
Chapter 34

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanović)

We derive here the Gutzwiller trace formula and the semiclassical zeta func-
tion, the central results of the semiclassical quantization of classically
chaotic systems. In chapter 35 we will rederive these formulas for the

case of scattering in open systems. Quintessential wave mechanics effects such as
creeping, diffraction and tunneling will be taken up in chapter 38.

34.1 Trace formula

Our next task is to evaluate the Green function trace (31.15)in the semiclassical
approximation. The trace

tr Gsc(E) =
∫

dDqGsc(q, q,E) = tr G0(E) +
∑

j

∫

dDqGj(q, q,E)

receives contributions from “long” classical trajectories labeled byj which start
and end inq after finite time, and the “zero length” trajectories whose lengths
approach zero asq′ → q.

First, we work out the contributions coming from the finite time returning
classical orbits, i.e., trajectories that originate and end at a given configuration
pointq. As we are identifyingq with q′, taking of a trace involves (still another!)
stationary phase condition in theq′ → q limit,
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Figure 34.1: A returning trajectory in the configura-
tion space. The orbit is periodic in the full phase space
only if the initial and the final momenta of a returning
trajectory coincide as well.

Figure 34.2: A romanticized sketch ofSp(E) =
S(q,q,E) =

∮

p(q, E)dq landscape orbit. Unstable
periodic orbits traverse isolated ridges and saddles of
the mountainous landscape of the actionS(q‖,q⊥,E).
Along a periodic orbitSp(E) is constant; in the trans-
verse directions it generically changes quadratically.

meaning that the initial and final momenta (33.40) of contributing trajectories
should coincide

pi(q, q,E) − p′i (q, q,E) = 0 , q ∈ jth periodic orbit, (34.1)

so the trace receives contributions only from those long classical trajectories which
areperiodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one, withq‖
axis pointing in the ˙q direction along the orbit, andq⊥, the rest of the coordinates
transverse to ˙q. The jth periodic orbit contribution to the trace of the semiclassical
Green function in the intrinsic coordinates is

tr G j(E) =
1

i~(2π~)(d−1)/2

∮

j

dq‖
q̇

∫

j
dd−1q⊥|detD j

⊥|
1/2e

i
~
S j−

iπ
2 mj ,

where the integration inq‖ goes from 0 toL j , the geometric length of small tube
around the orbit in the configuration space. As always, in thestationary phase ap-
proximation we worry only about the fast variations in the phaseS j(q‖, q⊥,E),
and assume that the density varies smoothly and is well approximated by its
value D j

⊥(q‖, 0,E) on the classical trajectory,q⊥ = 0 . The topological index
mj(q‖, q⊥,E) is an integer which does not depend on the initial pointq‖ and not
change in the infinitesimal neighborhood of an isolated periodic orbit, so we set
mj(E) = mj(q‖, q⊥,E).

The transverse integration is again carried out by the stationary phase method,
with the phase stationary on the periodic orbit,q⊥ = 0. The result of the transverse
integration can depend only on the parallel coordinate

tr G j(E) =
1
i~

∮

dq‖
q̇
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where the new determinant in the denominator, detD′
⊥ j =

det















∂2S(q, q′,E)
∂q⊥i∂q⊥ j

+
∂2S(q, q′,E)
∂q′
⊥i∂q⊥ j

+
∂2S(q, q′,E)
∂q⊥i∂q′⊥ j

+
∂2S(q, q′,E)
∂q′
⊥i∂q

′
⊥ j















,

is the determinant of the second derivative matrix coming from the stationary
phase integral in transverse directions.

The ratio detD⊥ j/detD′
⊥ j is here to enforce the periodic boundary condition

for the semiclassical Green function evaluated on a periodic orbit. It can be given
a meaning in terms of the monodromy matrix of the periodic orbit by following
observations
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.

Defining the 2(D − 1)-dimensional transverse vectorx⊥ = (q⊥, p⊥) in the full
phase space we can express the ratio

detD′⊥
detD⊥

=

∥

∥

∥

∥

∥

∥

∂(p⊥ − p′⊥, q⊥ − q′⊥)

∂(q′⊥, p
′
⊥)

∥
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∥
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∥
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∥
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∥

∥

∥

∥

∥

∥

= det (M − 1) , (34.2)

in terms of the monodromy matrixM for a surface of section transverse to the
orbit within the constant energyE = H(q, p) shell.

