
Chapter 18

Trace formulas

The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages re-
quire global information. How can we use a local descriptionof a flow
to learn something about the global behavior? In chapter 17 we have re-

lated global averages to the eigenvalues of appropriate evolution operators. Here
we show that the traces of evolution operators can be evaluated as integrals over
Dirac delta functions, and in this way the spectra of evolution operators become
related to periodic orbits. If there is one idea that one should learn about chaotic
dynamics, it happens in this chapter, and it is this: there isa fundamental local↔
global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis;for dynamics on well-
tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that wewill now derive.
These objects are to dynamics what partition functions are to statistical mechanics.

The above phrasing is a bit too highfalutin, so it perhaps pays to go again
through the quick sketch of sects. 1.5 and 1.6. We have a statespace that we
would like to tessellate by periodic orbits, one short orbitper neighborhood, as in
figure 18.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit getcloser with time,
so we only have to keep track of those who are moving away alongthe unsta-
ble directions. The fraction of those who remain in the neighborhood for one
recurrence timeTp is given by the overlap ratio along the initial sphere and the
returning ellipsoid, figure 18.1 (b), and along the expanding eigen-directione(i)

of Jp(x) this is given by the expanding Floquet multiplier 1/|Λp,i |. A bit more
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Figure 18.1: (a) Smooth dynamics tesselated by
the skeleton of periodic points, together with their
linearized neighborhoods. (b) Jacobian matrixJp

maps spherical neighborhood ofx0 → ellipsoidal
neighborhood timeTp later, with the overlap ratio
along the expanding eigdirectione(i) of Jp(x) given
by the expanding eigenvalue 1/|Λp,i |.

(a) (b)
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thinking leads to the conclusion that one also cares about how long it takes to re-
turn (the long returns contributing less to the time averages), so the weighttp

of the p-neighborhoodtp = e−sTp/|Λp| decreases exponentially both with the
shortest recurrence period and the product (5.7) of expanding Floquet multipli-
ersΛp =

∏

eΛp,e . With emphasis onexpanding- the flow could be a 60,000-
dimensional dissipative flow, and still the neighborhood isdefined by the handful
of expanding eigen-directions. Now the long-time average of a physical observ-
able -let us say powerD dissipated by viscous friction of a fluid flowing through a
pipe- can be estimated by its mean value (17.6)Dp/Tp computed on each neigh-
borhood, and weighted by the above estimate

〈D〉 ≈
∑

p

Dp

Tp

e−sTp

|Λp|
.

Wrong in detail, this estimate is the crux of many aPhys. Rev. Letter, and in its
essence the key result of this chapter, the ‘trace formula.’Here we redo the argu-
ment in a bit greater depth, and derive the correct formula (20.23) for a long time
average〈D〉 as a weighted sum over periodic orbits. It will take three chapters,
but it is worth it - the reward is anexact(i.e., not heuristic) and highly convergent
and controllable formula for computing averages over chaotic flows.

18.1 A trace formula for maps

Our extraction of the spectrum ofL commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simpler, wefirst derive the
trace formula for maps, and then, in sect. 18.2, for flows. Thefinal formula (18.23)
covers both cases.

To compute an expectation value using (17.14) we have to integrate over all
the values of the kernelLn(x, y). WereLn a matrix sum over its matrix elements
would be dominated by the leading eigenvalue asn → ∞ (we went through the
argument in some detail in sect. 15.1). As the trace ofLn is also dominated by the
leading eigenvalue asn→ ∞, we might just as well look at the trace for which we
have a very explicit formula exercise 15.3

trace - 16sep2008 ChaosBook.org version14, Dec 31 2012



CHAPTER 18. TRACE FORMULAS 373

trLn =

∫

dxLn(x, x) =
∫

dxδ
(

x− f n(x)
)

eβ·A
n(x) . (18.1)

On the other hand, by its matrix motivated definition, the trace is the sum over
eigenvalues (17.20),

trLn =

∞
∑

α=0

esαn . (18.2)

We find it convenient to write the eigenvalues as exponentsesα rather than as
multipliersλα, and we assume that spectrum ofL is discrete,s0, s1, s2, · · ·, ordered
so that Resα ≥ Resα+1.

