
Chapter 10

Flips, slides and turns

A detour of a thousand pages starts with a single misstep.

—Chairman Miaw

D
ynamical systems often come equipped with symmetries, such as the reflec-

tion and rotation symmetries of various potentials.

This chapter assumes familiarity with basic group theory, as discussed in ap-

pendix A7.1. We find the abstract notions easier to digest by working out the

examples; links to these examples are interspersed throughout the chapter. Work-

ing through these examples is essential and will facilitate your understanding of

various definitions. The erudite reader might prefer to skip the lengthy group-

theoretic overture and go directly to C2 = D1 example 11.3, example 11.5, and

C3v = D3 example 10.1, backtrack as needed.

10.1 Discrete symmetries

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the

state space into equivalence classes, each class a ‘group orbit’. We start by defin-

ing a finite (discrete) group, its state space representations, and what we mean by

a symmetry (invariance or equivariance) of a dynamical system. As is always the

problem with ‘gruppenpest’ (read appendix A1.6) way too many abstract notions

have to be defined before an intelligent conversation can take place. Perhaps best

to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G = {e, g2, . . . , gn, . . . } (10.1)

and a group multiplication rule g j ◦ gi (often abbreviated as g jgi), satisfying
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Figure 10.1: The symmetries of three disks on an

equilateral triangle. A fundamental domain is indi-

cated by the shaded wedge. Work through exam-

ple 10.1.

1. Closure: If gi, g j ∈ G, then g j ◦ gi ∈ G

2. Associativity: gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identity e: g ◦ e = e ◦ g = g for all g ∈ G

4. Inverse g−1: For every g ∈ G, there exists a unique element h = g−1 ∈ G

such that h ◦ g = g ◦ h = e.

If the group is finite, the number of elements, |G| = n, is called the order of the

group.

The theory of finite groups is developed on two levels. There is a beautiful

theory of groups as abstract entities which yields the classification of their struc-

tures and their irreducible, orthogonal representations in terms of characters. Then

there is the considerably messier matter of group representations, in our case the

ways in which a given symmetry group acts on and stratifies the particular state

space of a problem at hand, the most familiar being the ways in which symme-

tries reduce and block-diagonalize quantum-mechanical problems. What helps us

here is that the symmetries ‘commute’ with dynamics, i.e., we can first reduce a

given state space to its irreducible components, using the symmetry alone, and

then study the action of dynamics on these subspaces. As our intuition is based

on physical manifestations of group actions, in this brief review we shall freely

switch gears between the abstract and the representation levels whenever peda-

gogically convenient.

For example, do work through example 10.1. Once you understand how this

works out for the symmetries of an equilateral triangle, or, equivalently, for the

three disk billiard of figure 10.1, you know almost everything you need to know

about the general, non-abelian finite groups. example A7.1

example A7.2

example 10.1

p. 171

example 10.3

p. 171

Definition: Coordinate transformations. Consider a map x′ = f (x), x, x′ ∈

M. An active coordinate transformation Mx corresponds to a non-singular [d×
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d] matrix M that maps the initial vector x ∈ M onto another vector Mx ∈ M.

The corresponding passive coordinate transformation x′ → M−1x′ changes the

coordinate system with respect to which the final vector x′ ∈ M is measured.

Together, a passive and active coordinate transformations yield the map in the

transformed coordinates:

f̂ (x) = M−1 f (Mx) . (10.2)

(For general nonlinear coordinate transformations, see Appendix A2.)

Definition: Matrix group. The set of [d×d]-dimensional real non-singular ma-

trices A, B,C, · · · ∈ GL(d) acting in a d-dimensional vector space V ∈ Rd forms

the general linear group GL(d) under matrix multiplication. The product of matri-

ces A and B gives the matrix C, Cx = B(Ax) = (BA)x ∈ V, for all x ∈ V . The unit

matrix 11 is the identity element which leaves all vectors in V unchanged. Every

matrix in the group has a unique inverse.

