is excluded

by some obstacle, such as a disk that blocks the path, or a mountain. In order to

enumerate orbits correctly, we need to prune the inadmissible symbol sequences,

i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so far is rather straight-

forward, and sets the stage for situations that resembles more the real life. A
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Figure 15.10: (left) An incomplete Smale horse-

shoe: the inner forward fold does not intersect the

outer backward fold. (right) The primary pruned

region in the symbol square and the corresponding

forbidden binary blocks.
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generic once-folding map does not yield a complete horseshoe; some of the horse-

shoe pieces might be pruned, i.e., not realized for particular parameter values of

the mapping. In 1 dimension, the criterion for whether a given symbolic sequence

is realized by a given unimodal map is easily formulated; any orbit that strays to

the right of the value computable from the kneading sequence (the orbit of the crit-

ical point (14.6)) is pruned. This is a topological statement, independent of a par-

ticular unimodal map. Our objective is to generalize this notion to 2-dimensional

once-folding maps.

Adjust the parameters of a once-folding map so that the intersection of the

backward and forward folds is still transverse, but no longer complete, as in fig-

ure 15.10. The utility of the symbol square lies in the fact that the surviving,

admissible itineraries still maintain the same relative spatial ordering as for the

complete case.

In the example of figure 15.10 the rectangles [10.1], [11.1] have been pruned,

and consequently any itinerary containing substrings b1 = 101, b2 = 111 is inad-

missible, or pruned. The symbol dynamics is a subshift of finite type (14.17).

We refer to the left border of this primary pruned region as the pruning front;

another example of a pruning front is drawn in figure 15.11 (b). We call it a

‘front’ as it can be visualized as a border between admissible and inadmissible;

any trajectory whose points would fall to the right of the front in figure 15.11

is inadmissible, i.e., pruned. The pruning front is a complete description of the

symbolic dynamics of once-folding maps (read sect. 15.4.1. The pruning front is a

2-dimensional generalization of the 1-dimensional kneading sequence (14.6); the

location of each vertical step in the pruning front is the kneading sequence of the

corresponding primary turnback of the unstable manifold.

In the examples of figure 15.10 there is a finite number of grammar rules, a

total of two forbidden blocks 101, 111. For now we concentrate on this kind of

pruning (‘subshifts of finte type’) because it is particularly clean and simple.
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Figure 15.11: (a) An incomplete Smale horseshoe

which illustrates (b) the monotonicity of the prun-

ing front: the thick line which delineates the left

border of the primary pruned region is monotone

on each half of the symbol square. The backward

folding in this figure and figure 15.10 is schematic

- in invertible mappings there are further miss-

ing intersections, all obtained by the forward and

backward iterations of the primary pruned region.

15.4.1 Pruning front conjecture

No matter how far down the wrong road you’ve gone, turn

back.

— Turkish proverb

The pruning front conjecture offers a complete description of the symbolic dy-

namics of once-folding maps in the same sense in which the kneading sequence

defines the symbolic dynamics of a 1-dimensional unimodal map. The intuition

behind this conjecture is that the folding induced by a single iteration is the pri-

mary folding, and all other folds (turnbacks, homoclinic tangencies) are images

or preimages of the primary ones. The topology puts two constraints on the form

of a pruning front for once-folding maps:

1. The pruning front is symmetric across the horizontal 1/2 line.

2. The pruning front is monotone across either half of the symbol square.

This is a consequence of the deterministic foliation; inner folds cannot pierce

through the outer folds, and therefore have the same number or fewer transverse

sections than the outer ones.

Our strategy is the following: we first construct the symbol square, the 2-

dimensional ‘NYC subway map’ of the topology of a given ‘stretch & fold’ dy-

namical system, as illustrated in figure 15.7. The symbol square is a ‘road map’

in which the various sheets of the stable and unstable manifolds are represented

by straight sections, and the topology is preserved: the nearby periodic points in

the symbol square represent nearby periodic points in the state space. Next we

separate the admissible and the forbidden motions by means of a ‘pruning front,’

a boundary between the two kinds of orbits. We make following assumptions:

(i) The partition conjecture: the non–wandering set of a once-folding map can be

described by a subset of a complete Smale horseshoe, partitioned by the set

of primary turning points.

(ii) The pruning-front conjecture: kneading values of the set of all primary turn-

ing points separate the admissible from the forbidden orbits, and there are

no other pruning rules.
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(iii) Multimodal map approximation: A 2-dimensional once-folding map can

be systematically approximated by a sequence of 1-dimensional n-folding

maps.