For the time being we choose not to worry about convergence ofsuch sums,
ignore the question of what function space the eigenfunctions belong to, and com-
pute the eigenvalue spectrum without constructing any explicit eigenfunctions.
We shall revisit these issues in more depth in chapter 23, anddiscuss how lack of
hyperbolicity leads to continuous spectra in chapter 24.

18.1.1 Hyperbolicity assumption

We have learned in sect. 16.2 how to evaluate the delta-function integral (18.1). section 16.2

According to (16.8) the trace (18.1) picks up a contributionwheneverx −
f n(x) = 0, i.e., wheneverx belongs to a periodic orbit. For reasons which we
will explain in sect. 18.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cyclep of period np for a map f can be
evaluated by restricting the integration to an infinitesimal open neighborhoodMp

around the cycle,

tr pL
np =

∫

Mp

dxδ
(

x− f np(x)
)

=
np

∣

∣

∣

∣

det
(

1− Mp

)

∣

∣

∣

∣

= np

d
∏

i=1

1
|1− Λp,i |

. (18.3)

For the time being we set here and in (16.9) the observableeβAp = 1. Periodic orbit
Jacobian matrixMp is also known as themonodromy matrix, and its eigenvalues
Λp,1, Λp,2, . . ., Λp,d as the Floquet multipliers. section 5.1.2

We sort the eigenvaluesΛp,1, Λp,2, . . .,Λp,d of the p-cycle [d×d] monodromy
matrix Mp into expanding, marginal and contracting sets{e,m, c}, as in (5.6). As
the integral (18.3) can be evaluated only ifMp has no eigenvalue of unit magni-
tude, we assume that no eigenvalue is marginal (we shall showin sect. 18.2 that
the longitudinalΛp,d+1 = 1 eigenvalue for flows can be eliminated by restricting
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the consideration to the transverse monodromy matrixMp), and factorize the trace
(18.3) into a product over the expanding and the contractingeigenvalues

∣

∣

∣

∣

det
(

1− Mp

)

∣

∣

∣

∣

−1
=

1
|Λp|

∏

e

1
1− 1/Λp,e

∏

c

1
1− Λp,c

, (18.4)

whereΛp =
∏

eΛp,e is the product of expanding eigenvalues. BothΛp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets| · · · |
in the above products.

Thehyperbolicity assumptionrequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding|Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting|Λp,c| < 1 , (18.5)

whereλe, λc > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-
tion (for example, the well separated 3-disk system clearlydoes), theLt spectrum
will be relatively easy to control. If the expansion/contraction is slower than ex-
ponential, let us say|Λp,i | ∼ Tp

2, the system may exhibit “phase transitions,” and
the analysis is much harder - we shall discuss this in chapter24.

Example 18.1 Elliptic stability. Elliptic stability, i.e., a pair of purely imaginary
exponentsΛm = e±iθ is excluded by the hyperbolicity assumption. While the contribution
of a single repeat of a cycle

1
(1− eiθ)(1− e−iθ)

=
1

2(1− cosθ)
(18.6)

does not make (16.9) diverge, if Λm = ei2πp/r is rth root of unity, 1/
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

di-
verges. For a generic θ repeats cos(rθ) behave badly and by ergodicity 1 − cos(rθ) is
arbitrarily small, 1− cos(rθ) < ǫ, infinitely often. This goes by the name of “small divisor
problem,” and requires a separate treatment.

It follows from (18.4) that for long times,t = rTp → ∞, only the product of

expanding eigenvalues matters,
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

→ |Λp|
r . We shall use this fact to

motivate the construction of dynamical zeta functions in sect. 19.3. However, for
evaluation of the full spectrum the exact cycle weight (18.3) has to be kept.

18.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
Floquet multipliers|Λp,i | , 1 strictly bounded away from unity, the traceLn is
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given by the sum over allperiodic points iof periodn:

trLn =

∫

dxLn(x, x) =
∑

xi∈Fix f n

eβ·Ai

|det (1− Mn(xi))|
. (18.7)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of periodn, and
Ai is the observable (17.5) evaluated overn discrete time steps along the cycle to
which the periodic pointxi belongs. The weight follows from the properties of
the Dirac delta function (16.8) by taking the determinant of∂i(x j − f n(x) j). If a
trajectory retraces itselfr times, its monodromy matrix isMr

p, whereMp is the
[d×d] monodromy matrix (4.6) evaluated along a single traversalof the prime
cycle p. As we saw in (17.5), the integrated observableAn is additive along the
cycle: If a prime cyclep trajectory retraces itselfr times,n = rnp, we obtainAp

repeatedr times,Ai = An(xi) = rAp, xi ∈ Mp.