The classical periodic orbit actionS j(E) =
∮

p(q‖,E)dq‖ is an integral around
a loop defined by the periodic orbit, and does not depend on thestarting pointq‖
along the orbit, see figure 34.2. The eigenvalues of the monodromy matrix are
also independent of whereM j is evaluated along the orbit, so det (1−M j) can also
be taken out of theq‖ integral

tr G j(E) =
1
i~

∑

j

1

|det (1− M j)|1/2
er( i

~
S j−

iπ
2 mj )

∮

dq‖
q̇‖
.

Here we have assumed thatM j has no marginal eigenvalues. The determinant
of the monodromy matrix, the actionSp(E) =

∮

p(q‖,E)dq‖ and the topological
index are all classical invariants of the periodic orbit. The integral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a periodic orbit is also a
periodic orbit. The action and the topological index are additive along the trajec-
tory, so forrth repeat they simply get multiplied byr. The monodromy matrix of
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 661

the rth repeat of a prime cyclep is (by the chain rule for derivatives)Mr
p, where

Mp is the prime cycle monodromy matrix. Let us denote the time period of the
prime cyclep, the single, shortest traversal of a periodic orbit byTp. The remain-
ing integral can be carried out by change of variablesdt = dq‖/q̇(t)

∫ Lp

0

dq‖
q̇(t)
=

∫ Tp

0
dt = Tp .

Note that the spatial integral corresponds to asingle traversal. If you do not see
why this is so, rethink the derivation of the classical traceformula (18.23) - that
derivation takes only three pages of text. Regrettably, in the quantum case we do
not know of an honest derivation that takes less than 30 pages. The final result,
theGutzwiller trace formula

tr Gsc(E) = tr G0(E) +
1
i~

∑

p

Tp

∞
∑

r=1

1

|det (1− Mr
p)|1/2

er( i
~
Sp−

iπ
2 mp) , (34.3)

an expression for the trace of the semiclassical Green function in terms of periodic
orbits, is beautiful in its simplicity and elegance.

The topological indexmp(E) counts the number of changes of sign of the ma-
trix of second derivatives evaluated along the prime periodic orbit p. By now we
have gone through so many stationary phase approximations that you have surely
lost track of what the totalmp(E) actually is. The rule is this: The topological
index of a closed curve in a 2D phase space is the sum of the number of times
the partial derivatives∂pi

∂qi
for each dual pair (qi , pi), i = 1, 2, . . . ,D (no sum oni)

change their signs as one goes once around the curve.

34.1.1 Average density of states

We still have to evaluate trG0(E), the contribution coming from the infinitesimal
trajectories. The real part of trG0(E) is infinite in theq′ → q limit, so it makes
no sense to write it down explicitly here. However, the imaginary part is finite,
and plays an important role in the density of states formula,which we derive next.

The semiclassical contribution to the density of states (31.15) is given by
the imaginary part of the Gutzwiller trace formula (34.3) multiplied with −1/π.
The contribution coming from the zero length trajectories is the imaginary part of
(33.48) forq′ → q integrated over the configuration space

d0(E) = −
1
π

∫

dDq Im G0(q, q,E),

The resulting formula has a pretty interpretation; it estimates the number of
quantum states that can be accommodated up to the energyE by counting the
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available quantum cells in the phase space. This number is given by theWeyl rule
, as the ratio of the phase space volume bounded by energyE divided byhD, the
volume of a quantum cell,

Nsc(E) =
1

hD

∫

dD pdDqΘ(E − H(q, p)) . (34.4)

whereΘ(x) is the Heaviside function (31.20).Nsc(E) is an estimate of the spectral
staircase (31.19), so its derivative yields the average density of states

d0(E) =
d
dE

Nsc(E) =
1

hD

∫

dD pdDqδ(E − H(q, p)) , (34.5)

precisely the semiclassical result (34.6). For Hamiltonians of type p2/2m +
V(q), the energy shell volume in (34.5) is a sphere of radius

√

2m(E − V(q)). The
surface of ad-dimensional sphere of radiusr is πd/2rd−1/Γ(d/2), so the averageexercise 34.2

density of states is given by

d0(E) =
2m

~D2dπD2Γ(D/2)

∫

V(q)<E
dDq [2m(E − V(q))]D/2−1 , (34.6)

and

Nsc(E) =
1

hD

πD/2

Γ(1+ D/2)

∫

V(q)<E
dDq [2m(E − V(q))]D/2 . (34.7)

