
Chapter 14

Charting the state space

The classification of the constituents of a chaos, nothing

less is here essayed.

—Herman Melville, Moby Dick, chapter 32

I
n this chapter and the next we learn to partition state space in a topologically

invariant way, and identify topologically distinct orbits.

We start in sect. 14.1 with a simple and intuitive example, a 3-disk game

of pinball. The qualitative dynamics of stretching/shrinking strips of surviving

state space regions enables us to partition the state space and assign symbolic

dynamics itineraries to trajectories. For the 3-disk game of pinball all possible

symbol sequences enumerate all possible orbits.

In sect. 14.2 we use Rössler and Lorenz flows to motivate modeling of higher-

dimensional flows by iteration of 1-dimensional maps. For these two flows the

1-dimensional maps capture essentially all of the higher-dimensional flow dynam-

ics, both qualitatively and quantitatively. 1-dimensional maps suffice to explain

the two key aspects of qualitative dynamics; temporal ordering, or itinerary with

which a trajectory visits state space regions (sect. 14.3), and the spatial ordering

between trajectory points (sect. 14.4), which is the key to determining the admis-

sibility of an orbit with a prescribed itinerary. In a generic dynamical system not

every symbol sequence is realized as a dynamical trajectory; as one looks further

and further, one discovers more and more ‘pruning’ rules which prohibit fami-

lies of itineraries. For 1-dimensional ‘stretch & fold’ maps the kneading theory

(sect. 14.5) provides the definitive answer as to which temporal itineraries are ad-

missible as trajectories of the dynamical system. Finally, sect. 14.6 is meant serve

as a guide to the basic concepts of symbolic dynamics.

Deceptively simple, this subject can get very difficult very quickly, so in this

chapter we do the first, 1-dimensional pass at a pedestrian level, postponing the

discussion of higher-dimensional, cyclist level issues to chapter 15.

Even though by inclination you might only care about the serious stuff, like
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Figure 14.1: A coarse partition ofM into regionsM0,

M1, andM2, labeled by ternary alphabetA = {1, 2, 3}.

Rydberg atoms or mesoscopic devices, and resent wasting time on formal things,

this chapter and chapters 17 and 18 are good for you. Study them.

14.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)

What can a flow do to points in state space? This is a very difficult question to

answer because we have assumed very little about the evolution function f t; con-

tinuity, and differentiability a sufficient number of times. Trying to make sense of

this question is one of the basic concerns in the study of dynamical systems. The

first answer was inspired by the motion of the planets: they appear to repeat their

motion through the firmament, so the ancients’ attempts to describe dynamical

systems were to think of them as periodic.



However, periodicity is almost never quite exact. What one tends to observe

is recurrence. A recurrence of a point x0 of a dynamical system is a return of

that point to a neighborhood of where it started. How close the point x0 must

return is up to us: we can choose a volume of any size and shape, and call it the

neighborhood M0, as long as it encloses x0. For chaotic dynamical systems, the

evolution might bring the point back to the starting neighborhood infinitely often.

That is, the set

{

y ∈ M0 : y = f t(x0), t > t0
}

(14.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-

gests another way of describing how points move in state space, the important

first step on the way to a theory of dynamical systems: qualitative, topological

dynamics, or symbolic dynamics. As the subject can get quite technical, a sum-

mary of the basic notions and definitions of symbolic dynamics is relegated to

sect. 14.6; check that section and references cited in remark 14.1 whenever you

run into baffling jargon.

We start by dividing the state space up into regions MA,MB, . . . ,MZ , as in

figure 14.1. This can be done in many ways, not all equally clever. Any such
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Figure 14.2: A trajectory with itinerary 021012.

Figure 14.3: A 1-step memory refinement of the par-

tition of figure 14.1, with each region Mi subdivided

into Mi0, Mi1, and Mi2, labeled by nine ‘words’

{00, 01, 02, · · · , 21, 22}.
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division of state space into distinct regions constitutes a partition, and we associate

with each region (sometimes referred to as a state) a symbol s from an N-letter

alphabet or state set A = {A, B,C, · · · , Z}. Along the trajectory, different regions

will be visited. The visitation sequence - forthwith referred to as the itinerary -

can be represented by the letters of the alphabet A. If, as in the example sketched

in figure 14.2, the state space is divided into three regionsM0,M1, andM2, the

‘letters’ are the integers {0, 1, 2}, and the itinerary for the trajectory sketched in

the figure is 0 7→ 2 7→ 1 7→ 0 7→ 1 7→ 2 7→ · · · .

example 14.2

p. 255

In general only a subset of points inMB reachesMA. This observation offers

a systematic way to refine a partition by introducing m-step memory: the region

Msm ···s1s0
consists of the subset of points of Ms0

whose itinerary for the next m

time steps will be s0 7→ s1 7→ · · · 7→ sm, see figure 14.3.

example 14.3

p. 255

If there is no way to reach partitionMi from partitionM j, and conversely, par-

titionM j from partitionMi, the state space consists of at least two disconnected

pieces, and we can analyze it piece by piece. An interesting partition should be

dynamically connected, i.e., one should be able to go from any regionMi to any

other region M j in a finite number of steps. A dynamical system with such a

partition is said to be metrically indecomposable.

knead - 15feb2015 ChaosBook.org version15.9, Jun 24 2017
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Figure 14.4: Two pinballs that start out very close

to each other exhibit the same qualitative dynamics

2313 for the first three bounces, but due to the expo-

nentially growing separation of trajectories with time,

follow different itineraries thereafter: one escapes after

2313 , the other one escapes after 23132321 . (No-

tation 2313 is explained in sect. 14.6.)
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23132321


2313


Figure 14.5: The 3-disk game of pinball Poincaré

section, trajectories emanating from the disk 1

with x = (arclength, parallel momentum) = (s, p),

where p = sin θ. (a) Strips of initial points M12,

M13 which reach disks 2, 3 in one bounce, re-

spectively. (b) 1-step memory refinement of parti-

tion (see figure 14.3): strips of initial pointsM121,

M131, M132 and M123 which reach disks 1, 2, 3

in two bounces, respectively. Disk radius : center

separation ratio a:R = 1:2.5. (Y. Lan)
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In general one also encounters transient regions - regions to which the dy-

namics does not return once they are exited. Hence we have to distinguish be-

tween (uninteresting to us) wandering trajectories that never return to the initial

neighborhood, and the non–wandering set (2.3) of the recurrent trajectories. We

are implicitly assuming that the transients are sufficiently short-lived not to be of

experimental interest.

However, knowing that a point from Mi reaches {M j, · · · ,Mk} in one step

is not quite good enough. We would be happier if we knew that the map of the

entire initial region f (Mi) overlaps nicely with the entireM j; otherwise we have

to subpartition M j into the subset f (Mi) and the reminder, and often we will

find ourselves partitioning ad infinitum, a difficult topic that we shall return to

sect. 15.4.