Definition: Matrix representation. Linear action of a group element g on

states x ∈ M is given by a finite non-singular [d×d] matrix D(g), the matrix

representation of element g ∈ G. For brevity we shall often denote by ‘g’ both the

abstract group element and its matrix representation, D(g)x → gx.

However, when dealing simultaneously with several representations of the

same group action, the notation D(µ)(g) is preferable, where µ is a representation

label, (see appendix A7.1). A linear or matrix representation D(G) of the abstract

group G acting on a representation space V is a group of matrices D(G) such that

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 is mapped onto the matrix product D(g2 ◦ g1) =

D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication,

D(g3 ◦ (g2 ◦ g1)) = D(g3)
(
D(g2)D(g1)

)
=
(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and

the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =

D(g)−1.

Some simple 3D representations of the group order 2 are given in exam-

ple 10.4.

example 10.4

p. 171

If the coordinate transformation g belongs to a linear non-singular represen-

tation of a discrete finite group G, for any element g ∈ G there exists a number
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Figure 10.2: The bimodal Ulam sawtooth map

with the D1 symmetry f (−x) = − f (x). If the tra-

jectory (a) x0 → x1 → x2 → · · · is a solution, so

is its reflection (b) σx0 → σx1 → σx2 → · · · .

(work through example 10.5; continued in fig-

ure 11.1).
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m ≤ |G| such that

gm ≡ g ◦ g ◦ · · · ◦ g
︸          ︷︷          ︸

m times

= e → |det D(g)| = 1 . (10.3)

As the modulus of its determinant is unity, det g is an mth root of 1. This is the

reason why all finite groups have unitary representations.

Definition: Symmetry of a dynamical system. A group G is a symmetry of the

dynamics if for every solution f (x) ∈ M and g ∈ G, g f (x) is also a solution.

Another way to state this: A dynamical system (M, f ) is invariant (or G-

equivariant) under a symmetry group G if the time evolution f : M → M (a

discrete time map f , or the continuous flow f t map from the d-dimensional man-

ifoldM into itself) commutes with all actions of G,

f (gx) = g f (x) . (10.4)

In the language of physicists: The ‘law of motion’ is invariant, i.e., retains its form

in any symmetry-group related coordinate frame (10.2),

f (x) = g−1 f (gx) , (10.5)

for x ∈ M and any finite non-singular [d×d] matrix representation g of element

g ∈ G. As these are true any state x, one can state this more compactly as f ◦ g =

g ◦ f , or f = g−1 ◦ f ◦ g.

Why ‘equivariant?’ A scalar function h(x) is said to be G-invariant if h(x) =

h(gx) for all g ∈ G. The group actions map the solution f :M→M into different

(but equivalent) solutions g f (x), hence the invariance condition f (x) = g−1 f (gx)

appropriate to vectors (and, more generally, tensors). The full set of such solu-

tions is G-invariant, but the flow that generates them is said to be G-equivariant.

It is obvious from the context, but for verbal emphasis applied mathematicians

like to distinguish the two cases by in/equi-variant. The distinction is helpful in

distinguishing the dynamics written in the original, equivariant coordinates from

the dynamics rewritten in terms of invariant coordinates, see sects. 11.4 and 13.2.

exercise 11.2
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Figure 10.3: The 3-disk pinball cycles: (a) 12,

13, 23, 123; the clockwise 132 not drawn. (b)

Cycle 1232; the symmetry related 1213 and 1323

not drawn. (c) Cycle 12323; cycles 12123, 12132,

12313, 13131 and 13232 not drawn. (d) The

fundamental domain, i.e., the light-shaded 1/6th

wedge in (a), consisting of a section of a disk, two

segments of symmetry axes acting as straight mir-

ror walls, and the escape gap to the left. The above

14 full-space cycles restricted to the fundamental

domain and recoded in binary reduce to the two

fixed points 0, 1, 2-cycle 10, and 5-cycle 00111

(not drawn). See figure 11.6 for the 001 cycle.

Work through example 10.2.

(a) (b)

(c) (d)

example 10.5

p. 172

example 10.6

p. 172

example 10.2

p. 171

example 12.9

p. 207

10.2 Subgroups, cosets, classes

Normal is just a setting on a washing machine.