Physically this means that at a fixed energy the phase space can supportNsc(E)
distinct eigenfunctions; anything finer than the quantum cell hD cannot be re-
solved, so the quantum phase space is effectively finite dimensional. The average
density of states is of a particularly simple form in one spatial dimension exercise 34.3

d0(E) =
T(E)
2π~

, (34.8)

whereT(E) is the period of the periodic orbit of fixed energyE. In two spatial
dimensions the average density of states is

d0(E) =
mA(E)

2π~2
, (34.9)

whereA(E) is the classically allowed area of configuration space for whichV(q) <
E. exercise 34.4
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The semiclassical density of states is a sum of the average density of states and
the oscillation of the density of states around the average,dsc(E) = d0(E)+dosc(E),
where

dosc(E) =
1
π~

∑

p

Tp

∞
∑

r=1

cos(rSp(E)/~ − rmpπ/2)

|det (1− Mr
p)|1/2

(34.10)

follows from the trace formula (34.3).

34.1.2 Regularization of the trace

The real part of theq′ → q zero length Green function (33.48) is ultraviolet
divergent in dimensionsd > 1, and so is its formal trace (31.15). The short
distance behavior of the real part of the Green function can be extracted from the
real part of (33.48) by using the Bessel function expansion for smallz

Yν(z) ≈















− 1
π
Γ(ν)

(

z
2

)−ν
for ν , 0

2
π
(ln(z/2)+ γ) for ν = 0

,

whereγ = 0.577... is the Euler constant. The real part of the Green function for
short distance is dominated by the singular part

Gsing(|q− q′|,E) =























− m

2~2π
d
2
Γ((d − 2)/2) 1

|q−q′ |d−2 for d , 2

m
2π~2 (ln(2m(E − V)|q− q′|/2~) + γ) for d = 2

.

TheregularizedGreen function

Greg(q, q
′,E) = G(q, q′,E) −Gsing(|q− q′|,E)

is obtained by subtracting theq′ → q ultraviolet divergence. For the regularized
Green function the Gutzwiller trace formula is

tr Greg(E) = −iπd0(E) +
1
i~

∑

p

Tp

∞
∑

r=1

er( i
~
Sp(E)− iπ

2 mp(E))

|det (1− Mr
p)|1/2

. (34.11)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula in
your hands. You have no clue how good is the~ → 0 approximation, how to
take care of the sum over an infinity of periodic orbits, and whether the formula
converges at all.
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Figure 34.3: A sketch of how spectral determinants
convert poles into zeros: The trace shows 1/(E − En)
type singularities at the eigenenergies while the spec-
tral determinant goes smoothly through zeroes.

34.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where weneed them, at
the individual energy eigenvalues. What to do? Much of the quantum chaos
literature responds to the challenge of wrestling the traceformulas by replacing
the delta functions in the density of states (31.16) by Gaussians. But there is no
need to do this - we can compute the eigenenergies without anyfurther ado by
remembering that the smart way to determine the eigenvaluesof linear operators
is by determining zeros of their spectral determinants.

A sensible way to compute energy levels is to construct the spectral determin-
ant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard product of form

det (Ĥ − E) =
∏

n

(E − En),

but this product is not well defined, since for fixedE we multiply larger and larger
numbers (E − En). This problem is dealt with byregularization, discussed below
in appendix 34.1.2. Here we offer an impressionistic sketch of regularization.

The logarithmic derivative of det (̂H − E) is the (formal) trace of the Green
function

−
d

dE
ln det (Ĥ − E) =

∑

n

1
E − En

= tr G(E).

This quantity, not surprisingly, is divergent again. The relation, however, opens a
way to derive a convergent version of det (Ĥ − E)sc, by replacing the trace with
the regularized trace

−
d

dE
ln det (Ĥ − E)sc = tr Greg(E).

The regularized trace still has 1/(E−En) poles at the semiclassical eigenenergies,
poles which can be generated only if det (Ĥ − E)sc has a zero atE = En, see
figure 34.3. By integrating and exponentiating we obtain

det (Ĥ − E)sc = exp

(

−

∫ E

dE′ tr Greg(E
′)

)
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Now we can use (34.11) and integrate the terms coming from periodic orbits,
using the relation (33.17) between the action and the periodof a periodic orbit,
dSp(E) = Tp(E)dE, and the relation (31.19) between the density of states and the
spectral staircase,dNsc(E) = d0(E)dE. We obtain thesemiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

















−
∑

p

∞
∑

r=1

1
r

eir (Sp/~−mpπ/2)

|det (1− Mr
p)|1/2

















. (34.12)

chapter 20

We already know from the study of classical evolution operator spectra of chap-
ter 19 that this can be evaluated by means of cycle expansions. The beauty of this
formula is that everything on the right side – the cycle action Sp, the topological
indexmp and monodromy matrixMp determinant – is intrinsic, coordinate-choice
independent property of the cyclep.