A prime cycle is a single traversal of the orbit, and its labelis a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four periodic points0011= 1001= 1100= 0110 belong to thechapter 11

same prime cyclep = 0011 of length 4. As both the stability of a cycle and the
weightAp are the same everywhere along the orbit, each prime cycle of lengthnp

contributesnp terms to the sum, one for each periodic point. Hence (18.7) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞
∑

r=1

erβ·Ap

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

δn,npr , (18.8)

with the Kronecker deltaδn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it would yield a series of Dirac delta spikes. In both
cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,

∞
∑

n=1

zntrLn = tr
zL

1− zL
=

∑

p

np

∞
∑

r=1

znprerβ·Ap

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

, (18.9)

the constraintδn,npr is replaced by weightzn. Such discrete time Laplace trans-
form of trLn is usually referred to as a “generating function.” Why this transform?
We are actually not interested in evaluating the sum (18.8) for any particular fixed
periodn; what we are interested in is the long timen → ∞ behavior. The trans-
form trades in the large timen behavior for the smallz behavior. Expressing the
trace as in (18.2), in terms of the sum of the eigenvalues ofL, we obtain thetrace
formula for maps:

∞
∑

α=0

zesα

1− zesα
=

∑

p

np

∞
∑

r=1

znpr erβ·Ap

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

. (18.10)
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This is our second example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (15.10).)

fast track:

sect. 18.2, p. 377

Example 18.2 A trace formula for transfer operators: For a piecewise-linear map
(16.11), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Λp = Λ

n0

0 Λ
n1
1 , where the cycle p contains n0 symbols 0 and n1 symbols 1, the

trace (18.7) reduces to

trLn =

n
∑

m=0

(

n
m

)

1
|1− Λm

0Λ
n−m
1 |
=

∞
∑

k=0













1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1













n

, (18.11)

with eigenvalues

esk =
1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1

. (18.12)

As the simplest example of spectrum for such dynamical system, consider the symmet-
ric piecewise-linear 2-branch repeller (16.11) for which Λ = Λ1 = −Λ0. In this case all
odd eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1, k even.exercise 16.7

Asymptotically the spectrum (18.12) is dominated by the lesser of the two fixed
point slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off
exponentially as 1/Λk, dominated by the single less unstable fixed-point. example 23.1

For k = 0 this is in agreement with the explicit transfer matrix (16.13) eigenval-
ues (17.30). The alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (16.13), and that it is
clear by inspection that it has only one eigenvalue es0 = 1/|Λ0| + 1/|Λ1|? The example
at hand is one of the simplest illustrations of necessity of defining the space that the
operator acts on in order to define the spectrum. The transfer operator (16.13) is
the correct operator on the space of functions piecewise constant on the state space
partition {M0,M1}; on this space the operator indeed has only the eigenvalue es0. As
we shall see in example 23.1, the full spectrum (18.12) corresponds to the action of the
transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (16.11)
follows from (18.9)

tr
zL

1− zL
=

z
(

1
|Λ0−1| +

1
|Λ1−1|

)

1− z
(

1
|Λ0−1| +

1
|Λ1−1|

) , (18.13)

verifying the trace formula (18.10).
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18.2 A trace formula for flows

Amazing! I did not understand a single word.

—Fritz Haake

(R. Artuso and P. Cvitanović)

Our extraction of the spectrum ofLt commences with the evaluation of the trace

trLt = tr eAt =

∫

dxLt(x, x) =
∫

dxδ
(

x− f t(x)
)

eβ·A
t(x) . (18.14)

We are not interested in any particular timet, but into the long-time behavior
as t → ∞, so we need to transform the trace from the “time domain” intothe
“frequency domain.” A generic flow is a semi-flow defined forward in time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator
yields the resolvent (17.24). This is a delicate step, sincethe evolution operator
becomes the identity in thet → 0+ limit. In order to make sense of the trace we
regularize the Laplace transform by a lower cutoff ǫ smaller than the period of any
periodic orbit, and write

∫ ∞

ǫ

dt e−st trLt = tr
e−(s−A)ǫ

s−A
=

∞
∑

α=0

e−(s−sα)ǫ

s− sα
, (18.15)

whereA is the generator of the semigroup of dynamical evolution, see sect. 16.5.
Our task is to evaluate trLt from its explicit state space representation.