Such considerations motivate the notion of a Markov partition, a partition for

which no memory of preceding steps is required to fix the transitions allowed

in the next step. Finite Markov partitions can be generated by expanding d-

dimensional iterated mappings f : M →M, ifM can be divided into N regions

{M0,M1, . . . ,MN−1} such that in one step points from an initial regionMi either

fully cover a regionM j, or miss it altogether,

either M j ∩ f (Mi) = ∅ or M j ⊂ f (Mi) . (14.2)

Whether such partitions can be found is not clear at all - the borders need to be

lower-dimensional sets invariant under dynamics, and there is no guarantee that

these are topologically simple objects. However, the game of pinball (and many

other non-wandering repeller sets) is especially nice: the issue of determining the

knead - 15feb2015 ChaosBook.org version15.9, Jun 24 2017
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Figure 14.6: For the 3-disk game of pinball no

itineraries are pruned as long as the inter-disk spac-

ing exceeds R : a > 2.04821419 . . . . (from

K.T. Hansen [15.23])

partition borders does not arise, as the survivors live on disconnected pieces of the

state space, separated by a chasm of escaping trajectories.

The itinerary of a billiard trajectory is finite for a scattering trajectory, com-

ing in from infinity and escaping after a finite number of collisions, infinite for

a trapped trajectory, and infinitely repeating for a periodic orbit. A finite length

trajectory is not uniquely specified by its finite itinerary, but an isolated unstable

cycle is: its itinerary is an infinitely repeating block of symbols. For hyperbolic

flows the intersection of the future and past itineraries, the bi-infinite itinerary

· · · s−2s−1s0.s1s2s3 · · · specifies a unique orbit. Almost all infinite length trajec-

tories (orbits) are aperiodic. Still, the longer the trajectory is, the closer to it is a

periodic orbit whose itinerary shadows the trajectory for its whole length: think

of the state space as the unit interval, aperiodic orbits as normal numbers, and

periodic ones as fractions whose denominators correspond to cycle periods, as is

literally the case for the Farey map (to be discussed in sect. 29.3.4.

Determining whether the symbolic dynamics is complete (as is the case for

sufficiently separated disks, see figure 14.6), pruned (for example, for touching or

overlapping disks), or only a first coarse-graining of the topology (as, for example,

for smooth potentials with islands of stability) requires a case-by-case investiga-

tion, a discussion we postpone until sect. 14.5 and chapter 15. For now, we assume

that the disks are sufficiently separated that there is no additional pruning beyond

the prohibition of self-bounces.

Inspecting figure 14.5 we see that the relative ordering of regions with dif-

fering finite itineraries is a qualitative, topological property of the flow. This ob-

servation motivates searches for simple, ‘canonical’ partitions which exhibit in

a simple manner the spatial ordering common to entire classes of topologically

similar nonlinear flows.

14.2 From d-dimensional flows to 1-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so straightforward that one

may altogether fail to see the connection between the topology of hyperbolic

flows and their symbolic dynamics. This is brought out more clearly by the 1-

dimensional visualization of ‘stretch & fold’ flows to which we turn now.

We construct here the return maps (3.4) for two iconic flows, the Rössler and

the Lorenz, in order to show how ODEs in higher dimensions can be modeled by

low-dimensional maps. In the examples at hand the strong dissipation happens to

render the dynamics essentially 1-dimensional both qualitatively and quantitati-

vely. However, as we shall show in chapter 15, strong dissipation is not essential
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Figure 14.7: (a) The Rössler flow, figure 3.2, is

an example of a recurrent flow that stretches and

folds. Shift the origin to equilibrium x− computed

in (2.28), (x, y, z) = (p0 − x−, p1 − y−, p2 − z−).

(b) p0 = 0, p1 > 0 Poincaré section of the x− un-

stable manifold.

(c) s → P(s) Rössler ‘stretch & fold’ return map,

where s is the arc-length distance measured along

the Poincaré section of unstable manifold of equi-

librium point x−. See also figure 14.14.

(R. Paškauskas, A. Basu and J. Newman)
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-the hyperbolicity is- so the method applies to Hamiltonian (symplectic areas pre-

serving) flows as well. The key idea is to replace the original, arbitrarily concocted

coordinates by intrinsic, dynamically invariant curvilinear coordinates erected on

neighborhoods of unstable manifolds.

fast track:

sect. 14.3, p. 243

Suppose concentrations of certain chemical reactants worry you, or the variati-

ons in the Vladivostok temperature, humidity, pressure and winds affect your

mood. Such quantities vary within some fixed range, and so do their rates of

change. Even if we are studying an open system such as the 3-disk pinball game,

we tend to be interested in a finite region around the disks and ignore the escapees.

So a typical dynamical system that we care about is bounded. If the price to keep

going is high - for example, we try to stir up some tar, and observe it come to a

dead stop the moment we cease our labors - the dynamics tends to settle into a

simple state. However, as the resistance to change decreases - the tar is heated up

and we are more vigorous in our stirring - the dynamics becomes unstable. What

happens next?



Just by looking at figure 14.7 you get the idea - Rössler flow winds around the

stable manifold of the ‘central’ equilibrium, stretches and folds, and the dynamics

on the Poincaré section of the flow can be reduced to a 1-dimensional map.
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Figure 14.8: (a) A Poincaré section of the Lorenz

flow in the doubled-polar angle representation, fig-

ure 11.3, given by the [y′, z] plane that contains the

z-axis and the equilibrium EQ1. Most of the sec-

tion plane except for the two shaded trapezoids is

removed to aid visualization of the flow. x′ axis

points toward the viewer. (b) The Poincaré section

plane. Crossings into the section are marked red

(solid) and crossings out of the section are marked

blue (dashed). Outermost points of both in- and

out-sections are given by the EQ0 unstable mani-

fold Wu(EQ0) intersections.

(E. Siminos)
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Figure 14.9: The Poincaré return map sn+1 =

P(sn) parameterized by Euclidean arclength s mea-

sured along the EQ1 unstable manifold, from xEQ1
to

Wu(EQ0) section point, uppermost right point of the

blue (dashed) segment in figure 14.8 (b). The critical

point (the ‘crease’) of the map is given by the section

of the heteroclinic orbit W s(EQ0) that descends all the

way to EQ0, in infinite time and with infinite slope. (E.

Siminos)
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example 14.4

p. 255

The next, Lorenz flow example is similar, but the folding mechanism is very

different: the unstable manifold of one of the equilibria collides with the stable

manifold of the other one, forcing a robust heteroclinic connection between the

two.

example 14.5

p. 255

Heteroclinic connections. The simplest example of intersection of invariant

manifolds is an orbit on the unstable manifold of an unstable equilibrium that

falls into a stable equilibrium (a sink). In general, two manifolds can intersect in remark 14.3

a stable way (i.e., robustly with respect to small changes of system parameters) if

the sum of their dimensions is greater than or equal to the dimension of the state

space, hence an unstable manifold of dimension k is likely to intersect a stable

manifold whose codimension in state space is less than or equal to k. Whether

the two manifolds actually intersect is a subtle question that is central to the issue

of “structural stability” of ergodic dynamical systems. Trajectories that leave an

equilibrium or periodic orbit along its unstable manifold and reach another equi-
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Figure 14.10: The n = 2 and 4 intervals state space

partitions for the Bernoulli shift map (14.18), together

with the fixed points 0, 1 and the 2-cycle 01.



librium or periodic orbit along its stable manifold are called heteroclinic if the two

invariant solutions are distinct or homoclinic if the initial and the final invariant

solutions are the same.