—Borgette, Borgo’s daughter

Inspection of figure 10.3 indicates that various 3-disk orbits are the same up to

a symmetry transformation. Here we set up some group-theoretic notions needed

to describe such relations. The reader might prefer to skip to sect. 11.1, backtrack

as needed.

Definition: Subgroup. A set of group elements H = {e, b2, b3, . . . , bh} ⊆ G

closed under group multiplication forms a subgroup.

Definition: Coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of order h =

|H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but not in H, is called left

coset cH. For a given subgroup H the group elements are partitioned into H and

m − 1 cosets, where m = |G|/|H|. The cosets cannot be subgroups, since they do
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not include the identity element. A nontrival subgroup can exist only if |G|, the

order of the group, is divisible by |H|, the order of the subgroup, i.e., only if |G| is

not a prime number.

example 10.7

p. 172

Next we need a notion that will, for example, identify the three 3-disk 2-cycles

in figure 10.3 as belonging to the same class.

Definition: Class. An element b ∈ G is conjugate to a if b = c a c−1 where c is

some other group element. If b and c are both conjugate to a, they are conjugate

to each other. Application of all conjugations separates the set of group elements exercise 10.3

into mutually not-conjugate subsets called classes, types or conjugacy classes.

The identity e is always in the class {e} of its own. This is the only class which is exercise 10.5

a subgroup, all other classes lack the identity element.

example 10.8

p. 172

The geometrical significance of classes is clear from (10.5); it is the way co-

ordinate transformations act on mappings. The action, such as a reflection or

rotation, of an element is equivalent to redefining the coordinate frame.

Definition: Conjugate symmetry subgroups. The splitting of a group G into

a symmetry group Gp of orbitMp and mp − 1 cosets cGp relates the orbitMp to

mp−1 other distinct orbits cMp. All of them have equivalent symmetry subgroups, exercise 10.4

or, more precisely, the points on the same group orbit have conjugate symmetry

subgroups (or conjugate stabilizers):

Gc p = c Gp c−1 , (10.6)

i.e., if Gp is the symmetry of orbit Mp, elements of the coset space c ∈ G/Gp

generate the mp − 1 distinct copies ofMp.

Definition: Invariant subgroup. A subgroup H ⊆ G is an invariant subgroup

or normal divisor if it consists of complete classes. Class is complete if no conju-

gation takes an element of the class out of H.

Think of action of H within each coset as identifying its |H| elements as equiv-

alent. This leads to the notion of the factor group or quotient group G/H of G,

with respect to the invariant subgroup H. H thus divides G into H and m − 1

cosets, each of order |H|. The order of G/H is m = |G|/|H|, and its multiplication

table can be worked out from the G multiplication table class by class, with the

subgroup H playing the role of identity. G/H is homeomorphic to G, with |H|

elements in a class of G represented by a single element in G/H.
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10.3 Orbits, quotient space
section 2.1

Definition: Orbit. The subset Mx0
⊂ M traversed by the infinite-time trajec-

tory of a given point x0 is called the orbit (or time orbit, or solution) x(t) = f t(x0).

An orbit is a dynamically invariant notion: it refers to the set of all states that can

be reached in time from x0, thus as a set it is invariant under time evolution. The

full state spaceM is a union of such orbits. We label a generic orbitMx0
by any

point belonging to it, x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The

ChaosBook strategy is to populate the state space by a hierarchy of orbits which

are compact invariant sets (equilibria, periodic orbits, invariant tori, . . . ), each

computable in a finite time. They are a set of zero Lebesgue measure, but dense

on the non–wandering set, and are to a generic orbit what fractions are to normal

numbers on the unit interval. We label orbits confined to compact invariant sets by

whatever alphabet we find convenient in a given context: point EQ = xEQ =MEQ

for an equilibrium, 1-dimensional loop p =Mp for a prime periodic orbit p, etc.

