
Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.

—Chairman Miaw

Dynamical systems often come equipped with symmetries, such as the re-
flection and rotation symmetries of various potentials. In this chapter we
study quotienting of discrete symmetries, and in the next chapter we study

symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapter 21.

As we shall show here and in chapter 21, discrete symmetries simplify the dy-
namics in a rather beautiful way: If dynamics is invariant under a set of discrete
symmetriesG, the state spaceM is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile,the fundamental
domainM/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorterrelative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories. section 11.1

Familiarity with basic group-theoretic notions is assumed, with details rele-
gated to appendix H.1. We find the abstract notions easier to digest by working
out the examples interspersed throughout this chapter.Theerudite reader might
prefer to skip the lengthy group-theoretic overture and go directly to C2 = D1

example 9.12, example 9.14, and C3v = D3 example 9.1, backtrack as needed.
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CHAPTER 9. WORLD IN A MIRROR 155

Figure 9.1: The symmetries of three disks on an equi-
lateral triangle. A fundamental domain is indicated by
the shaded wedge.

9.1 Discrete symmetries

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
asymmetry(invarianceor equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.2.3) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then returnto it later as needed.

Definition: A group consists of a set of elements

G = {e, g2, . . . , gn, . . .} (9.1)

and a group multiplication ruleg j ◦ gi (often abbreviated asg jgi), satisfying

1. Closure: Ifgi , g j ∈ G, theng j ◦ gi ∈ G

2. Associativity:gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identitye: g ◦ e= e◦ g = g for all g ∈ G

4. Inverseg−1: For everyg ∈ G, there exists a unique elementh = g−1 ∈ G
such that
h ◦ g = g ◦ h = e.

If the group is finite, the number of elements,|G| = n, is called theorder of the
group. example H.1

example H.2

example H.3
Example 9.1 C3v = D3 symmetry of the 3-disk game of pinball: If the three unit-
radius disks in figure 9.1 are equidistantly spaced, our game of pinball has a sixfold
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CHAPTER 9. WORLD IN A MIRROR 156

symmetry. The symmetry group of relabeling the 3 disks is the permutation group S3;
however, it is more instructive to think of this group geometrically, as C3v, also known
as the dihedral group

D3 = {e, σ12, σ13, σ23,C
1/3,C2/3} , (9.2)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C1/3,C2/3}.
(continued in example 9.6)

Definition: Coordinate transformations. Consider a mapx′ = f (x), x, x′ ∈
M. An activecoordinate transformationMx corresponds to a non-singular [d×d]
matrix M that maps the vectorx ∈ M onto another vectorMx ∈ M. The corre-
spondingpassivecoordinate transformationf (x) → M−1 f (x) changes the coor-
dinate system with respect to which the vectorf (x) ∈ M is measured. Together,
a passive and active coordinate transformations yield the map in the transformed
coordinates:

f̂ (x) = M−1 f (Mx) . (9.3)

Example 9.2 Discrete groups of order 2 on R
3. Three types of discrete group of

order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: σ(x, y, z) = (x, y,−z)

rotations: C1/2(x, y, z) = (−x,−y, z) (9.4)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. C1/2 is [x, y]-plane, constant z
rotation by π about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0, 0, 0). Singly, each operation generates a group
of order 2: D1 = {e, σ}, C2 = {e,C1/2}, and D1 = {e,P}. Together, they form the dihedral
group D2 = {e, σ,C1/2,P} of order 4. (continued in example 9.3)

Definition: Matrix group. The set of [d×d]-dimensional real non-singular ma-
tricesA, B,C, . . . ∈ GL(d) acting in ad-dimensional vector spaceV ∈ Rd forms
the general linear groupGL(d) under matrix multiplication. The product of matri-
cesA andB gives the matrixC, Cx= B(Ax) = (BA)x ∈ V, for all x ∈ V . The unit
matrix 11 is the identity element which leaves all vectors inV unchanged. Every
matrix in the group has a unique inverse.

discrete - 7feb2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 9. WORLD IN A MIRROR 157

Definition: Matrix representation. Linear action of a group elementg on
statesx ∈ M is given by a finite non-singular [d×d] matrix g, the matrix rep-
resentationof elementg ∈ G. We shall denote by ‘g’ both the abstract group
element and its matrix representation.