What have we learned from the above two exemplary 3-dimensional flows?

If a flow is locally unstable but globally bounded, any open ball of initial points

will be stretched out and then folded back. If the equilibria are hyperbolic, the

trajectories will be attracted along some eigen-directions and ejected along others.

The unstable manifold of one equilibrium can avoid stable manifolds of other

equilibria, as is the case for Rössler, or plow into them head on, as is the case for

Lorenz. A typical trajectory wanders through state space, alternatively attracted

into equilibria neighborhoods, and then ejected again. What is important is the

motion along the unstable manifolds – that is where 1d maps come from.

At this juncture we proceed to show how this works on the simplest exam-

ple: unimodal mappings of the interval. The erudite reader may skim through

this chapter and then take a more demanding path, via the Smale horseshoes of

chapter 15. Unimodal maps are easier, but less physically compelling. Smale

horseshoes offer the high road, more complicated, but the right tool to generalize

what we learned from the 3-disk dynamics, and begin analysis of general dynam-

ical systems. It is up to you - unimodal maps suffice to get quickly to the heart of

this treatise.

14.3 Temporal ordering: Itineraries

In this section we learn to name topologically distinct trajectories for the simple,

but instructive case; 1-dimensional maps of an interval. The simplest such map is

the“coin flip” of figure 14.10: the unit interval is stretched, cut, and overlaid over

itself.



example 14.6

p. 256
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Figure 14.11: (a) The full tent map (14.20) parti-

tion {M00,M01,M11,M10} together with the fixed

points x0, x1.

(b) A unimodal repeller with the survivor intervals

after 1 and 2 iterations. Intervals marked s1 s2 · · · sn

consist of points that do not escape in n iterations,

and follow the itinerary S+ = s1 s2 · · · sn. Indicated

are the fixed points 0, 1, the 2-cycle 01, and the

3-cycle 011. Note that here, unlike the Bernoulli

map example of figure 14.10, the spatial ordering

does not respect the binary ordering; for example

x00 < x01 < x11 < x10.
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More physically motivated mapping of this type is unimodal; interval is stretched

and folded only once, with at most two points mapping into a point in the refolded

interval, as in the Rössler return map figure 14.7 (b). A unimodal map f (x) is a 1-

dimensional function R → R defined on an intervalM ∈ R with a monotonically

increasing (or decreasing) branch, a critical point (or interval) xc for which f (xc)

attains the maximum (minimum) value, followed by a monotonically decreasing

(increasing) branch. Uni-modal means that the map is a 1-humped map with one

critical point within interval M. Multi-modal maps, with several critical points

within intervalM, can be described with a straight-forward generalization of the

methods we describe next.

example 14.1

p. 247

example 14.7

p. 257

For 1d maps the critical value denotes either the maximum or the minimum

value of f (x) on the defining interval; we assume here that it is a maximum,

f (xc) ≥ f (x) for all x ∈ M. The critical point xc that yields the critical value f (xc)

belongs to neither the left nor the right partitionMi and is instead denoted by its

own symbol s = C. As we shall see, its images and preimages serve as partition

boundary points.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iteration

xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or to the

right of xc generates a temporally ordered topological itinerary (14.10) for a given

trajectory,

sn =



















1 if xn > xc

C if xn = xc

0 if xn < xc

. (14.3)

We refer to S +(x0) = .s1s2s3 · · · as the future itinerary. Our next task is to answer

the reverse problem: given an itinerary, what is the spatial ordering of points that

belong to the corresponding state space trajectory?
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Figure 14.12: An alternating binary tree relates the

itinerary labeling of the unimodal map intervals, fig-

ure 14.11, to their spatial ordering. The dotted line

stands for 0, the full line for 1; the binary sub-tree

whose root is a full line with symbol 1 reverses the

orientation, due to the orientation-reversing fold in fig-

ures 14.7 and 14.11. See also figure 17.5.
000

0 1

00 01 11 10

001 011 010 110 111 101 100

14.4 Spatial ordering

A well-known theorem states that combinatorial factors

are impossible to explain. [14.25]

—G. ’t Hooft and M. Veltman, DIAGRAMMAR

Suppose you have succeeded in constructing a covering symbolic dynamics, such

as the one we constructed for a well-separated 3-disk system. Now start moving

the disks toward each other. At some critical separation (see figure 14.6) a disk

will start blocking families of trajectories traversing the other two disks. The

order in which trajectories disappear is determined by their relative ordering in

space; the ones closest to the intervening disk will be pruned first. Determining

inadmissible itineraries requires that we relate the spatial ordering of trajectories

to their time ordered itineraries. exercise 15.8

The easiest point of departure is to start by working out this relation for

the symbolic dynamics of 1-dimensional mappings. As it appears impossible

to present this material without getting bogged down in a sea of 0’s, 1’s and

subscripted subscripts, we announce the main result before embarking upon its

derivation: section 14.5

The admissibility criterion (sect. 14.5) eliminates all itineraries that cannot

occur for a given unimodal map.

For the Bernoulli shift converting itineraries into a topological ordering is

easy; the binary expansion of coordinate γ is also its temporary itinerary. The tent

map (14.20), figure 14.11 (a) is a bit harder. It consists of two straight segments

joined at x = 1/2. The symbol sn defined in (14.3) equals 0 if the function in-

creases, and 1 if it decreases. Iteration forward in time generates the time itinerary.

More importantly, the piecewise linearity of the map makes the converse possible:

determine analytically an initial point given its itinerary, a property that we now

use to define a topological coordinatization common to all unimodal maps.





Here we have to face the fundamental problem of pedagogy: combinatorics

cannot be taught. The best one can do is to state the answer and hope that you will

figure it out by yourself.



The tent map point γ(S +) with future itinerary S + is given by converting the
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itinerary of sn’s into a binary number γ by the following algorithm:

wn+1 =

{

wn if sn+1 = 0
1 − wn if sn+1 = 1

, w1 = s1

γ(S +) = 0.w1w2w3 . . . =

∞
∑

n=1

wn/2
n . (14.4)

This follows by inspection from the binary tree of figure 14.12. Once you figure exercise 14.4

this out, feel free to complain that the way the rule is stated here is incomprehen-

sible, and show us how you did it better.