The intuition behind these conjectures is that the folding induced by a sin-

gle iteration is the primary folding, and all other folds (turning points, homo-

clinic tangencies) are images or preimages of the primary ones. The asymptotic

object is a collection of infinitely many 1-dimensional sheets, and the pruning

front is the set of the corresponding kneading sequences (14.6), one for each 1-

dimensional sheet.

fast track:

chapter 16, p. 293

Though a useful tool, Markov partitioning is not without drawbacks. One glar-

ing shortcoming is that Markov partitions are not unique: any of many different

partitions might do the job. The C2- and D3-equivariant systems that we discuss

next offer a simple illustration of different Markov partitioning strategies for the

same dynamical system.

15.5 Recoding, symmetries, tilings

In chapter 11 we made a claim that if there is a symmetry of dynamics,

we must use it. Here we shall show how to use it, on two concrete examples, and

in chapter 25 we shall be handsomely rewarded for our labors. First, the simplest

example of equivariance, a single ‘reflection’ D1 group of example 11.7.

example 15.7

p. 285

Next, let us take the old pinball game and ‘quotient’ the state space by the

symmetry, or ‘desymmetrize.’ As the three disks are equidistantly spaced, our

game of pinball has a sixfold symmetry. For instance, the cycles 12, 23, and 13 in

figure 15.12 are related to each other by rotation by ±2π/3 or, equivalently, by a

relabeling of the disks. We exploit this symmetry by recoding, as in (15.19). exercise 14.1

exercise 15.7

example 15.6

p. 285

exercise 15.8

exercise 17.2

Binary symbolic dynamics has two immediate advantages over the ternary

one; the prohibition of self-bounces is automatic, and the coding utilizes the sym-

metry of the 3-disk pinball game in an elegant manner. exercise 14.2





The 3-disk game of pinball is tiled by six copies of the fundamental domain, a

one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflect-
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Table 15.1: Correspondence between the C2 symmetry reduced cycles p̃ and the full state

space periodic orbits p, together with their multiplicities mp. Also listed are the two

shortest cycles (length 6) related by time reversal, but distinct under D1.

p̃ p mp

1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

Figure 15.12: The 3-disk game of pinball with the

disk radius : center separation ratio a:R = 1:2.5.

(a) 2-cycles 12, 13, 23, and 3-cycles 123 and 132

(not drawn). (b) The fundamental domain, i.e., the

small 1/6th wedge indicated in (a), consisting of a

section of a disk, two segments of symmetry axes

acting as straight mirror walls, and an escape gap.

The above five cycles restricted to the fundamen-

tal domain are the two fixed points 0, 1. See fig-

ure 10.3 for cycle 10 and further examples.

(a) (b)

ing mirrors, see figure 15.12 (b). Every global 3-disk trajectory has a correspond-

ing fundamental domain mirror trajectory obtained by replacing every crossing

of a symmetry axis by a reflection. Depending on the symmetry of the full state

space trajectory, a repeating binary alphabet block corresponds either to the full

periodic orbit or to a relative periodic orbit (examples are shown in figure 15.12

and table 15.2). A relative periodic orbit corresponds to a periodic orbit in the

fundamental domain.

Table 15.2 lists some of the shortest binary periodic orbits, together with the

corresponding full 3-disk symbol sequences and orbit symmetries. For a number

of deep reasons that will be elucidated in chapter 25, life is much simpler in the

fundamental domain than in the full system, so whenever possible our computa-

tions will be carried out in the fundamental domain.

example 15.8

p. 285
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Table 15.2: D3 correspondence between the binary labeled fundamental domain prime

cycles p̃ and the full 3-disk ternary labeled cycles p, together with the D3 transformation

that maps the end point of the p̃ cycle into the irreducible segment of the p cycle, see

example 10.1. White spaces in the above ternary sequences mark repeats of the irreducible

segment; for example, the full space 12-cycle 1212 3131 2323 consists of 1212 and its

symmetry related segments 3131, 2323. The multiplicity of p cycle is mp = 6n p̃/np.

The shortest pair of fundamental domain cycles related by time reversal (but no spatial

symmetry) are the 6-cycles 001011 and 001101.

p̃ p g p̃

0 1 2 σ12

1 1 2 3 C
01 12 13 σ23

001 121 232 313 C
011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2

0111 1213 2123 σ12

00001 12121 23232 31313 C
00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C
01111 12132 13123 σ23

p̃ p g p̃

000001 121212 131313 σ23

000011 121212 313131 232323 C2

000101 121213 e
000111 121213 212123 σ12

001011 121232 131323 σ23

001101 121231 323213 σ13

001111 121231 232312 313123 C

010111 121312 313231 232123 C2

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C
0000011 1212121 3232323 σ13

0000101 1212123 2121213 σ12

0000111 1212123 e
· · · · · · · · ·

Figure 15.13: Reduction of a continuous-time flow

(left frame) to a set of Poincaré maps (right frame),

with a point on 1-cycle and the two cycle points of a

2-cycle used as template points.