18.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence for flows thesection 5.2.1

trace integral trLt requires a separate treatment for the longitudinal direction. To
evaluate the contribution of an isolated prime cyclep of periodTp, restrict the in-
tegration to an infinitesimally thin tubeMp enveloping the cycle (see figure 1.13),
and consider a local coordinate system with a longitudinal coordinatedx‖ along
the direction of the flow, andd−1 transverse coordinatesx⊥ ,

tr pL
t =

∫

Mp

dx⊥dx‖ δ
(

x⊥ − f t
⊥(x)

)

δ
(

x‖ − f t(x‖)
)

. (18.16)
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(we setβ = 0 in the exp(β · At) weight for the time being). Pick a point on the
prime cycle p, and let

v(x‖) =

















d
∑

i=1

vi(x)2

















1/2

(18.17)

be the magnitude of the tangential velocity at any pointx = (x‖, 0, · · · , 0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time atv(x) = 0 points, and that would get us nowhere.

As 0 ≤ τ < Tp, the trajectoryx‖(τ) = f τ(xp) sweeps out the entire cycle, and
for larger timesx‖ is a cyclic variable of periodicityTp,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (18.18)

We parametrize both the longitudinal coordinatex‖(τ) and the velocityv(τ) =
v(x‖(τ)) by the flight timeτ, and rewrite the integral along the periodic orbit as

∮

p
dx‖ δ

(

x‖ − f t(x‖)
)

=

∮

p
dτ v(τ) δ

(

x‖(τ) − x‖(τ + t
)

) . (18.19)

By the periodicity condition (18.18) the Diracδ function picks up contributions
for t = rTp, so the Laplace transform can be split as

∫ ∞

0
dt e−st δ

(

x‖(τ) − x‖(τ + t)
)

=

∞
∑

r=1

e−sTpr Ir

Ir =

∫ ǫ

−ǫ

dt e−st δ
(

x‖(τ) − x‖(τ + rTp + t
)

) .

Taylor expanding and applying the periodicity condition (18.18), we havex‖(τ +
rTp + t) = x‖(τ) + v(τ)t + . . .,

Ir =

∫ ǫ

−ǫ

dt e−st δ
(

x‖(τ) − x‖(τ + rTp + t
)

) =
1

v(τ)
,

so the remaining integral (18.19) overτ is simply the cycle period
∮

p
dτ = Tp.

The contribution of the longitudinal integral to the Laplace transform is thus

∫ ∞

0
dt e−st

∮

p
dx‖ δ

(

x‖ − f t(x‖)
)

= Tp

∞
∑

r=1

e−sTpr . (18.20)

This integration is a prototype of what needs to be done for each marginal direc-
tion, whenever existence of a conserved quantity (energy inHamiltonian flows,
angular momentum, translational invariance, etc.) implies existence of a smooth
manifold of equivalent (equivariant) solutions of dynamical equations.

trace - 16sep2008 ChaosBook.org version14, Dec 31 2012



CHAPTER 18. TRACE FORMULAS 379

18.2.2 Stability in the transverse directions

Think of theτ = 0 point in above integrals along the cyclep as a choice of a
particular Poincaré section. As we have shown in sect. 5.3,the transverse Flo-
quet multipliers do not depend on the choice of a Poincaré section, so ignoring
the dependence onx‖(τ) in evaluating the transverse integral in (18.16) is justi-
fied. For the transverse integration variables the Jacobianmatrix is defined in a
reduced Poincaré surface of sectionP of fixed x‖. Linearization of the periodic
flow transverse to the orbit yields

∫

P

dx⊥δ
(

x⊥ − f
rTp
⊥ (x)

)

=
1

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

, (18.21)

whereMp is thep-cycle [d−1×d−1] transversemonodromy matrix. As in (18.5)
we have to assume hyperbolicity, i.e., that the magnitudes of all transverse eigen-
values are bounded away from unity.