We refer to γ(S +) as the (future) topological coordinate. The wt’s are the

digits in the binary expansion of the starting point γ for the full tent map in fig-

ure 14.11 (a) (see (14.20)). In the left half-interval the map f (x) acts by multi-

plication by 2, while in the right half-interval the map acts as a flip as well as

multiplication by 2, reversing the ordering, and generating in the process the se-

quence of sn’s from the binary digits wn.

The mapping x0 → S +(x0) → γ0 = γ(S
+) is a topological conjugacy that

maps the trajectory of an initial point x0 under the iteration of a given unimodal

map to that initial point γ0 for which the trajectory of the ‘canonical’ unimodal

map, the full tent map (14.20), has the same itinerary. The virtue of this conjugacy

is that γ(S +) preserves the ordering for any unimodal map in the sense that if

y > x, then γ(S +(y)) > γ(S +(x)).

example 14.8

p. 257

example 14.9

p. 257

Critical points are special - they define the boundary between intervals, i.e.,

the state space is split into M0 [left part], xc [critical point] and M1 [right part]

intervals. For the dike map figure 14.13 and the repeller figure 14.11, xc is the

whole interval of points along the flat top of the map, but usually it is a point. As

illustrated by figures 14.11 and 14.10, for a unimodal map the preimages f −n(xc)

of the critical point xc serve as partition boundary points. But not all preimages–

one has to ensure that they are within the set of all admissible orbits by checking

them against the kneading sequence of the map, to be explained next.

14.5 Kneading theory

No, you can’t always get what you want

You can’t always get what you want

You can’t always get what you want

But if you try sometime you find

You get what you kneed

—Bradford Taylor
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Figure 14.13: The dike map is obtained by slicing off

the top portion of the tent map in figure 14.11 (a). Any

full tent map orbit that visits the primary pruning inter-

val (κ, 1] is inadmissible. The admissible orbits form

the Cantor set obtained by removing from the unit in-

terval the primary pruning interval and all its iterates.

Any admissible orbit has the same topological coordi-

nate and itinerary as the corresponding full tent map

map orbit.

f1f0

cκ =f(  )γ

pruned

(K.T. Hansen and P. Cvitanović)

The reason we need to be mindful of spatial ordering of temporal itineraries is

that the spatial ordering provides us with criteria that separate inadmissible orbits

from those realizable by the dynamics. For 1-dimensional mappings the kneading

theory provides a precise and definitive criterion of admissibility.



Example 14.1 Unimodal maps: (continued from example 3.8) The simplest exam-

ples of unimodal maps are the quadratic map

f (x) = Ax(1 − x) , x ∈ M = [0, 1] (14.5)

and numerically computed return maps such as figure 14.7 (b). Such dynamical sys-

tems are irreversible (the inverse of f is double-valued), but, as we shall show in

sect. 15.2, they may nevertheless serve as effective descriptions of invertible 2-dimensional

hyperbolic flows. For the unimodal map such as figure 14.11 a Markov partition of the

unit intervalM is given by the two intervals {M0,M1}. (continued in example 14.7)click to return: p. ??

If the parameter in the quadratic map (14.5) is A > 4, or the top of unimodal

map in figure 14.11 exceeds 1, then the iterates of the critical point xc diverge for

n → ∞, and any sequence S + composed of letters si = {0, 1} is admissible, and

any value of 0 ≤ γ < 1 corresponds to an admissible orbit in the non–wandering

set of the map. The corresponding repeller is a complete binary labeled Cantor



set, the n→ ∞ limit of the nth level covering intervals sketched in figure 14.11.

For A < 4 only a subset of the points in the interval γ ∈ [0, 1] corresponds

to admissible orbits. The forbidden symbolic values are determined by observing

that the largest xn value in an orbit x1 → x2 → x3 → . . . has to be smaller than or

equal to the image of the critical point, the critical value f (xc). Let K = S +(xc)

be the itinerary of the critical point xc, denoted the kneading sequence of the map.

The corresponding topological coordinate is called the kneading value

κ = γ(K) = γ(S +(xc)). (14.6)

The ‘canonical’ map that has the same kneading sequence K as f (x) is the
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S γ̂(S ) S γ̂(S )

0 .0 = 0 10111 .11010 = 26/31

1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31

101 .110 = 6/7 10011 .1110100010 = 10/11

100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33

1001 .1110 = 14/15

1000 .11110000 = 16/17

Table 14.1: The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

dike map, figure 14.13,

f (γ) =



















f0(γ) = 2γ γ ∈ M0 = [0, κ/2)
fc(γ) = κ γ ∈ Mc = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ M1 = (1 − κ/2, 1]

, (14.7)

obtained by slicing off all γ
(

S +(x0)
)

> κ. The dike map is the full tent map

figure 14.11 (a) with the top sliced off. It is convenient for coding the symbolic

dynamics, as those γ values that survive the pruning are the same as for the full

tent map figure 14.11 (a), and are easily converted into admissible itineraries by

(14.4).

If γ(S +) > γ(K), the point x whose itinerary is S + would exceed the critical

value, x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S +) = sup
m
γ(σm(S +)) (14.8)

be the maximal value, the highest topological coordinate reached by the orbit

x1 → x2 → x3 → . . . , where σ is the shift (see (14.13)), σ(.s1s2s3 · · · = .s2s3 · · · .
For cycles up to length 5 the maximal values are listed in table 14.1. We shall call

the interval (κ, 1] the primary pruned interval. The orbit S + is inadmissible if γ of

any shifted sequence of S + falls into this interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,

and γ̂(S +) be the maximal value of the orbit S +. Then the orbit S + is admissible

if and only if γ̂(S +) ≤ κ.

While a particular unimodal map may depend on many parameters, its dy-

namics determines the unique kneading value κ. We shall call κ the topological

parameter of the map. Unlike the parameters of the original dynamical system,

the topological parameter has no reason to be either smooth or continuous. The

jumps in κ as a function of the map parameter such as A in (14.5) correspond to

inadmissible values of the topological parameter. Each jump in κ corresponds to

a stability window associated with a stable cycle of a smooth unimodal map. For

the quadratic map (14.5) κ increases monotonically with the parameter A, but for

a general unimodal map such monotonicity need not hold.

example 14.10

p. 258
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Figure 14.14: (a) Web diagram generated by

kneading sequence K = S+(xc) (the trajectory of

the critical point) for the unimodal Rössler return

map of figure 14.7 (c). (b) Return map for the

p0 = 0, p1 < 0 Poincaré section of the x− unsta-

ble manifold. The kneading sequence is the same,

as this map is conjugate to figure 14.7 (b) by 1800

turn. The section, however, is in the region of

strong folding, and the map is less convenient in

practice. (A. Basu and J. Newman)
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Figure 14.15: (a) Web diagram generated by the

trajectory of the critical point the unimodal Rössler

return map of figure 14.7 (b). (b) The web diagram

for the corresponding ‘canonical’ dike map (14.7)

with the same kneading sequence. (A. Basu and

J. Newman)
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For further details of unimodal dynamics, the reader is referred to appendix A14.1.