15.6 Charting the state space

In simple examples, such as the Rössler example 3.3, a single Poincaré section

suffices, but this is rarely the case for flows of physical interest. In this section

(skip it on first reading) we commence a discussion of the general case.

A Poincaré section is constructed by picking a ‘template’ point x̂′ within a

state space region of interest, and defining a hypersurface (3.2) that goes through

the template point. In theory, this Poincaré section could be any (d−1)-dimensional

manifold. In practice, a hyperplane (3.14) is the most convenient, the natural

choice for the vector normal to the section being n̂ = v(x̂′), the velocity field at the

template point x̂′. This Poincaré section x̂ ∈ P is a hyperplane, appendix 7.2

v′ · (x̂ − x̂′) = 0 , v′ = v(x̂′) , (15.9)

normal to the flow direction v′ at the template point x̂′. Such section cuts the

nearby trajectories transversally, and is a good description of solutions similar to
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the given template.

So one hyperspace P will, in general, not suffice. A more insightful picture

of the dynamics is obtained by partitioning the state space into N qualitatively

distinct regions {M1,M2, . . . ,MN} and constructing a Poincaré section per re-

gion, global atlas of the state space composed of N local Poincaré sections P( j) section 14.1

or charts, each one capturing a neighborhood of a qualitatively prominent state

x̂′( j) ∈ S . We shall refer to these states as templates, each represented in the state

spaceM of the system by a template point {x̂′(1), x̂′(2), · · · , x̂′(N)}.

Our Poincaré section is a hyperplane. If we pick another template point

x̂′(2), it comes along with its own section hyperplane. The (d−1)-dimensional

Poincaré sections for an adjacent pair of template intersects in a ‘ridge’ (‘bound-

ary,’ ‘edge’), a (d−2)-dimensional hyperplane, easy to compute. Follow an ant

(the sequence of Poincaré map iterates) as it progresses along the Poincaré sec-

tion P(1). The moment (x̂(1)(τ) − x̂′(2)) · n̂(2) changes sign, the ant has crossed the

ridge, we switch the Poincaré section, and the ant continues its merry stroll now

confined to the P(2) section. Each Poincaré section P( j), provides a local chart

at x̂′( j) for a neighborhood of an important, qualitatively distinct class of solu-

tions; together they ‘Voronoi’ tessellate the curved manifold in which the reduced

dynamics is replaced by a finite set of mappings between hyperplane tiles. An ex-

ample is the periodic-orbit implementation of the idea of state space tessellation

by neighborhoods of recurrent points, so dear to professional cyclists, illustrated

in figure 15.13.

For a given dynamical flow, the physical task is to pick a minimal set of qual-

itatively distinct templates. The state space might be filled by all kinds of highly

unstable, never revisited equilibria and relative periodic orbits. The choice of

templates should reflect the dynamically prominent states seen in the long-time

simulations of system’s dynamics. We have only vague advice on how to pick a

single Poincaré section (see sect. 3.1.2), and no advice on how to systematically

pick a set of ‘good’ templates, other than that the associated section tiles should

be as large as possible, but still sufficiently small to exclude orbit tangencies, i.e.,

stop before crossing their section borders (3.6). Ideally, one wold like to pick as

few templates as possible in figure 15.13. Once templates are picked, the rest is

geometry of hyperplanes, so checking whether the section border is on the far side

of the tile edge (ridge between two sections) is a fast, linear computation.

There is a rub, though - you need to know how to pick the neighboring tem-

plates. Perhaps a glance at figure 15.13 helps visualize the problem; imagine that

the tiles belong to the Poincaré sections through template points on these orbits.

One could slide templates along their trajectories until the pairs of straight line

segments connecting neighboring template points are minimized, but that seems

a bit arbitrary. At this time we have no advice as how to ‘synchronize’ the tem-

plates relative to each other. The astute reader will instantly recognize this as the

problem of ‘local gauge invariance’ or ‘gauge fixing’ of Quantum Field Theory

and General Relativity.
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Figure 15.14: Some examples of 3-disk cycles: (a)

12123 and 13132 are mapped into each other by the

flip across 1 axis. Similarly (b) 123 and 132 are related

by flips, and (c) 1213, 1232 and 1323 by rotations. (d)

The cycles 121212313 and 121212323 are related by

rotation and time reversal. These symmetries are dis-

cussed in chapter 11. (From ref. [A1.44])

15.6.1 Navigating the Poincaré-charted state space

Our goal now is to replace the continuous-time dynamics by a set of Poincaré

maps between a set of hyperplane sections, as in figure 15.13. The flat hyperplane

(3.14) is an ad hoc construct; one Poincaré section rarely suffices to capture all

of the dynamics of interest. Instead we chart the state space by partitioning it

into N qualitatively distinct regions {M1,M2, . . . ,MN}. Successive trajectory

intersections with the set of (d−1)-dimensional hypersurfaces Ps embedded in the

d-dimensional state spaceM, define the set of (d−1)→ (d−1) Poincaré maps section 14.1

x̂n+1 = Psn+1sn
(x̂n) = f τ(x̂n)(x̂n) (15.10)

x̂n+1 ∈ P
sn+1 , x̂n ∈ P

sn , s ∈ {1, 2, . . . ,N} .