Substitution (18.20), (18.21) in (18.16) leads to an expression for trLt as a
sum over all prime cyclesp and their repetitions

∫ ∞

ǫ

dt e−st trLt =
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣

. (18.22)

Theǫ → 0 limit of the two expressions for the resolvent, (18.15) and(18.22), now
yields theclassical trace formula for flows

∞
∑

α=0

1
s− sα

=
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

. (18.23)

exercise 18.1

(If you are worried about the convergence of the resolvent sum, keep theε regu-
larization.)

This formula is still another example of the duality betweenthe (local) cycles
and (global) eigenvalues. IfTp takes only integer values, we can replacee−s→ z
throughout, so the trace formula for maps (18.10) is a special case of the trace
formula for flows. The relation between the continuous and discrete time cases
can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (18.24)

The beauty of trace formulas is that they are coordinate independent: the
∣

∣

∣

∣

det
(

1− Mp

)

∣

∣

∣

∣

= |det (1 − MTp(x))| and eβAp = eβA
Tp(x) contributions to the cy-

cle weight tp are both independent of the starting periodic pointx ∈ Mp. For
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the Jacobian matrixMp this follows from the chain rule for derivatives, and for
eβAp from the fact that the integral overeβA

t(x) is evaluated along a closed loop. In

addition, as we have shown in sect. 5.2,
∣

∣

∣

∣
det

(

1− Mp

)

∣

∣

∣

∣
is invariant under smooth

coordinate transformations.

We could now proceed to estimate the location of the leading singularity of
tr (s−A)−1 by extrapolating finite cycle length truncations of (18.23)by methods
such as Padé approximants. However, it pays to first performa simple resumma-
tion which converts this divergence of a trace into azeroof a spectral determinant.
We shall do this in sect. 19.2, but first a brief refresher of how all this relates to
the formula for escape rate (1.8) offered in the introduction might help digest the
material.

fast track:

sect. 19, p. 384

18.3 An asymptotic trace formula

In order to illuminate the manipulations of sect. 18.1 and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect. 1.5.1 from the exact trace formula (18.10). The Laplace transforms (18.10)
or (18.23) are designed to capture the time→ ∞ asymptotic behavior of the trace
sums. By the hyperbolicity assumption (18.5), fort = Tpr large the cycle weight
approaches

∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣
→ |Λp|

r , (18.25)

whereΛp is the product of the expanding eigenvalues ofMp. Denote the corre-
sponding approximation to thenth trace (18.7) by

Γn =

(n)
∑

i

1
|Λi |
, (18.26)

and denote the approximate trace formula obtained by replacing the cycle weights
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

by |Λp|
r in (18.10) byΓ(z). Equivalently, think of this as a replace-

ment of the evolution operator (17.16) by a transfer operator (as in example 18.2).
For concreteness consider a dynamical system whose symbolic dynamics is com-
plete binary, for example the 3-disk system figure 1.6. In this case distinct periodic
points that contribute to thenth periodic points sum (18.8) are labeled by all ad-
missible itineraries composed of sequences of letterssi ∈ {0, 1}:

Γ(z) =
∞
∑

n=1

znΓn =

∞
∑

n=1

zn
∑

xi∈Fix f n

eβ·A
n(xi )

|Λi |
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= z

{

eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}

+ z2
{

e2β·A0

|Λ0|
2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|
2

}

+z3
{

e3β·A0

|Λ0|
3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}

(18.27)

Both the cycle averagesAi and the stabilitiesΛi are the same for all pointsxi ∈ Mp

in a cyclep. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1− tp
, tp = znpeβ·Ap/|Λp| . (18.28)

This is precisely our initial heuristic estimate (1.9). Note that we could not per-

form such sum overr in the exact trace formula (18.10) as
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

,
∣

∣

∣

∣

det
(

1− Mp

)

∣

∣

∣

∣

r
; the correct way to resum the exact trace formulas is to first ex-

pand the factors 1/|1− Λp,i |, as we shall do in (19.9). section 19.2

If the weightseβA
n(x) are multiplicative along the flow, and the flow is hyper-

bolic, for givenβ the magnitude of each|eβA
n(xi )/Λi | term is bounded by some

constantMn. The total number of cycles grows as 2n (or asehn, h = topological
entropy, in general), and the sum is convergent forzsufficiently small,|z| < 1/2M.
For largen thenth level sum (18.7) tends to the leadingLn eigenvalueens0. Sum-
ming this asymptotic estimate level by level

Γ(z) ≈
∞
∑

n=1

(zes0)n
=

zes0

1− zes0
(18.29)

we see that we should be able to determines0 by determining the smallest value
of z= e−s0 for which the cycle expansion (18.28) diverges.