As we shall see in sect. 15.4, for higher dimensional maps and flows there is no

single parameter that orders dynamics monotonically; as a matter of fact, there

is an infinity of parameters that need adjustment for a given symbolic dynamics.

This difficult subject is beyond our current ambition horizon.

fast track:

chapter 15, p. 262

14.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the

natural language and its functioning as a special case of

speech.

— Yuri I. Manin [14.1]

In this section we collect the basic notions and definitions of symbolic dynamics.

The reader might prefer to skim through this material on a first reading and return

to it later, as the need arises.

knead - 15feb2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 14. CHARTING THE STATE SPACE 250

Shifts. We associate with every initial point x0 ∈ M the future itinerary, a se-

quence of symbols S +(x0) = s1s2s3 · · · which indicates the order in which the

regions are visited. If the trajectory x1, x2, x3, . . . of the initial point x0 is gener-

ated by

xn+1 = f (xn) , (14.9)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (14.10)

Similarly, the past itinerary S -(x0) = · · · s−2s−1s0 describes the history of x0, the

order in which the regions were visited before arriving to the point x0. To each

point x0 in the state space we thus associate a bi-infinite itinerary

S (x0) = (sk)k∈Z = S -.S + = · · · s−2s−1s0.s1s2s3 · · · , (14.11)

or simply itinerary, if we chose not to use the decimal point to indicate the present.

The itinerary will be finite for a scattering trajectory, entering and then escaping

M after a finite time, infinite for a trapped trajectory, and infinitely repeating for

a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the

alphabet A is called the full shift (or topological Markov chain)

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (14.12)

The jargon is not thrilling, but this is how professional dynamicists talk to each

other. We will stick to plain English to the extent possible.

Here we refer to this set of all conceivable itineraries as the covering symbolic

dynamics. The name shift is descriptive of the way the dynamics acts on these se-

quences. As is clear from the definition (14.10), a forward iteration x→ x′ = f (x)

shifts the entire itinerary to the left through the ‘decimal point.’ This operation,

denoted by the shift operator σ,

σ(· · · s−2s−1s0.s1s2s3 · · · ) = · · · s−2s−1s0s1.s2s3 · · · , (14.13)

demotes the current partition label s1 from the future S + to the ‘has been’ itinerary

S -. The inverse shift σ−1 shifts the entire itinerary one step to the right.

A finite sequence b = sk sk+1 · · · sk+nb−1 of symbols from A is called a block

of length nb. If the symbols outside of the block remain unspecified, we denote

the totality of orbits that share this block by sksk+1 · · · sk+nb−1 .

A state space point is a periodic point if its orbit returns to it after a finite

time; in shift space the orbit is periodic if its itinerary is an infinitely repeating

block p∞.

We shall refer to the set of periodic pointsMp that belong to a given periodic

orbit as a cycle

p = s1s2 · · · snp
= {xs1s2···snp

, xs2···snp s1
, · · · , xsnp s1···snp−1

} . (14.14)
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A prime cycle p of period np is a single traversal of the orbit; its label is a block

of np symbols that cannot be written as a repeat of a shorter block (in the liter-

ature, such cycles are sometimes called primitive; we shall refer to it as ‘prime’

throughout this text). By its definition, a cycle is invariant under cyclic permuta-

tions of the symbols in the repeating block. A bar over a finite block of symbols

denotes a periodic itinerary with infinitely repeating basic block; we shall omit the

bar whenever it is clear from the context that the orbit is periodic. Each periodic

point is labeled by the starting symbol s0 = snp
the next (np − 1) steps of its future

itinerary. For example, the 2nd periodic point is labeled by

xs1s2···snp
= xs1s2 ···s0 ·s1s2···snp

.

This - a bit strained - notation is meant to indicate that the symbol block repeats

both in the past and in the future. It is helpful for determining spatial ordering of

cycles of 2D-hyperbolic maps, to be undertaken in sect. 15.3.1.

Orbit that starts out as a finite block followed by infinite number of repeats

of another block p = (s1s2s3 . . . sn) is said to be heteroclinic to the cycle p. An

orbit that starts out as p∞ followed by a different finite block followed by (p′)∞ of

another block p′ is said to be a heteroclinic connection from cycle p to cycle p′.

Partitions. A partition is called generating if every infinite symbol sequence

corresponds to a distinct point in state space. The finite Markov partition (14.2)

is an example. Constructing a generating partition for a given system is a difficult

problem. In the examples to follow, we shall concentrate on cases which that

permit finite partitions, but in practice almost any generating partition of interest

is infinite.

A partition too coarse, coarser than, for example, a Markov partition, would

assign the same symbol sequence to distinct dynamical trajectories. To avoid that,

we often find it convenient to work with partitions finer than strictly necessary.

Ideally the dynamics in the refined partition assigns a unique infinite itinerary

· · · s−2s−1s0.s1s2s3 · · · to each distinct orbit, but there might exist full shift sym-

bol sequences (14.12) which are not realized as orbits; such sequences are called

inadmissible, and we say that the symbolic dynamics is pruned. The word is

suggested by the ‘pruning’ of branches corresponding to forbidden sequences for

symbolic dynamics organized hierarchically into a tree structure, as explained in

chapter 17.

A mapping f : M → M together with a partition A induces topological

dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (14.15)

is the set of all admissible infinite itineraries, and σ : Σ→ Σ is the shift operator

(14.13). The designation ‘subshift’ comes form the fact that Σ ⊂ AZ is the subset

of the full shift (14.12). The principal task in developing the symbolic dynamics

of a dynamical systems that occurs in applications will be to determine Σ, the

set of all bi-infinite itineraries S that are actually realized by the given dynamical

system.
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Pruning. If the dynamics is pruned, the alphabet must be supplemented by

a grammar, a set of pruning rules. After the inadmissible sequences have been

pruned, it is often convenient to parse the symbolic strings into words of variable

length - this is called coding. Suppose that the grammar can be stated as a finite

number of pruning rules, each forbidding a block of finite length,

G = {b1, b2, · · · bk} , (14.16)

where a pruned block b is a sequence of symbols b = s1s2 · · · snb
, s ∈ A, of finite

length nb. In this case we can always construct a finite Markov partition (14.2) by

replacing finite length words of the original partition by letters of a new alphabet.

In particular, if the longest forbidden block is of length M + 1, we say that the

symbolic dynamics is a shift of finite type with M-step memory. In that case we

can recode the symbolic dynamics in terms of a new alphabet, with each new

letter given by an admissible block of at most length M.

A topological dynamical system (Σ, σ) for which all admissible itineraries are

generated by a finite transition matrix (see (17.1))

Σ =
{

(sk)k∈Z : Tsk sk+1
= 1 for all k

}

(14.17)

is called a subshift of finite type.

in depth:

chapter 15, p. 262

Résumé

From our initial chapters 2 to 4 fixation on things local: a representative point, a

short-time trajectory, a neighborhood, in this chapter we have made a courageous

leap and gone global.