(note also discussion on page 202, and the distinction between trajectory and orbit

made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or the G-orbit of the point x ∈ M is the set

Mx = {g x | g ∈ G} (10.7)

of all state space points into which x is mapped under the action of G. If G is a

symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or

a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit are

the same.

A symmetry thus reduces the number of inequivalent solutions Mp. So we

also need to describe the symmetry of a solution, as opposed to (10.5), the sym-

metry of the system.

Definition: Reduced state space. The action of group G partitions the state

spaceM into a union of group orbits. This set of group orbits, denotedM/G, has

many names: reduced state space, quotient space or any of the names listed on

page 214.

Definition: Fundamental domain. The images of a single point x under all

actions of a discrete group G form a G-orbit Mx. A fundamental domain M̂ =

M/G is a subset of the state spaceM which contains exactly one point from each

G-orbit. It is an explicit state space realization of the abstract notion of the reduced

state spaceM/G in the case that G is a discrete group.

A fundamental domain can be defined in different ways, here exemplified by

figure 10.1, figure 10.3, figure 11.5, figure 11.6, figure 11.3 (a) and figure 24.2.
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Ideally it is a connected subset with restrictions on its boundary that ensure the no

points are double-counted. The set of images of a fundamental domain under the

group action then tiles the entire state space.

Reduction of the dynamical state space is discussed in sect. 11.3 for discrete

symmetries, and in sect. 13.2 for continuous symmetries.

Definition: Fixed-point subspace. MH is the set of all state space points left

H-fixed, point-wise invariant under subgroup or ‘centralizer’ H ⊆ G action

MH = Fix (H) = {x ∈ M | h x = x for all h ∈ H} . (10.8)

Points in state space subspaceMG which are fixed points of the full group action

are called invariant points,

MG = Fix (G) = {x ∈ M | g x = x for all g ∈ G} . (10.9)

Definition: Flow invariant subspace. A typical point in fixed-point subspace

MH moves with time, but, due to equivariance (10.4), its trajectory x(t) = f t(x)

remains within f (MH) ⊆ MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (10.10)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach

to seeking compact invariant solutions. The larger the symmetry subgroup, the

smallerMH , easing the numerical searches, so start with the largest subgroups H

first.

We can often decompose the state space into smaller subspaces, with group

acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is an invariant subspace if

{Mα | gx ∈ Mα for all g ∈ G and x ∈ Mα} . (10.11)

{0} andM are always invariant subspaces. So is any Fix (H) which is point-wise

invariant under action of G.

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces

under the action of G are {0} andMα is called irreducible.

Definition: Reducibility. If state space M on which G acts can be written as

a direct sum of irreducible subspaces, then the representation of G on state space

M is completely reducible.

This being group theory, definitions could go on forever. But we stop here,

hopefully having defined everything that we need at the moment, and we pile on

a few more definitions in sect. 11.1 and chapter 12. There is also appendix A7.1,

if you thirst for more.
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Résumé

A group G is a symmetry of the dynamical system (M, f ) if its ‘law of motion’

retains its form under all symmetry-group actions, f (x) = g−1 f (gx) . A mapping f

is said to be invariant if g f = f , where g is any element of G. If the mapping and

the group actions commute, g f = f g, f is said to be equivariant. The governing

dynamical equations are equivariant with respect to the symmetry group G.
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Commentary

Remark 10.1 Literature. We found Tinkham [26.6] the most enjoyable as a no-

nonsense, the user friendliest introduction to the basic concepts. Slightly longer, but

perhaps student-friendlier is Part I Basic Mathematics of Dresselhaus et al. [25.3]. By-

ron and Fuller [10.2], the last chapter of volume two, offers an introduction even more

compact than Tinkham’s. For a summary of the theory of discrete groups see, for exam-

ple, ref. [10.3]. Chapter 3 of Rebecca Hoyle [12.2] is a very student-friendly overview

of the group theory a nonlinear dynamicist might need, with exception of the quotient-

ing, reduction of dynamics to a fundamental domain, which is not discussed at all. For

that, Fundamental domain wiki is very clear. We also found Quotient group wiki helpful.