34.3 One-dof systems

It has been a long trek, a stationary phase upon stationary phase. Let us check
whether the result makes sense even in the simplest case, forquantum mechanics
in one spatial dimension.

In one dimension the average density of states follows from the 1-dof form of
the oscillating density (34.10) and of the average density (34.8)

d(E) =
Tp(E)

2π~
+

∑

r

Tp(E)

π~
cos(rSp(E)/~ − rmp(E)π/2). (34.13)

The classical particle oscillates in a single potential well with periodTp(E). There
is no monodromy matrix to evaluate, as in one dimension thereis only the parallel
coordinate, and no transverse directions. Ther repetition sum in (34.13) can be
rewritten by using the Fourier series expansion of a delta spike train

∞
∑

n=−∞

δ(x− n) =
∞
∑

k=−∞

ei2πkx
= 1+

∞
∑

k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)

2π~

∑

n

δ(Sp(E)/2π~ −mp(E)/4− n). (34.14)

This expression can be simplified by using the relation (33.17) betweenTp and
Sp, and the identity (16.7)δ(x− x∗) = | f ′(x)|δ( f (x)), wherex∗ is the only zero of
the function f (x∗) = 0 in the interval under consideration. We obtain

d(E) =
∑

n

δ(E − En),
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where the energiesEn are the zeroes of the arguments of delta functions in (34.14)

Sp(En)/2π~ = n−mp(E)/4 ,

wheremp(E) = mp = 2 for smooth potential at both turning points, andmp(E) =
mp = 4 for two billiard (infinite potential) walls. These are precisely theBohr-
Sommerfeld quantized energies En, defined by the condition

∮

p(q,En)dq= h
(

n−
mp

4

)

. (34.15)

In this way the trace formula recovers the well known 1-dof quantization rule.
In one dimension, the average of states can be expressed fromthe quantization
condition. AtE = En the exact number of states isn, while the average number
of states isn− 1/2 since the staircase functionN(E) has a unit jump in this point

Nsc(E) = n− 1/2 = Sp(E)/2π~ −mp(E)/4− 1/2. (34.16)

The 1-dof spectral determinant follows from (34.12) by dropping the mon-
odromy matrix part and using (34.16)

det (Ĥ − E)sc = exp
(

−
i

2~
Sp +

iπ
2

mp

)

exp















−
∑

r

1
r

e
i
~
rSp−

iπ
2 rmp















. (34.17)

Summation yields a logarithm by
∑

r tr/r = − ln(1− t) and we get

det (Ĥ − E)sc = e−
i

2~Sp+
imp

4 +
iπ
2 (1− e

i
~
Sp−i

mp
2 )

= 2 sin
(

Sp(E)/~ −mp(E)/4
)

.

So in one dimension, where there is only one periodic orbit for a given energy E,
nothing is gained by going from the trace formula to the spectral determinant. The
spectral determinant is a real function for real energies, and its zeros are again the
Bohr-Sommerfeld quantized eigenenergies (34.15).

34.4 Two-dof systems

For flows in two configuration dimensions the monodromy matrix Mp has two
eigenvaluesΛp and 1/Λp, as explained in sect. 7.3. Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hyperbolic case, when the
eigenvalues are real and their absolute value is not equal toone. The determinant
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appearing in the trace formulas can be written in terms of theexpanding eigen-
value as

|det (1− Mr
p)|1/2 = |Λr

p|
1/2

(

1− 1/Λr
p

)

,

and its inverse can be expanded as a geometric series

1

|det (1− Mr
p)|1/2

=

∞
∑

k=0

1

|Λr
p|

1/2Λkr
p
.