The main lesson is that - if one intends to go thoughtfully about globalization

- one should trust the dynamics itself, and let it partition the state space, by means

of its (topologically invariant) unstable manifolds. This works if every equilib-

rium and periodic orbit is unstable, so one exits its local neighborhood via its

unstable manifold. We delineate the segment of the unstable manifold between

the fixed point and the point where the nonlinearity of the dynamics folds it back

on itself as the primary segment, and measure location of nearby state space points

by arclengths measured along this (curvilinear) segment. For 1-dimensional maps

the folding point is the critical point, and easy to determine. In higher dimensions,

the situation is not so clear - we shall discuss that in chapter 15.

Trajectories exit a neighborhood of an equilibrium or periodic point along un-

stable directions, and fall along stable manifolds towards other fixed points, until

they again are repelled along their unstable manifolds. Such sequences of visi-

tations can be described by symbolic dynamics. As we shall show in chapter 17,

knead - 15feb2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 14. CHARTING THE STATE SPACE 253

they are encoded by transition matrices / transition graphs, and approximated dy-

namically by sequences of unstable manifold → unstable manifold maps, or, in

case of a return to the initial neighborhood, by return maps s→ f (s).

As the kneading theory of sect. 14.5 illustrates, not all conceivable symbol

sequences are actually realized (admissible). The identification of all inadmis-

sible or pruned sequences is in general not possible. However, the theory to be



developed here relies on exhaustive enumeration of all admissible itineraries up

to a given topological length; chapters 15 and 18 describe several strategies for

accomplishing this for physically realistic goals.

Commentary

Remark 14.1 Symbolic dynamics. For a brief history of symbolic dynamics, from

Hadamard in 1898, Morse and Hedlund in 1938 and onward, see notes to chapter 1 of

Kitchens monograph [14.2], a very clear and enjoyable mathematical introduction to top-

ics discussed here. Diacu and Holmes [A1.2] provide an excellent survey of symbolic

dynamics applied to celestial mechanics. For a compact survey of symbolic dynamics

techniques, consult sects. 3.2 and 8.3 of Robinson [14.4]. The binary labeling of the once-

folding map periodic points was introduced by Myrberg [14.5, 14.6, 14.7, 14.8, 14.9]

for 1-dimensional maps, and its utility to 2-dimensional maps has been emphasized in

refs. [14.10, 14.11]. For 1-dimensional maps it is now customary to use the R-L nota-

tion of Metropolis, Stein and Stein [A1.8, 14.13], indicating that the point xn lies either

to the left or to the right of the critical point in figure 14.11. The symbolic dynamics of

such mappings has been extensively studied by means of the Smale horseshoes, see for

example ref. [14.14]. Using letters rather than numerals in symbol dynamics alphabets

probably reflects good taste. We prefer numerals for their computational convenience, as

they speed up conversions of itineraries into the topological coordinates (δ, γ) introduced

in sect. 15.3.1. The alternating binary ordering of figure 14.12 is related to the Gray codes

of computer science [14.15]. Kitchens [14.2] convention is · · · s−2 s−1.s0s1 s2s3 · · ·, with ‘.’

placed differently from our convention (14.11).

Remark 14.2 Kneading theory. The admissible itineraries are studied, for example, in

refs. [14.16, A1.8, 14.14, 14.17]. We follow here the Milnor-Thurston exposition [A1.9].

They study the topological zeta function for piecewise monotone maps of the interval, and

show that for the finite subshift case it can be expressed in terms of a finite dimensional

kneading determinant. As the kneading determinant is essentially the topological zeta

function of sect. 18.4, we do not discuss it here. Baladi and Ruelle have reworked this

theory in a series of papers [21.4, 14.20, 14.21]. See also P. Dahlqvist’s appendix A14.1.

Knight and Klages refer to the set of iterates of the critical point as the ‘generating orbit’ in

their study of deterministic diffusion [14.22] (for deterministic diffusion, see chapter 24).

They say: “The structure of the Markov partitions varies wildly under parameter variation.

The method we employ to understand the Markov partitions involves iterating the critical

point. The set of iterates of this point form a set of Markov partition points for the map.

Hence we call the orbit of the critical point a ‘generating orbit.’ If the generating orbit

is finite for a particular value of parameters, we obtain a finite Markov partition. We can
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then use the finite Markov partition to tell us about the diffusive properties of the map and

hence the structure of the diffusion coefficient.”

Remark 14.3 Heteroclinic connections. For sketches of heteroclinic connections in

the nonlinear setting, see Abraham and Shaw illustrated classic [14.23]. Section 5 of

ref. [30.17] makes elegant use of stable manifold co-dimension counts and of invariant

subspaces implied by discrete symmetries of the underlying PDE to deduce the existence

of a heteroclinic connection. Ref. [14.24] which defines heteroclinic connections, cycles

and networks has lotos of references. It focuses on two-dimensional unstable manifolds,

discusses discrete symmetries, robust cycles on invariant subspaces, and constructs ‘cross-

sections’ that lie within the region of approximate linear flow near equilibria.
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14.7 Examples

Example 14.2 3-disk symbolic dynamics: Consider the motion of a free pointexercise 1.1

particle in a plane with 3 elastically reflecting convex disks, figure 14.4. After a collision

with a disk a particle either continues to another disk or escapes, so a trajectory can

be labeled by the disk sequence. Sets of configuration space pinball trajectories of

figure 14.4 become quickly hard to disentangle. As we shall see in what follows, their

state space visualization in terms of Poincaré sections P = [s, p] (figure 14.5, see also

figure 15.15 (b)) is much more powerful. (continued in example 14.3) click to return: p. ??

Example 14.3 3-disk state space partition: (continued from example 14.2) Em-

bedded within M12, M13 are four strips M121, M123, M131, M132 of initial conditions

that survive two bounces, and so forth. At each bounce a cone of initially nearby trajec-

tories disperses (see figures 1.8 and 14.4). Also in order to attain a desired longer and

longer itinerary of bounces, the strip of initial points x0 = (s0, p0) requires exponentially

finer precision, nested within the initial state space strips drawn in figure 14.5. Provided

that the disks are sufficiently separated, after n bounces the survivors are labeled by 2n

distinct itineraries s1 s2 s3 . . . sn. (continued in example 15.4) click to return: p. ??

Example 14.4 Rössler attractor return map: Stretch & fold. (continued from

example 4.5) In the Rössler flow (2.27) of example 3.3 we sketched the attractor by

running a long chaotic trajectory, and noted that the attractor of figure 14.7 (a) is very

thin. For Rössler flow an interval transverse to the attractor is stretched, folded and

fiercely pressed back. The attractor is ‘fractal,’ but for all practical purposes the return

map is 1-dimensional; your printer will need a resolution better than 1013 dots per inch

to start resolving its structure. We had attempted to describe this ‘stretch & fold’ flow by

a 1-dimensional return map, but the maps that we plotted in figure 3.3 were disquieting;

they did not appear to be a 1-to-1 maps. This apparent non-invertibility is an artifact of

projection of a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto the 1-dimensional

subspace Rn → Rn+1. Now that we understand equilibria and their linear stability, let’s

do this right.