The d-dimensional continuous time flow is thus reduced to discrete time compo-

sition

Ps0s1···sn
= Psnsn−1

◦ · · · ◦ Ps2s1
◦ Ps1s0

of a set of Poincaré maps (15.10) that map the coordinates of Poincaré section Psn

to those of Psn+1
, the next section traversed by a given trajectory.

If a trajectory traverses regions Ms0
→ Ms1

→ · · · → Msn
, the sequence

s0s1 · · · sn = sn ← · · · ← s1 ← s0 is said to be admissible. The return map section 14.6

Ps0
from section Ps0

to itself has a contribution from any admissible returning

(periodic, sn = s0) sequence of compositions

Ps0s1···sn−1s0
= Ps0sn−1

◦ · · · ◦ Ps2s1
◦ Ps1s0

(15.11)

The next example offers an unambiguous set of such Poincaré sections which chapter 14
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Figure 15.15: (a) Poincaré section coordinates for

the 3-disk game of pinball. (b) Collision sequence

(s1, p1) 7→ (s2, p2) 7→ (s3, p3) from the boundary

of a disk to the boundary of the next disk is coded

by the Poincaré maps sequence P3←2P2←1.

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

do double duty, providing us both with an exact representation of dynamics in

terms of maps, and with a symbolic dynamics, a subject that we will return to in

chapter 14.

example 15.9

p. 286

Billiard dynamics is exceptionally simple - free flight segments, followed by

specular reflections at boundaries, with billiard boundaries the obvious choice as

Poincaré sections. For a general flow one is never so lucky. Also, so far we have

discussed only flows with a 1 continuous parameter (the time). The general case

of N-parameter continuous symmetries we postpone to chapter 12.

Résumé

In the preceding and this chapter we start with a d-dimensional state space and

end with a 1-dimensional return map description of the dynamics. The arc-length

parametrization of the unstable manifold maintains the 1-to-1 relation of the full

d-dimensional state space dynamics and its 1-dimensional return-map representa-

tion. To high accuracy no information about the flow is lost by its 1-dimensional

return map description. We explain why Lorenz equilibria are heteroclinically

connected (it is not due to the symmetry), and how to generate all periodic orbits

of Lorenz flow up to given length. This we do, in contrast to the rest of the thesis,

without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical point, and easy to

determine. In higher dimensions, the situation is not so clear - one can attempt

to determine the (fractal set of) folding points by looking at their higher iterates

- due to the contraction along stable manifolds, the fold gets to be exponentially

sharper at each iterate. In practice this set is essentially uncontrollable for the

same reason the flow itself is chaotic - exponential growth of errors. We prefer to

determine a folding point by bracketing it by longer and longer cycles which can
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be determined accurately using variational methods of chapter 33, irrespective of

their period.

For a generic dynamical system a subshift of finite type is the exception rather

than the rule. Its symbolic dynamics can be arbitrarily complex; even for the lo-

gistic map the grammar is finite only for special parameter values. Only some

repelling sets (like our game of pinball) and a few purely mathematical constructs

(called Anosov flows) are structurally stable - for most systems of interest an

infinitesimal perturbation of the flow destroys and/or creates an infinity of trajec-

tories, and specification of the grammar requires determination of pruning blocks

of arbitrary length. The repercussions are dramatic and counterintuitive; for ex-

ample, the transport coefficients such as the deterministic diffusion constant of

sect. 24.2 are emphatically not smooth functions of the system parameters. The section 24.2

importance of symbolic dynamics is often under appreciated; as we shall see in

chapters 23 and 28, the existence of a finite grammar is the crucial prerequisite for

construction of zeta functions with nice analyticity properties. This generic lack

of structural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate

most of the key concepts that we shall need for time being. Our strategy is akin

to bounding a real number by a sequence of rational approximants; we converge

toward the non–wandering set under investigation by a sequence of self-similar

Cantor sets. The rule that everything to one side of the pruning front is forbid-

den is striking in its simplicity: instead of pruning a Cantor set embedded within

some larger Cantor set, the pruning front cleanly cuts out a compact region in the

symbol square, and that is all - there are no additional pruning rules. A ‘self-

similar’ Cantor set (in the sense in which we use the word here) is a Cantor set

equipped with a subshift of finite type symbol dynamics, i.e., the corresponding

grammar can be stated as a finite number of pruning rules, each forbidding a finite

subsequence s1s2 . . . sn . Here the notation s1s2 . . . sn stands for n consecutive

symbols s11, s2, . . . , sn, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topological pruning into

pruning rules for inadmissible sequences; those are implemented by constructing

transition matrices and/or graphs, see chapters 17 and 18.