Curiously, we have not read any of the group theory books that Hoyle recommends as

background reading, which just confirms that there are way too many group theory books

out there. For example, one that you will not find useful at all is ref. [26.14]. The rea-

son is presumably that in the 20th century physics (which motivated much of the work

on the modern group theory) the focus is on the linear representations used in quantum appendix A1.6

mechanics, crystallography and quantum field theory. We shall need these techniques in

Chapter 25, where we reduce the linear action of evolution operators to irreducible sub-

spaces. However, here we are looking at nonlinear dynamics, and the emphasis is on the

symmetries of orbits, their reduced state space sisters, and the isotypic decomposition of

their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations, the

landscape between the boredom of regular motions and the thrills of chaos. Chapter 4 of

Rebecca Hoyle [12.2] is a student-friendly introduction to the treatment of bifurcations in

presence of symmetries, worked out in full detail and generality in monographs by Gol-

ubitsky, Stewart and Schaeffer [12.19], Golubitsky and Stewart [12.4] and Chossat and

Lauterbach [13.22]. Term ‘stabilizer’ is used, for example, by Broer et al. [10.9] to refer

to a periodic orbit with Z2 symmetry; they say that the relative or pre-periodic segment is

in this case called a ‘short periodic orbit.’ In Efstathiou [10.10] a subgroup of ‘short peri-

odic orbit’ symmetries is referred to as a ‘nontrivial isotropy group or stabilizer.’ Chap. 8

of Govaerts [10.11] offers a review of numerical methods that employ equivariance with

respect to compact, and mostly discrete groups. (continued in remark 12.1)
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10.4 Examples

Example 10.1 C3v = D3 symmetry of the 3-disk game of pinball: If the three unit-

radius disks in figure 10.1 are equidistantly spaced, our game of pinball has a sixfold

symmetry. The symmetry group of relabeling the 3 disks is the permutation group S3;

however, it is more instructive to think of this group geometrically, as C3v, also known

as the dihedral group

D3 = {e, σ12, σ13, σ23,C
1/3,C2/3} , (10.12)

the group of order |G| = 6 consisting of the identity element e, three reflections across

symmetry axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C1/3,C2/3}.

(continued in example 10.2) click to return: p. ??

Example 10.2 3-disk game of pinball - symmetry-related orbits: (continued from

example 10.1) Applying an element (identity, rotation by ±2π/3, or one of the three

possible reflections) of this symmetry group to a trajectory yields another trajectory. For

instance, σ23, the flip across the symmetry axis going through disk 1 interchanges the

symbols 2 and 3; it maps the cycle 12123 into 13132, figure 10.3 (c). Cycles 12, 23,

and 13 in figure 10.3 (a) are related to each other by rotation by ±2π/3, or, equivalently,

by a relabeling of the disks. (continued in example 10.7) click to return: p. ??

Example 10.3 Discrete groups of order 2 on R3. Three types of discrete group of

order 2 can arise by linear action on our 3-dimensional Euclidean space R3:

reflections: σ(x, y, z) = (x, y,−z)

rotations: C1/2(x, y, z) = (−x,−y, z) (10.13)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. C1/2 is [x, y]-plane, constant z

rotation by π about the z-axis (or an inversion thorough the z-axis). P is an inversion (or

parity operation) through the point (0, 0, 0). Singly, each operation generates a group

of order 2: D1 = {e, σ}, C2 = {e,C
1/2}, and D1 = {e, P}. Together, they form the dihedral

group D2 = {e, σ,C
1/2, P} of order 4. (continued in example 10.4) click to return: p. ??