With the 2-dof expression for the average density of states (34.9) the spectral
determinant becomes

det (Ĥ − E)sc = ei mAE
2~2 exp

















−
∑

p

∞
∑

r=1

∞
∑

k=0

eir (Sp/~−mpπ/2)

r |Λr
p|

1/2Λkr
p

















= ei mAE
2~2

∏

p

∞
∏

k=0















1−
e

i
~
Sp−

iπ
2 mp

|Λp|
1/2Λk

p















. (34.18)

Résum é

Spectral determinants and dynamical zeta functions arise both in classical and
quantum mechanics because in both the dynamical evolution can be described by
the action of linear evolution operators on infinite-dimensional vector spaces. In
quantum mechanics the periodic orbit theory arose from studies of semi-conductors,
and the unstable periodic orbits have been measured in experiments on the very
paradigm of Bohr’s atom, the hydrogen atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary phase ap-
proximation to quantum mechanics (the Gutzwiller trace formula, possibly im-
proved by including tunneling periodic trajectories, diffraction corrections, etc.)
as the point of departure. Once the stationary phase approximation is made, what
follows is classical in the sense that all quantities used in periodic orbit calcu-
lations - actions, stabilities, geometrical phases - are classical quantities. The
problem is then to understand and control the convergence ofclassical periodic
orbit formulas.

While various periodic orbit formulas are formally equivalent, practice shows
that some are preferable to others. Three classes of periodic orbit formulas are
frequently used:

Trace formulas.The trace of the semiclassical Green function

tr Gsc(E) =
∫

dqGsc(q, q,E)
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is given by a sum over the periodic orbits (34.11). While easiest to derive, in cal-
culations the trace formulas are inconvenient for anythingother than the leading
eigenvalue estimates, as they tend to be divergent in the region of physical interest.
In classical dynamics trace formulas hide under a variety ofappellations such as
the f −α or multifractal formalism; in quantum mechanics they are known as the
Gutzwiller trace formulas.

Zeros ofRuelle or dynamical zeta functions

1/ζ(s) =
∏

p

(1− tp), tp =
1

|Λp|
1/2

e
i
~
Sp−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates ofquan-
tum resonances. For hyperbolic systems the dynamical zeta functions have good
convergence and are a useful tool for determination of classical and quantum me-
chanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determinants,
functional determinantsare the natural objects for spectral calculations, with con-
vergence better than for dynamical zeta functions, but withless transparent cycle
expansions. The 2-dof semiclassical spectral determinant(34.18)

det (Ĥ − E)sc = eiπNsc(E)
∏

p

∞
∏

k=0













1−
eiSp/~−iπmp/2

|Λp|
1/2Λk

p













is a typical example. Most periodic orbit calculations are based on cycle expan-
sions of such determinants.

As we have assumed repeatedly during the derivation of the trace formula that
the periodic orbits are isolated, and do not form families (as is the case for inte-
grable systems or in KAM tori of systems with mixed phase space), the formulas
discussed so far are valid only for hyperbolic and elliptic periodic orbits.

For deterministic dynamical flows and number theory, spectral determinants
and zeta functions are exact. The quantum-mechanical ones,derived by the Gutzwiller
approach, are at best only the stationary phase approximations to the exact quan-
tum spectral determinants, and for quantum mechanics an important conceptual
problem arises already at the level of derivation of the semiclassical formulas; how
accurate are they, and can the periodic orbit theory be systematically improved?

Commentary

Remark 34.1 Gutzwiller quantization of classically chaotic systems. The derivation
given here and in sects. 33.3 and 34.1 follows closely the excellent exposition [30.2] by
Martin Gutzwiller, the inventor of the trace formula. The derivation presented here is self
contained, but refs. [30.3, 34.1] might also be of help to thestudent.
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Remark 34.2 Zeta functions. For “zeta function” nomenclature, see remark 19.4 on
page 397.
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Exercises

34.1. Monodromy matrix from second variations of the ac-
tion. Show that

D⊥ j/D
′
⊥ j = (1 − M) (34.19)

34.2. Volume of d-dimensional sphere. Show that the
volume of ad-dimensional sphere of radiusr equals
πd/2rd/Γ(1+ d/2). Show thatΓ(1+ d/2) = Γ(d/2)d/2.

34.3. Average density of states in 1 dimension. Show that
in one dimension the average density of states is given
by (34.8)

d̄(E) =
T(E)
2π~
,

whereT(E) is the time period of the 1-dimensional mo-
tion and show that

N̄(E) =
S(E)
2π~

, (34.20)

whereS(E) =
∮

p(q,E) dq is the action of the orbit.

34.4. Average density of states in 2 dimensions. Show that
in 2 dimensions the average density of states is given by
(34.9)

d̄(E) =
mA(E)
2π~2

,

whereA(E) is the classically allowed area of configura-
tion space for whichU(q) < E.
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[34.26] P. Cvitanović, P.E. Rosenqvist, H.H. Rugh and G. Vattay,Scattering The-
ory - special issue, CHAOS (1993).

[34.27] E.J. Heller, S. Tomsovic and A. Sepúlveda CHAOS2, Periodic Orbit
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