However, when dealing simultaneously with several representations of the
same group action, notationD j(g), j a representation label, is preferable (see ap-
pendix H.1). A linear or matrix representationD(G) of the abstract groupG acting
on arepresentation space Vis a group of matricesD(G) such that

1. Any g ∈ G is mapped to a matrixD(g) ∈ D(G).

2. The group productg2 ◦ g1 is mapped onto the matrix productD(g2 ◦ g1) =
D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication,
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(

D(g2)D(g1)
)

=
(

D(g3)
(

D(g2)
)

D(g1).

4. The identity elemente ∈ G is mapped onto the unit matrixD(e) = 11 and
the inverse elementg−1 ∈ G is mapped onto the inverse matrixD(g−1) =
[D(g)]−1 ≡ D−1(g).

Example 9.3 Discrete operations on R
3. (continued from example 9.2) The matrix

representation of reflections, rotations and inversions defined by (9.4) is

σ =





1 0 0
0 1 0
0 0 −1




, C1/2 =





−1 0 0
0 −1 0
0 0 1




, P =





−1 0 0
0 −1 0
0 0 −1




, (9.5)

with detC1/2 = 1, detσ = detP = −1; that is why we refer to C1/2 as a rotation, and σ, P
as inversions. As g2 = e in all three cases, these are groups of order 2. (continued in
example 9.5)

If the coordinate transformationg belongs to a linear non-singular represen-
tation of a discrete finite groupG, for any elementg ∈ G there exists a number
m≤ |G| such that

gm ≡ g ◦ g ◦ . . . ◦ g
︸          ︷︷          ︸

m times

= e → |detg| = 1 . (9.6)

As the modulus of its determinant is unity, detg is anmth root of 1. Hence all
finite groups have unitary representations.

Definition: Symmetry of a dynamical system. A groupG is asymmetryof the
dynamics if for every solutionf (x) ∈ M andg ∈ G, g f(x) is also a solution.

Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry groupG if the time evolution f : M → M (a
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Figure 9.2: The bimodal Ulam sawtooth map with the
D1 symmetry f (−x) = − f (x). If the trajectoryx0 →
x1 → x2 → · · · is a solution, so is its reflectionσx0 →
σx1 → σx2 → · · ·. (continued in figure 9.4)
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discrete time mapf , or the continuous flowf t map from thed-dimensional man-
ifold M into itself) commutes with all actions ofG,

f (gx) = g f(x) . (9.7)

In the language of physicists: The ‘law of motion’ is invariant, i.e., retains its form
in any symmetry-group related coordinate frame (9.3),

f (x) = g−1 f (gx) , (9.8)

for x ∈ M andanyfinite non-singular [d×d] matrix representationg of element
g ∈ G. As these are trueanystatex, one can state this more compactly asf ◦ g =
g ◦ f , or f = g−1 ◦ f ◦ g.

Why ‘equivariant?’ A scalar functionh(x) is said to beG-invariant if h(x) =
h(gx) for all g ∈ G. The group actions map the solutionf :M→M into different
(but equivalent) solutionsg f(x), hence the invariance conditionf (x) = g−1 f (gx)
appropriate to vectors (and, more generally, tensors). Thefull set of such solu-
tions isG-invariant, but the flow that generates them is said to beG-equivariant.
It is obvious from the context, but for verbal emphasis applied mathematicians
like to distinguish the two cases byin/equi-variant. The distinction is helpful in
distinguishing the dynamics written in the original, equivariant coordinates from
the dynamics rewritten in terms ofinvariant coordinates, see sects. 9.5 and 10.4.exercise 9.7
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Figure 9.3: The 3-disk pinball cycles: (a)12, 13,
23, 123; the clockwise132 not drawn. (b) Cy-
cle1232; the symmetry related1213 and1323 not
drawn. (c)12323; 12123,12132,12313,13131
and 13232 not drawn. (d) The fundamental do-
main, i.e., the 1/6th wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed points0,
1, 2-cycle10, and 5-cycle00111 (not drawn). See
figure 9.9 for the001 cycle.

