
Chapter 31

Quantum mechanics
the short short version

We start with a review of standard quantum mechanical concepts prereq-
uisite to the derivation of the semiclassical trace formula.

In coordinate representation, the time evolution of a quantum mechanical
wave function is governed by the Schrödinger equation

i~
∂

∂t
ψ(q, t) = Ĥ

(

q,
~

i
∂

∂q

)

ψ(q, t), (31.1)

where the Hamilton operator̂H(q,−i~∂q) is obtained from the classical Hamilto-
nian by substitutingp→ −i~∂q. Most of the Hamiltonians we shall consider here
are of the separable form

H(q, p) = T (p) + V(q) , T (p) = p2/2m , (31.2)

describing dynamics of a particle in aD-dimensional potentialV(q). For time-
independent Hamiltonians we are interested in finding stationary solutions of the
Schrödinger equation of the form

ψn(q, t) = e−iEn t/~φn(q), (31.3)

whereEn are the eigenenergies of the time-independent Schrödinger equation

Ĥφ(q) = Eφ(q) . (31.4)
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For bound systems, the spectrum is discrete and the eigenfunctions form an
orthonormal,

∫

dqφn(q)φ∗m(q) = δnm , (31.5)

and complete,

∑

n

φn(q)φ∗n(q′) = δ(q − q′) , (31.6)

set of functions in a Hilbert space. Here and throughout the text,

∫

dq =
∫

dq1dq2...dqD. (31.7)

For simplicity, we will assume that the system is bound, although most of the
results will be applicable to open systems, where one has complex resonanceschapter 35

instead of real energies, and the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEn t/~φn(q) , (31.8)

where the expansion coefficient cn is given by the projection of the initial wave
functionψ(q, 0) onto thenth eigenstate

cn =

∫

dqφ∗n(q)ψ(q, 0). (31.9)

By substituting (31.9) into (31.8), we can cast the evolution of a wave function
into a multiplicative form

ψ(q, t) =
∫

dq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e−iEn t/~φ∗n(q′) (31.10)

called thequantum evolution operator, or thepropagator. Applied twice, first for
time t1 and then for timet2, it propagates the initial wave function fromq′ to q′′,
and then fromq′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (31.11)
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forward in time (hence the name ‘propagator’). In non-relativistic quantum me-
chanics, the range ofq′′ is infinite, so that the wave can propagate at any speed;
in relativistic quantum mechanics, this is rectified by restricting the propagation
to the forward light cone.

Because the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it too satisfies this equation

i~
∂

∂t
K(q, q′, t) = Ĥ

(

q,
i
~

∂

∂q

)

K(q, q′, t) , (31.12)

and is thus a wave function defined fort ≥ 0; from the completeness relation
(31.6), we obtain the boundary condition att = 0:

lim
t→0+

K(q, q′, t) = δ(q − q′) . (31.13)

The propagator thus represents the time-evolution of a wavepacket starting out as
a configuration space delta-function localized at the pointq′ at initial timet = 0.

For time-independent Hamiltonians, the time dependence ofthe wave func-
tions is known as soon as the eigenenergiesEn and eigenfunctionsφn have been
determined. With time dependence taken care of, it makes sense to focus on the
Green function, which is the Laplace transform of the propagator

G(q, q′, E + iǫ) =
1
i~

∫

∞

0
dt e

i
~

Et− ǫ
~

tK(q, q′, t) =
∑

n

φn(q)φ∗n(q′)
E − En + iǫ

. (31.14)

Here, ǫ is a small positive number, ensuring the existence of the integral. The
eigenenergies show up as poles in the Green function with residues corresponding
to the wave function amplitudes. If one is only interested inspectra, one may
restrict oneself to the (formal) trace of the Green function,

tr G(q, q′, E) =
∫

dq G(q, q, E) =
∑

n

1
E − En

, (31.15)

whereE is complex, with a positive imaginary part, and we have used the eigen-
function orthonormality (31.5). This trace is formal, because the sum in (31.15)
is often divergent. We shall return to this point in sects. 34.1.1 and 34.1.2.

A useful characterization of the set of eigenvalues is givenin terms of the
density of states, with a delta function peak at each eigenenergy, figure 31.1 (a),

d(E) =
∑

n

δ(E − En). (31.16)
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Figure 31.1: Schematic picture ofa) the density
of statesd(E), andb) the spectral staircase func-
tion N(E). The dashed lines denote the mean den-
sity of statesd̄(E) and the average number of states
N̄(E) discussed in more detail in sect. 34.1.1.

Using the identity exercise 31.1

δ(E − En) = − lim
ǫ→+0

1
π

Im
1

E − En + iǫ
(31.17)

we can express the density of states in terms of the trace of the Green function.
That is,

d(E) =
∑

n

δ(E − En) = − lim
ǫ→0

1
π

Im tr G(q, q′, E + iǫ). (31.18)

section 34.1.1

As we shall see (after “some” work), a semiclassical formulafor the right-hand-
side of this relation yields the quantum spectrum in terms ofperiodic orbits.

The density of states can be written as the derivatived(E) = dN(E)/dE of the
spectral staircase function

N(E) =
∑

n

Θ(E − En) (31.19)

which counts the number of eigenenergies belowE, figure 31.1 (b). HereΘ is the
Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (31.20)

The spectral staircase is a useful quantity in many contexts, both experimental
and theoretical. This completes our lightning review of quantum mechanics.

Exercises
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31.1. Dirac delta function, Lorentzian representation.
Derive the representation (31.17)

δ(E − En) = − lim
ǫ→+0

1
π

Im
1

E − En + iǫ

of a delta function as imaginary part of 1/x.

(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

31.2. Green function. Verify Green function Laplace trans-
form (31.14),

G(q, q′, E + iε) =
1
i~

∫

∞

0
dt e

i
~

Et− ε
~

tK(q, q′, t)

=

∑ φn(q)φ∗n(q
′)

E − En + iε

argue that positiveǫ is needed (hint: read a good quan-
tum mechanics textbook).
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