The key idea is to measure arclength distances along the unstable manifold of

the x− equilibrium point, as in figure 14.7 (a). Luck is with us; figure 14.7 (b) return map

sn+1 = P(sn) looks much like a parabola of example 3.8, so we shall take the unimodal

map symbolic dynamics, sect. 14.3, as our guess for the covering symbolic dynamics.

(continued in example 14.10) click to return: p. ??

Example 14.5 Lorenz flow: Stretch & crease. We now deploy the symmetry of

Lorenz flow to streamline and complete analysis of the Lorenz strange attractor com-

menced in example 11.5. There we showed that the dihedral D1 = {e,R} symmetry

identifies the two equilibria EQ1 and EQ2, and the traditional ‘two-eared’ Lorenz flow

figure 2.5 is replaced by the ‘single-eared’ flow of figure 11.3 (a). Furthermore, symme-

try identifies two sides of any plane through the z axis, replacing a full-space Poincaré

section plane by a half-plane, and the two directions of a full-space eigenvector of EQ0

by a one-sided eigenvector, see figure 11.3 (a).

Example 4.7 explained the genesis of the xEQ1
equilibrium unstable manifold,

its orientation and thickness, its collision with the z-axis, and its heteroclinic connec-

tion to the xEQ0
= (0, 0, 0) equilibrium. All that remains is to describe how the EQ0

neighborhood connects back to the EQ1 unstable manifold.
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Figure 11.3 and figure 14.8 (a) show clearly how the Lorenz dynamics is pieced

together from the 2 equilibria and their unstable manifolds: Having completed the de-

scent to EQ0, the infinitesimal neighborhood of the heteroclinic EQ1 → EQ0 trajectory

is ejected along the unstable manifold of EQ0 and is re-injected into the unstable man-

ifold of EQ1. Both sides of the narrow strip enclosing the EQ0 unstable manifold lie

above it, and they get folded onto each other with a knife-edge crease (contracted

exponentially for infinite time to the EQ0 heteroclinic point), with the heteroclinic out-

trajectory defining the outer edge of the strange attractor. This leads to the folding of

the outer branch of the Lorenz strange attractor, illustrated in figure 14.8 (b), with the

outermost edge following the unstable manifold of EQ0.

Now the stage is set for construction of Poincaré sections and associated

Poincaré return maps. There are two natural choices; the section at EQ0, lower part

of figure 14.8 (b), and the section (blue) above EQ1. The first section, together with

the blowup of the EQ0 neighborhood, figure 4.6 (b), illustrates clearly the scarcity of

trajectories (vanishing natural measure) in the neighborhood of EQ0. The flat section

above EQ1 (which is, believe it or not, a smooth conjugacy by the flow of the knife-sharp

section at EQ0) is more convenient for our purposes. Its return map (3.4) is given by

figure 14.9.

The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its crit-

ical point’s forward trajectory yields the kneading sequence (14.6), and the admissible

binary sequences, so any number of periodic points can be accurately determined from

this 1-dimensional return map, and the 3-dimensional cycles then verified by integrating

the Lorenz differential equations (2.22). As already observed by Lorenz, such a map is

everywhere expanding on the strange attractor, so it is no wonder mathematicians can

here make the ergodicity rigorous. (E. Siminos and J. Halcrow)section 23.7

click to return: p. ??

Example 14.6 Bernoulli shift map state space partition. First, an easy example:

the Bernoulli shift map, figure 14.10,

b(γ) =

{

b0(γ) = 2γ , γ ∈ M0 = [0, 1/2)
b1(γ) = 2γ − 1 , γ ∈ M1 = (1/2, 1]

, (14.18)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself, with

fixed points γ0 = 0, γ1 = 1. The closely related doubling map acts on the circle

x 7→ 2x (mod 1) , x ∈ [0, 1] (14.19)

and consequently has only one fixed point, x0 = 0 = 1 (mod 1). The Bernoulli map

is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of

γ = .s1s2 s3 . . . by shifting its digits, b(γ) = .s2s3 . . .. The nth preimages b−(n−1)(γ) of the

critical point γc = 1/2 partition the state space into 2n subintervals, each labeled by the

first n binary digits of points γ = .s1s2 s3 . . . within the subinterval: figure 14.10 illustrates

such 4-intervals state space partition {M00,M01,M11,M10} for n = 2.

Consider a map f (x) topologically conjugate (two monotonically increasing

branches) to the Bernoulli shift, with the forward orbit of x generating the itinerary

s1s2 s3 . . .. Convert this itinerary into Bernoulli map point γ = .s1s2 s3 . . .. These values

can now be used to spatially order points with different temporal itineraries: if γ < γ′,
then x < x′.

Suppose we have already computed all (n − 1)-cycles of f (x), and would now

like to compute the cycle p = s1 s2 s3 . . . sn of period n. Mark γ values on the unit interval

for all known periodic points of the Bernoulli shift map, and then insert in between them

γσk p, k = 0, 1, · · · , np − 1 corresponding to periodic points of cycle p. In the dynamical
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state space they will be bracketed by corresponding cycle points x j from cycles al-

ready computed, and thus the knowledge of the topological ordering of all cycle points

provides us with robust initial guesses for periodic-orbit searches for any map with 2

monotonically increasing branches. (continued in example 28.5) click to return: p. ??

Example 14.7 Full tent map, Ulam map: (continued from example 14.1) The

simplest examples of unimodal maps with complete binary symbolic dynamics are the

full tent map, figure 14.11 (a),

f (γ) = 1 − 2|γ − 1/2| , γ ∈ M = [0, 1] , (14.20)

the Ulam map (quadratic map (14.5) with A = 4) exercise A2.4

f (x) = 4x(1 − x) , x ∈ M = [0, 1] , (14.21)

and the repelling unimodal maps such as figure 14.11. For unimodal maps the Markov

partition of the unit intervalM is given by intervals {M0,M1}. We refer to (14.20) as the

complete tent map because its symbolic dynamics is completely binary: as both f (M0)

and f (M1) fully coverM = {M0,M1}, all binary sequences are realized as admissible

itineraries. click to return: p. ??

Example 14.8 Periodic orbits of unimodal maps. Let

f (x) =

{

f0(x) if x < xc

f1(x) if x > xc
, (14.22)

and assume that all periodic orbits are unstable, i.e., the stability Λp = f k
a
′ (see (4.43))

satisfies |Λp| > 1. Then the periodic point xs0 s1 s2...sn−1
is the only fixed point of the unique

composition (3.12) of n maps

fsn
◦ · · · ◦ fs2

◦ fs1
(xs0 s1 s2...sn−1

) = xs0 s1 s2...sn−1
(14.23)

(note that successive maps, applied from the left, correspond to later times, i.e., later

symbols in the itinerary).