Commentary

Remark 15.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invariant

manifolds, see Abraham and Shaw [14.23]. Construction of invariant manifolds by map

iteration is described in Simo [15.35]. Fixed point stable / unstable manifolds and their

homoclinic and heteroclinic intersections can be computed using DsTool [15.59, 15.60,

15.61]. Unstable manifold turning points were utilized in refs. [A1.26, 27.2, 27.3, 15.32,

15.33, 15.34] to partition state space and prune inadmissible symbol sequences. The ar-

clength parameterized return maps were introduced by Christiansen et al. [A1.79], and

utilized in ref. [?] Even though no dynamical system has been studied more exhaustively

than the Lorenz equations, the analysis of sect. 14.2 is new. The desymmetrization fol-

lows Gilmore and Lettelier [13.19], but the key new idea is taken from Christiansen et
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al. [A1.79]: the arc-length parametrization of the unstable manifold maintains the 1-to-1

relation of the full d-dimensional state space dynamics and its 1-dimensional return-map

representation, in contrast to 1-dimensional projections of the (d−1)-dimensional Poincaré

section return maps previously deployed in the literature. In other words, to high accuracy

no information about the flow is lost by its 1-dimensional return map description.

Remark 15.2 Smale horseshoe. S. Smale understood clearly that the crucial ingre-

dient in the description of a chaotic flow is the topology of its non–wandering set, and he

provided us with the simplest visualization of such sets as intersections of Smale horse-

shoes. In retrospect, much of the material covered here can already be found in Smale’s

fundamental paper [A1.7], but an engineer or a scientist who has run into a chaotic time

series in his laboratory might not know that he is investigating the action (differentiable)

of a Lie group G on a manifold M, and that the Lefschetz trace formula is the way to go.

We have tried to explain the geometric picture the best we could in the static text for-

mat, but there is no substitute for dynamics but the dynamics itself. We found Demidov’s

“Chaotic maps” [15.66] simulations of the Hénon map particularly helpful in explaining

how horsheshoes partition the non–wandering sets.

Remark 15.3 Pruning fronts. The ‘partition conjecture’ is due to Grassberger and

Kantz [33.3]. The notion of a pruning front and the ‘pruning-front conjecture’ was for-

mulated by Cvitanović et al. [A1.26], and developed by K.T. Hansen for a number of

dynamical systems in his Ph.D. thesis [15.23] and a series of papers [15.46]-[15.39]. The

‘multimodal map approximation’ is described in the K.T. Hansen thesis [15.23]. Hansen’s

thesis is still the most accessible exposition of the pruning theory and its applications. De-

tailed studies of pruning fronts are carried out in refs. [15.14, ?, 15.15]; ref. [33.5] is the

most detailed study carried out so far. The rigorous theory of pruning fronts has been

developed by Y. Ishii [15.19, 15.20] for the Lozi map, and A. de Carvalho [15.17, 15.18]

in a very general setting. Beyond the orbit pruning and its infinity of admissible un-

stable orbits, an attractor of Hénon type may also own an infinity of attractive orbits

coexisting with the strange attractor [15.64, 15.65]. We offer heuristic arguments and

numerical evidence that the coexistence of attractive orbits does not destroy the strange

attractor/repeller, which is also in this case described by the 2-dimensional danish pastry

plot.
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Figure 15.16: The stable/unstable manifolds of the

equilibrium (xq, xq) = (0, 0) of 2-dimensional flow

(15.12).

y

x

15.7 Examples

Example 15.2 A simple stable/unstable manifolds pair: Consider the 2-dimensional

ODE system

dx

dt
= −x,

dy

dt
= y + x2 , (15.12)

The flow through a point x(0) = x0, y(0) = y0 can be integrated

x(t) = x0 e−t, y(t) = (y0 + x2
0/3) et − x2

0 e−2t/3 . (15.13)

Linear stability of the flow is described by the stability matrix

A =

(

−1 0
2x 1

)

. (15.14)

The flow is hyperbolic, with a real expanding/contracting eigenvalue pair λ1 = 1, λ2 =

−1, and area preserving. The right eigenvectors at the point (x, y)

e(1) =

(

0
1

)

, e(2) =

(

1
−x

)

. (15.15)

can be obtained by acting with the projection operators (see example A4.3 Decompo-

sition of 2-dimensional vector spaces)

Pi =
A − λ j1

λi − λ j

: P1 =

[

0 0
x 1

]

, P2 =

[

1 0
−x 0

]

(15.16)

on an arbitrary vector. Matrices Pi are orthonormal and complete.