If one is interested only in the leading eigenvalue ofL, it suffices to consider
the approximate traceΓ(z). We will use this fact in sect. 19.3 to motivate the
introduction of dynamical zeta functions (19.14), and in sect. 19.5 we shall give
the exact relation between the exact and the approximate trace formulas.

Résum é

The description of a chaotic dynamical system in terms of cycles can be visual-
ized as a tessellation of the dynamical system, figure 18.1, with a smooth flow
approximated by itsperiodic orbit skeleton, each regionMi centered on a peri-
odic point xi of the topological lengthn, and the size of the region determined
by the linearization of the flow around the periodic point. The integral over such
topologically partitioned state space yields theclassical trace formula

∞
∑

α=0

1
s− sα

=
∑

p

Tp

∞
∑

r=1

er(β·Ap−sTp)
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

.
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Now that we have a trace formula, one might ask: what is it goodfor? As it
stands, it is a scary divergent formula which relates the unspeakable infinity of
global eigenvalues to the unthinkable infinity of local unstable cycles. However,
it is a good stepping stone on the way to construction of spectral determinants (to
which we turn next), and a first hint that when the going is good, the theory might
turn out to be convergent beyond our wildest dreams (chapter23). In order to
implement such formulas, we will have to determine “all” prime cycles. The first
step is topological: enumeration of all admissible cycles undertaken in chapter 12.
The more onerous enterprize of actually computing the cycles we first approach
traditionally, as a numerical task in chapter 13, and then more boldly as a part and
parcel of variational foundations of classical and quantumdynamics in chapter 29.

Commentary

Remark 18.1 Who’s dunne it? Continuous time flow traces weighted by cycle
periods were introduced by Bowen [18.1] who treated them as Poincaré section suspen-
sions weighted by the “time ceiling” function (3.5). They were used by Parry and Polli-
cott [18.2].

Remark 18.2 Flat and sharp traces. In the above formal derivation of trace for-
mulas we cared very little whether our sums were well posed. In the Fredholm theory
traces like (18.14) require compact operators with continuous function kernels. This is
not the case for our Dirac delta evolution operators: nevertheless, there is a large class
of dynamical systems for which our results may be shown to be perfectly legal. In the
mathematical literature expressions like (18.7) are called flat traces (see the review [18.4]
and chapter 23). Other names for traces appear as well: for instance, in the context of 1-
dimensional mappings,sharptraces refer to generalizations of (18.7) where contributions
of periodic points are weighted by the Lefschetz sign±1, reflecting whether the periodic
point sits on a branch ofnth iterate of the map which crosses the diagonal starting from
below or starting from above [19.10]. Such traces are connected to the theory of knead-
ing invariants (see ref. [18.4] and references therein). Traces weighted by±1 sign of the
derivative of the fixed point have been used to study the period doubling repeller, leading
to high precision estimates of the Feigenbaum constantδ, refs. [18.5, 20.6, 18.6].

Exercises

18.1. t→ 0+ regularization of eigenvalue sums∗∗. In tak-
ing the Laplace transform (18.23) we have ignored the
t→ 0+ divergence, as we do not know how to regularize
the delta function kernel in this limit. In the quantum

(or heat kernel) case this limit gives rise to the Weyl
or Thomas-Fermi mean eigenvalue spacing.Regularize
the divergent sum in (18.23) and assign to such volume
term some interesting role in the theory of classical res-

exerTrace - 4oct2003 ChaosBook.org version14, Dec 31 2012



REFERENCES 383

onance spectra. E-mail the solution to the authors.

18.2. General weights. (easy) Letf t be a flow andLt the
operator

Ltg(x) =
∫

dyδ(x− f t(y))w(t, y)g(y)

wherew is a weight function. In this problem we will
try and determine some of the propertiesw must satisfy.

(a) ComputeLsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrictt and s to be integers and show that the
most general form ofw is

w(n, x) = g(x)g( f (x))g( f 2(x)) · · ·g( f n−1(x)) ,

for someg that can be multiplied. Couldg be a
function fromRn1 7→ Rn2? (ni ∈ N.)
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