The nth iterate of a unimodal map has at most 2n monotone segments, and

therefore there will be 2n or fewer periodic points of length n. For the full tent map

(14.20) it has exactly 2n periodic points. A periodic orbit p of length n corresponds tosection 15.2

an infinite repetition of a length n = np symbol string block, customarily indicated by

a line over the string: p = S p = (s1s2 s3 . . . sn )∞ = s1s2 s3 . . . sn . As all itineraries are

infinite, we shall adopt convention that a finite string itinerary p = s1s2 s3 . . . sn stands

for infinite repetition of a finite block, and routinely omit the overline. A cycle p is called

prime if its itinerary S cannot be written as a repetition of a shorter block S ′. If the

itinerary of x0 is p = s1 s2 s3 . . . sn , its cyclic permutation σk p = sk sk+1 . . . sn s1 . . . sk−1

corresponds to the point xk−1 in the same cycle. click to return: p. ??

Example 14.9 Periodic points of the full tent map. Each cycle p is a set of np

rational-valued full tent map periodic points γ. It follows from (14.4) that if the repeating

string s1s2 . . . sn contains an odd number of ‘1’s, the string of well ordered symbols
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w1w2 . . .w2n has to be of the double length before it repeats itself. The cycle-point γ is

a geometrical sum which we can rewrite as the odd-denominator fraction

γ(s1s2 . . . sn) =

2n
∑

t=1

wt

2t
+

1

2−2n

2n
∑

t=1

wt

2t
+ · · ·

=
22n

22n − 1

2n
∑

t=1

wt

2t
(14.24)

Using this we can calculate the γ̂p = γ̂(S p) for all short cycles. For orbits up to length 5

this is done in table 14.1. click to return: p. ??

Example 14.10 Rössler return map web diagram: (continuation of example 14.3) The

arclength distance along the unstable manifold of the x− equilibrium point return map,

figure 14.7 (b), generates the kneading sequence (14.6) as the itinerary of the critical

point plotted in figure 14.15 (a). click to return: p. ??

Exercises

14.1. Binary symbolic dynamics. Verify that the short-

est prime binary cycles of the unimodal repeller of fig-

ure 14.11 are 0, 1, 01, 001, 011, · · · . Compare with ta-

ble 18.1. Sketch them in the graph of the unimodal func-

tion f (x); compare the ordering of the periodic points

with that in figure 14.12. The point is that while over-

layed on each other the longer cycles look like a hope-

less jumble, the periodic points are clearly and logically

ordered by the alternating binary tree.

14.2. Generating prime cycles. Write a program that gen-

erates all binary prime cycles up to a given finite length.

14.3. A contracting baker’s map. Consider the contracting

(or “dissipative”) baker’s map defined in exercise 4.6.

The symbolic dynamics encoding of trajectories is real-

ized via symbols 0 (y ≤ 1/2) and 1 (y > 1/2). Consider

the observable a(x, y) = x. Verify that for any periodic

orbit p = s1 . . . snp
, si ∈ {0, 1} the integrated observable

is

Ap =
3

4

np
∑

j=1

δs j,1 .

14.4. Unimodal map symbolic dynamics. Show that the

tent map point γ(S +) with future itinerary S + is given

by converting the sequence of sn’s into a binary number

by the algorithm (14.4). This follows by inspection from

the binary tree of figure 14.12.

14.5. Unimodal map kneading value. Consider the 1-

dimensional quadratic map

f (x) = Ax(1 − x) , A = 3.8 . (14.25)

(a) (easy) Plot (14.25), and the first 4-8 (whatever

looks better) iterates of the critical point xc = 1/2.

(b) (hard) Draw corresponding intervals of the parti-

tion of the unit interval as levels of a Cantor set, as

in the symbolic dynamics partition of figure 14.11.

Note, however, that some of the intervals of fig-

ure 14.11 do not appear in this case - they are

pruned.

(c) (easy) Check numerically that K = S +(xc), knead-

ing sequence (the itinerary of the critical point

(14.6)) is

K = 1011011110110111101011110111110 . . .

As the orbits of a chaotic map are exponentially

unstable, so many digits seem too good to be true

- recheck this sequence using arbitrary precision

arithmetics.
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(d) (medium) The tent map point γ(S +) with future

itinerary S + is given by converting the sequence of

sn’s into a binary number by the algorithm (14.4).

List the corresponding kneading value (14.6) se-

quence κ = γ(K) to the same number of digits as

K.

(e) (hard) Plot the dike map, figure 14.13, with the

same kneading sequence K as f (x). The dike map

is obtained by slicing off all γ
(

S +(x0)
)

> κ, from

the full tent map figure 14.11 (a), see (14.7).

How this kneading sequence is converted into a series of

pruning rules is a dark art, relegated to sect. 18.5.

14.6. “Golden mean” pruned map. Consider a symmetric

tent map on the unit interval such that its highest point

belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the value |Λ| for the slope (the two different

slopes ±Λ just differ by a sign) where the max-

imum at 1/2 is a periodic point in a 3-cycle, as

depicted in the figure.

(b) Show that no orbit of this map can visit the region

x > (1 +
√

5)/4 more than once. Verify also that

once an orbit exceeds x > (
√

5 − 1)/4, it does not

reenter the region x < (
√

5 − 1)/4.

(c) If an orbit is in the interval (
√

5− 1)/4 < x < 1/2,

where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2

we use the symbol 0 and for x > 1/2 we use the

symbol 1, show that no periodic orbit will have the

substring 00 in it.

(e) On a second thought, is there a periodic orbit that

violates the above 00 pruning rule?

To continue with this line of thinking, see exercise 18.7

and exercise 22.1. See also exercise 18.6 and exer-

cise 18.8.

14.7. Binary 3-step transition matrix. Construct an [8×8]

binary 3-step transition matrix analogous to the 2-step

transition matrix (17.11). Convince yourself that the

number of terms of contributing to tr T n is independent

of the memory length, and that this [2m×2m] trace is well

defined in the infinite memory limit m→ ∞.

14.8. Full tent map periodic points. This exercise is easy:

just making sure you know how to go back and forth be-

tween spatial and temporal ordering of trajectory points.

(a) compute the two periodic points of cycle 01 “by

hand,” by solving the fixed-point condition for the

second iterate f1 ◦ f0

(b) compute the periodic points of two 3-cycles 001

and 011 by solving the fixed-point condition for

the third iterates

(c) compute the five periodic points of cycle 10011

using (14.24)

(d) compute the five periodic points of cycle 10000

(e) derive (14.24)

(f) (optional) plot the above two 5-cycles on the graph

of the full tent map, and as many others as you

find interesting. Why? Because you can start ap-

preciating the power of kneading theory–while the

state space orbits get more and more complicated

and impenetrable, the kneading sequence pruning

rule is as simple and as sharp as a knife.

(continued in exercise 16.1)
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