The flow has a degenerate pair of equilibria at (xq, yq) = (0, 0), with eigenvalues

(stability exponents), λ1 = 1, λ2 = −1, eigenvectors e(1) = (0, 1), e(2) = (1, 0). The

unstable manifold is the y axis, and the stable manifold is given by (see figure 15.16)

y0 +
1

3
x2

0 = 0⇒ y(t) +
1

3
x(t)2 = 0 . (15.17)

(N. Lebovitz)click to return: p. ??

Example 15.3 A section at a fixed point with a complex Floquet multiplier pair:

(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or

periodic) point xq with a complex Floquet multiplier pair is the plane P specified by the

fixed point (located at the tip of the vector xq) and the eigenvector Im e(k) perpendicular

to the plane. A point x is in the section P if it satisfies the condition

(x − xq) · Im e(k) = 0 . (15.18)

In the neighborhood of xq the spiral out/in motion is in the {Re e(k), Im e(k)} plane, and

thus guaranteed to be cut by the Poincaré section P normal to e(k). click to return: p. ??
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Example 15.4 Recoding 3-disk dynamics in binary. (continued from exam-

ple 14.3) The A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique,

nor necessarily the smartest one - before proceeding it pays to quotient the symme-

tries of the dynamics in order to obtain a more efficient description. We do this in a

quick way here, and redo it in more detail in sect. 15.5.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what

is important is how a trajectory evolves as it hits subsequent disks, not what label the

starting disk had. We exploit this symmetry by recoding, in this case replacing the

absolute disk labels by relative symbols, indicating the type of the collision. For the 3-

disk game of pinball there are two topologically distinct kinds of collisions, figure 15.2:

exercise 14.1

exercise 15.7si =

{

0 : pinball returns to the disk it came from
1 : pinball continues to the third disk .

(15.19)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces

is automatic. If the disks are sufficiently far apart there are no further restrictions on

symbols, the symbolic dynamics is complete, and all binary sequences (see table 18.1)

are admissible. exercise 14.2

It is intuitively clear that as we go backward in time (reverse the velocity vec-

tor), we also need increasingly precise specification of x0 = (s0, p0) in order to follow a

given past itinerary. Another way to look at the survivors after two bounces is to plot

Ms1.s2
, the intersection of M.s2

with the strips Ms1. obtained by time reversal (the ve-

locity changes sign sinφ → − sinφ). Ms1.s2
, figure 15.3 (a), is a ‘rectangle’ of nearby

trajectories which have arrived from disk s1 and are heading for disk s2. (continued

in example 15.6) click to return: p. ??

Example 15.5 A Hénon repeller complete horseshoe: (continued from exam-

ple 3.6) Consider 2-dimensional Hénon map exercise 3.5

(xn+1, yn+1) = (1 − ax2
n + byn, xn) . (15.20)

If you start with a small ball of initial points centered around the fixed point x0, and

iterate the map, the ball will be stretched and squashed along the unstable manifold

Wu
0
. Iterated backward in time,

(xn−1, yn−1) = (yn,−b−1(1 − ay2
n − xn)) , (15.21)

this small ball of initial points traces out the stable manifold W s
0
. Their intersections

enclose the region M. , figure 15.4 (a). Any point outside W s
0

border of M. escapes

to infinity forward in time, while –by time reversal– any point outside Wu
0

border arrives

from infinity back in paste. In this way the unstable - stable manifolds define topologi-

cally, invariant and optimal initial regionM.; all orbits that stay confined for all times are

confined toM. .

The Hénon map models qualitatively the Poincaré section return map of fig-

ure 14.7 (b). For b = 0 the Hénon map reduces to the parabola (14.5), and, as shown

in sects. 3.3 and 33.1, for b , 0 it is kind of a fattened parabola; by construction, it takes

a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the

amount of stretching, while the parameter b controls the amount of compression of the

folded horseshoe. For definitiveness, fix the parameter values to a = 6, b = −1; the

map is then strongly stretching but area preserving, the furthest away from the strongly

dissipative examples discussed in sect. 14.2. The map is quadratic, so it has 2 fixed

points x0 = f (x0), x1 = f (x1) indicated in figure 15.4 (a). For the parameter values at

hand, they are both unstable.
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Iterated one step forward, the regionM. is stretched and folded into a Smale

horseshoe drawn in figure 15.4 (b). Label the two forward intersections f (M.) ∩M. by

Ms., with s ∈ {0, 1}. The horseshoe consists of the two strips M0.,M1. , and the bent

segment that lies entirely outside the W s
0

line. As all points in this segment escape to

infinity under forward iteration, this region can safely be cut out and thrown away.