Example 10.4 Discrete operations on R3. (continued from example 10.3) The ma-

trix representation of reflections, rotations and inversions defined by (10.13) is

D(σ) =





1 0 0
0 1 0
0 0 −1




, D(C1/2) =





−1 0 0
0 −1 0
0 0 1




, D(P) =





−1 0 0
0 −1 0
0 0 −1




,

(10.14)

with det D(C1/2) = 1, det D(σ) = det D(P) = −1; that is why we refer to C1/2 as a

rotation, and σ, P as inversions. As g2 = e in all three cases, these are groups of order

2. (continued in example 10.6) click to return: p. ??
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Example 10.5 A reflection symmetric 1d map. Consider a 1d map f with

reflection symmetry f (−x) = − f (x), such as the bimodal ‘sawtooth’ map of figure 10.2,

piecewise-linear on the state spaceM = [−1, 1], a compact 1-dimensional line interval,

split into three regionsM =ML∪MC∪MR. Denote the reflection operation by σx = −x.

The 2-element group G = {e, σ} goes by many names, such as Z2 or C2. Here we shall

refer to it as D1, dihedral group generated by a single reflection. The G-equivariance

of the map implies that if {xn} is a trajectory, than also {σxn} is a symmetry-equivalent

trajectory because σxn+1 = σ f (xn) = f (σxn) (continued in example 11.3) click to return: p. ??

Example 10.6 Equivariance of the Lorenz flow. (continued from example 10.4) The

velocity field in Lorenz equations (2.22)





ẋ
ẏ
ż




=





σ(y − x)
ρx − y − xz

xy − bz





is equivariant under the action of cyclic group C2 = {e,C
1/2} acting on R3 by a π rotation

about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (10.15)

(continued in example 11.5) click to return: p. ??

Example 10.7 Subgroups, cosets of D3: (continued from example 10.2) The

3-disks symmetry group, the D3 dihedral group (10.12) has six subgroups

{e}, {e, σ12}, {e, σ13}, {e, σ23}, {e,C
1/3,C2/3}, D3 . (10.16)

The left cosets of subgroup D1 = {e, σ12} are {σ13,C
1/3}, {σ23,C

2/3}. The coset of

subgroup C3 = {e,C
1/3,C2/3} is {σ12, σ13, σ23}. The significance of the coset is that if a

solution has a symmetry H, for example the symmetry of a 3-cycle 123 is C3, then all

elements in a coset act on it the same way, for example {σ12, σ13, σ23}123 = 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and

any one of the reflections, of order 2, and C3 = {e,C
1/3,C2/3}, of order 3, so possible

cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has

full symmetry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-

disk billiard. Examples of other multiplicities are given in figure 10.3 and figure 11.4.

(continued in example 10.8) click to return: p. ??

Example 10.8 D3 symmetry - classes: (continued from example 10.7) The

three classes of the 3-disk symmetry group D3 = {e,C
1/3,C2/3, σ, σC1/3, σC2/3}, are the

identity, any one of the reflections, and the two rotations,

{e} ,






σ12

σ13

σ23






,

{

C1/3

C2/3

}

. (10.17)

In other words, the group actions either flip or rotate. (continued in example 11.4)click to return: p. ??
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Exercises

10.1. Polynomials invariant under discrete operations on

R
3. Prove that the {e, σ}, {e,C1/2}, {e, P} and

{e, σ,C1/2, P}-invariant polynomial basis and syzygies

are those listed in example 11.9.

10.2. Gx ⊂ G. The maximal set of group actions which maps

a state space point x into itself,

Gx = {g ∈ G : gx = x} , (10.18)

is called the isotropy group (or stability subgroup or

little group) of x. Prove that the set Gx as defined in

(10.18) is a subgroup of G.

10.3. Transitivity of conjugation. Assume that g1, g2, g3 ∈

G and both g1 and g2 are conjugate to g3. Prove that g1

is conjugate to g2.

10.4. Isotropy subgroup of gx. Prove that for g ∈ G, x and

gx have conjugate isotropy subgroups:

Ggx = g Gx g−1

10.5. D3: symmetries of an equilateral triangle. Consider

group D3 � C3v, the symmetry group of an equilateral

triangle:

1

2  3 .

(a) List the group elements and the corresponding ge-

ometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements

in them, guided by the geometric interpretation of

group elements. Verify your answer using the def-

inition of a class.

(d) List the conjugacy classes of subgroups of D3.

(continued as exercise 12.2 and exercise 25.3)
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