(a) (b) (c)

(d)

Example 9.4 A reflection symmetric 1d map. Consider a 1d map f with reflection
symmetry f (−x) = − f (x), such as the bimodal ‘sawtooth’ map of figure 9.2, piecewise-
linear on the state spaceM = [−1, 1], a compact 1-dimensional line interval, split into
three regionsM =ML ∪MC ∪MR. Denote the reflection operation by σx = −x. The
2-element group G = {e, σ} goes by many names, such as Z2 or C2. Here we shall
refer to it as D1, dihedral group generated by a single reflection. The G-equivariance
of the map implies that if {xn} is a trajectory, than also {σxn} is a symmetry-equivalent
trajectory because σxn+1 = σ f (xn) = f (σxn) (continued in example 9.12)

Example 9.5 Equivariance of the Lorenz flow. (continued from example 9.3) The
velocity field in Lorenz equations (2.12)





ẋ
ẏ
ż




=





σ(y− x)
ρx− y− xz

xy− bz





is equivariant under the action of cyclic group C2 = {e,C1/2} acting on R3 by a π rotation
about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (9.9)

(continued in example 9.14)

Example 9.6 3-disk game of pinball - symmetry-related orbits: (continued from
example 9.1) Applying an element (identity, rotation by ±2π/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory.
For instance, σ23, the flip across the symmetry axis going through disk 1 interchanges
the symbols 2 and 3; it maps the cycle 12123into 13132, figure 9.3 (c). Cycles 12, 23,
and 13 in figure 9.3 (a) are related to each other by rotation by ±2π/3, or, equivalently,
by a relabeling of the disks. (continued in example 9.8)
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Example 9.7 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: reflection through the (streamwise , wall-normal) plane,
and rotation by π in the (streamwise , wall-normal) plane. That is why the system has
equilibrium and periodic orbit solutions, (as opposed to relative equilibrium and relative
periodic orbit solutions discussed in chapter 10). They belong to discrete symmetry
subspaces. (continued in example 10.4)

9.1.1 Subgroups, cosets, classes

Inspection of figure 9.3 indicates that various 3-disk orbits are the same up to a
symmetry transformation. Here we set up some abstract group-theoretic notions
needed to describe such relations. The reader might prefer to skip to sect. 9.2,
backtrack as needed.

Definition: Subgroup. A set of group elementsH = {e, b2, b3, . . . , bh} ⊆ G
closed under group multiplication forms a subgroup.

Definition: Coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of orderh =
|H|. The set ofh elements{c, cb2, cb3, . . . , cbh}, c ∈ G but not inH, is called left
coset cH. For a given subgroupH the group elements are partitioned intoH and
m− 1 cosets, wherem = |G|/|H|. The cosetscannot besubgroups, since they do
not include the identity element. We learn that a nontrival subgroup can exist only
if |G|, the order of the group, is divisible by|H|, the order of the subgroup, i.e.,
only if |G| is not a prime number.

Example 9.8 Subgroups, cosets of D3: (continued from example 9.6) The
3-disks symmetry group, the D3 dihedral group (9.2) has six subgroups

{e}, {e, σ12}, {e, σ13}, {e, σ23}, {e,C1/3,C2/3}, D3 . (9.10)

The left cosets of subgroup D1 = {e, σ12} are {σ13,C1/3}, {σ23,C2/3}. The coset of
subgroup C3 = {e,C1/3,C2/3} is {σ12, σ13, σ23}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123 is C3, then all
elements in a coset act on it the same way, for example {σ12, σ13, σ23}123= 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and
any one of the reflections, of order 2, and C3 = {e,C1/3,C2/3}, of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-
disk billiard. Examples of other multiplicities are given in figure 9.3 and figure 9.7.
(continued in example 9.9)

Next we need a notion that will, for example, identify the three 3-disk 2-cycles
in figure 9.3 as belonging to the same class.
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Definition: Class. An elementb ∈ G is conjugateto a if b = c a c−1 wherec is
some other group element. Ifb andc are both conjugate toa, they are conjugate
to each other. Application of all conjugations separates the set of group elementsexercise 9.3

into mutually not-conjugate subsets calledclasses, typesor conjugacy classes.
The identitye is always in the class{e} of its own. This is the only class which isexercise 9.5

a subgroup, all other classes lack the identity element.