Iterated one step backwards, the regionM. is again stretched and folded into

a horseshoe, figure 15.4 (c). As stability and instability are interchanged under time

reversal, this horseshoe is transverse to the forward one. Again the points in the horse-

shoe bend wander off to infinity as n → −∞, and we are left with the two (past) strips

M.0,M.1 . Iterating two steps forward we obtain the four stripsM11.,M01.,M00.,M10.,

and iterating backwards we obtain the four strips M.00,M.01,M.11,M.10 transverse to

the forward ones just as for 3-disk pinball game figure 15.2. Iterating three steps for-

ward we get an 8 strips, and so on ad infinitum. (continued in example 15.1) click to return: p. ??

Example 15.6 Recoding ternary symbolic dynamics in binary: Given a ternary

sequence and labels of 2 preceding disks, rule (15.19) fixes the subsequent binary

symbols. Here we list an arbitrary ternary itinerary, and the corresponding binary se-

quence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (15.22)

The first 2 disks initialize the trajectory and its direction; 3 7→ 1 7→ 2 7→ · · · . Due to

the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,

32 respectively have the same weights, the same size state space partitions, and are

coded by a single binary sequence. (continued in example 15.8) click to return: p. ??

Example 15.7 C2 recoded: Assume that each orbit is uniquely labeled by anexercise 11.1

infinite string {si}, si ∈ {+,−} and that the dynamics is C2-equivariant under the + ↔ −

interchange. Periodic orbits separate into two classes, the self-dual configurations +−,

+ + −−, + + + − −−, + − − + − + +−, · · · , with multiplicity mp = 1, and the pairs +,

−, + + −, − − +, · · · , with multiplicity mp = 2. For example, as there is no absolute

distinction between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.4 (a), the

Floquet multipliers satisfy Λ+ = Λ−, Λ++− = Λ+−−, and so on. exercise 25.6

The symmetry reduced labeling ρi ∈ {0, 1} is related to the full state space

labeling si ∈ {+,−} by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (15.23)

For example, the fixed point + = · · · + + + + · · · maps into · · · 111 · · · = 1, and so does

the fixed point −. The 2-cycle −+ = · · · − + − + · · · maps into fixed point · · ·000 · · · = 0,

and the 4-cycle − + +− = · · · − − + + − − + + · · · maps into 2-cycle · · · 0101 · · · = 01. A

list of such reductions is given in table 15.1. click to return: p. ??

Example 15.8 D3 recoded - 3-disk game of pinball: (continued from exam-

ple 15.6) The D3 recoding can be worked out by a glance at figure 15.12 (a) (con-

tinuation of example 11.8). For the symmetric 3-disk game of pinball the fundamental
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domain is bounded by a disk segment and the two adjacent sections of the symme-

try axes that act as mirrors (see figure 15.12 (b)). The three symmetry axes divide

the space into six copies of the fundamental domain. Any trajectory on the full space

can be pieced together from bounces in the fundamental domain, with symmetry axes

replaced by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk

{1, 2, 3} labels has a simple geometric interpretation, figure 15.2: a collision of type 0 re-

flects the projectile to the disk it comes from (back–scatter), whereas after a collision of

type 1 projectile continues to the third disk. For example, 23 = · · · 232323 · · · maps into

· · ·000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into · · · 111 · · · = 1 (and

so does 132), and so forth. Such reductions for short cycles are given in table 15.2,

figure 15.12 and figure 11.4. click to return: p. ??

Example 15.9 Pinball game, Poincaré dissected. (continued from sect. 1.4 and

chapter 9) A phase-space orbit is fully specified by its position and momentum at a

given instant, so no two distinct phase-space trajectories can intersect. The configura-

tion space trajectories, however, can and do intersect, in rather unilluminating ways, as

e.g. in figure 15.14 (d), and it can be rather hard to perceive the systematics of orbits

from their configuration space shapes. The problem is that we are looking at the pro-

jections of 4-dimensional state space trajectories onto a 2-dimensional configuration

subspace. A much clearer picture of the dynamics is obtained by constructing a set of

Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position

and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in be-

tween the bounces–the ball just travels at constant velocity along a straight line–so we

can reduce the 4-dimensional flow to a 2-dimensional map Pσk←σ j
that maps the coor-

dinates (Poincaré section P1) of the pinball from one disk edge to another. Just after

the moment of impact the trajectory is defined by sn, the arc-length position of the nth

bounce along the billiard wall, and pn = p sinφn the outgoing momentum component

parallel to the billiard wall at the point of impact, figure 15.15 (a). These coordinatesexercise 9.7

(due to Birkhoff) are smart, as they conserve the phase-space volume. Trajectories

originating from one disk can hit either of the other two disks, or escape without further

ado. We label the survivor state space regions P12, P13. In terms of the three Poincaré

sections, one for each disk, the dynamics is reduced to the set of six maps

(sn+1, pn+1) = Pσn+1←σn
(sn, pn) , σ ∈ {1, 2, 3} (15.24)

from the boundary of a disk to the boundary of the next disk, figure 15.15 (b). The

explicit form of this map is easily written down, see example 9.1, but much more eco-

nomical is the symmetry quotiented version of chapter 11 which replaces the above 6

forward maps by a return map pair P0, P1. click to return: p. ??
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Exercises

15.1. A Smale horseshoe. The Hénon map of example 3.6

[

x′

y′

]

=

[

1 − ax2 + by
x

]

(15.25)

maps the [x, y] plane into itself - it was constructed

by Hénon [3.6] in order to mimic the Poincaré section

of once-folding map induced by a flow like the one

sketched in figure 14.7. For definitiveness fix the pa-

rameters to a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its

nth iterate by the Hénon map intersects the rectan-

gle 2n times.

b) Construct the inverse of the (15.25).

c) Iterate the rectangle back in the time; how many

intersections are there between the n forward and

m backward iterates of the rectangle?

d) Use the above information about the intersections

to guess the (x, y) coordinates for the two fixed

points, a 2-periodic point, and points on the two

distinct 3-cycles from table 18.1. The exact peri-

odic points are computed in exercise 16.11.

15.2. A simple stable/unstable manifolds pair. Integrate

flow (15.12), verify (15.13). Check that the projection

matrices Pi (15.16) are orthonormal and complete. Use

them to construct right and left eigenvectors; check that

they are mutually orthogonal. Explain why is (15.17)

the equation for the stable manifold. (N. Lebovitz)

15.3. Kneading Danish pastry. Write down the (x, y) →

(x, y) mapping that implements the baker’s map

Figure: Kneading danish pastry: symbol square repre-

sentation of an orientation reversing once-folding map

obtained by fattening the Smale horseshoe intersections

of figure 15.4 into a unit square. In the symbol square

the dynamics maps rectangles into rectangles by a dec-

imal point shift. together with the inverse mapping.

Sketch a few rectangles in symbol square and their for-

ward and backward images. (Hint: the mapping is very

much like the tent map (14.20)).

15.4. Kneading danish without flipping. The baker’s map

of exercise 15.3 includes a flip - a map of this type is

called an orientation reversing once-folding map. Write

down the (x, y) → (x, y) mapping that implements an

orientation preserving baker’s map (no flip; Jacobian de-

terminant= 1). Sketch and label the first few folds of the

symbol square.

15.5. Orientation reversing once-folding map. By adding

a reflection around the vertical axis to the horseshoe map

g we get the orientation reversing map g̃ shown in the

second Figure above. Q̃0 and Q̃1 are oriented as Q0 and

Q1, so the definition of the future topological coordi-

nate γ is identical to the γ for the orientation preserving

horseshoe. The inverse intersections Q̃−1
0

and Q̃−1
1

are

oriented so that Q̃−1
0

is opposite to Q, while Q̃−1
1

has the

same orientation as Q. Check that the past topological
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coordinate δ is given by

wn−1 =

{

1 − wn if sn = 0
wn if sn = 1

, w0 = s0

δ(x) = 0.w0w−1w−2 . . . =

∞
∑

n=1

w1−n/2
n .(15.26)

15.6. Infinite symbolic dynamics. Let σ be a function that

returns zero or one for every infinite binary string: σ :

{0, 1}N → {0, 1}. Its value is represented by σ(ǫ1, ǫ2, . . .)

where the ǫi are either 0 or 1. We will now define an op-

erator T that acts on observables on the space of binary

strings. A function a is an observable if it has bounded

variation, that is, if

‖a‖ = sup
{ǫi}

|a(ǫ1, ǫ2, . . .)| < ∞ .

For these functions

T a(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .)

+a(1, ǫ1, ǫ2, . . .)σ(1, ǫ1, ǫ2, . . .) .

(a) (easy) Consider a finite version Tn of the operator

T :

Tna(ǫ1, ǫ2, . . . , ǫ1,n) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show that Tn is a 2n × 2n matrix. Show that its

trace is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the

function norm, show that T is a bounded operator.

(c) (hard) Show that T is not trace class.

15.7. 3-disk fundamental domain cycles. (continued

from exercise 11.1) Try to sketch 0, 1, 01, 001, 011, · · · .

in the fundamental domain, and interpret the symbols

{0, 1} by relating them to topologically distinct types of

collisions. Compare with table 15.2. Then try to sketch

the location of periodic points in the Poincaré section of

the billiard flow. The point of this exercise is that while

in the configuration space longer cycles look like a hope-

less jumble, in the Poincaré section they are clearly and

logically ordered. The Poincaré section is always to be

preferred to projections of a flow onto the configuration

space coordinates, or any other subset of state space co-

ordinates which does not respect the topological organi-

zation of the flow.

15.8. 3-disk pruning. (Not easy) Show that for 3-disk

game of pinball the pruning of orbits starts at R : a =

2.04821419 . . . , figure 14.6. (K.T. Hansen)
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