Example 9.9 D3 symmetry - classes: (continued from example 9.8) The three
classes of the 3-disk symmetry group D3 = {e,C1/3,C2/3, σ, σC1/3, σC2/3}, are the iden-
tity, any one of the reflections, and the two rotations,

{e} ,






σ12
σ13
σ23






,

{

C1/3

C2/3

}

. (9.11)

In other words, the group actions either flip or rotate. (continued in example 9.13)

Physical importance of classes is clear from (9.8), the way coordinate trans-
formations act on mappings: action of elements of a class (say reflections, or
rotations) is equivalent up to a redefinition of the coordinate frame.

Definition: Invariant subgroup. A subgroupH ⊆ G is an invariant subgroup
or normal divisorif it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out ofH.

Think of action ofH within each coset as identifying its|H| elements as equiv-
alent. This leads to the notion of thefactor groupor quotient group G/H of G,
with respect to the invariant subgroupH. H thus dividesG into H and m − 1
cosets, each of order|H|. The order ofG/H is m= |G|/|H|, and its multiplication
table can be worked out from theG multiplication table class by class, with the
subgroupH playing the role of identity.G/H is homeomorphicto G, with |H|
elements in a class ofG represented by a single element inG/H.

9.1.2 Orbits, quotient space

So far we have discussed the structure of a group as an abstract entity. Now we
switch gears and describe the action of the group on the statespace. This is the key
step; if a set of solutions is equivalent by symmetry (a circle, let’s say), we would
like to represent it by a single solution (cut the circle at a point, or rewrite the
dynamics in a ‘reduced state space,’ where the circle of solutions is represented
by a single point).

section 2.1

Definition: Orbit. The subsetMx0 ⊂ M traversed by the infinite-time trajec-
tory of a given pointx0 is called theorbit (or time orbit, or solution) x(t) = f t(x0).
An orbit is adynamically invariantnotion: it refers to the set of all states that can
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be reached in time fromx0, thus as a set it is invariant under time evolution. The
full state spaceM is foliated into a union of such orbits. We label a generic orbit
Mx0 by any point belonging to it,x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets(equilibria, periodic orbits, invariant tori,. . .), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non–wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. We label orbits confined to compact invariant sets by
whatever alphabet we find convenient in a given context: point EQ = xEQ =MEQ

for an equilibrium, 1-dimensional loopp =Mp for a prime periodic orbitp, etc.
(note also discussion on page 205, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or theG-orbit of the pointx ∈ M is the set

Mx = {g x | g ∈ G} (9.12)

of all state space points into whichx is mapped under the action ofG. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or
a cyclep (period, Floquet multipliers) evaluated anywhere along its G-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutionsMp. So we
also need to describe the symmetry of asolution, as opposed to (9.8), the sym-
metry of thesystem. We start by defining the notions ofreduced state space, of
isotropyof a state space point, and of thesymmetry of an orbit.

Definition: Reduced state space. The action of groupG partitions the state
spaceM into a union of group orbits. This set of group orbits, denotedM/G, has
many names:reduced state space, quotient spaceor any of the names listed on
page 195.

Reduction of the dynamical state space is discussed in sect.9.4 for discrete
symmetries, and in sect. 10.4 for continuous symmetries.

Definition: Fixed-point subspace. MH is the set of all state space points left
H-fixed, point-wiseinvariant under subgroup or ‘centralizer’H ⊂ G action

MH = Fix (H) = {x ∈ M : h x= x for all h ∈ H} . (9.13)

Points in state space subspaceMG which are fixed points of the full group action
are calledinvariant points,

MG = Fix (G) = {x ∈ M : g x= x for all g ∈ G} . (9.14)
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Definition: Flow invariant subspace. A typical point in fixed-point subspace
MH moves with time, but, due to equivariance (9.7), its trajectory x(t) = f t(x)
remains withinf (MH) ⊆ MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (9.15)

i.e., it belongs to aflow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smallerMH, easing the numerical searches, so start with the largest subgroupsH
first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is aninvariant subspace if

{Mα : gx ∈ Mα for all g ∈ G andx ∈ Mα} . (9.16)

{0} andM are always invariant subspaces. So is any Fix(H) which is point-wise
invariant under action ofG.

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces
are{0} andMα is calledirreducible.

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all of thesystem’s symmetries, a
subgroup of them, or have no symmetry at all. For a generic ergodic orbit f t(x) the
trajectory and any of its images under action ofg ∈ G are distinct with probability
one, f t(x) ∩ g f t′ (x) = ∅ for all t, t′. For example, a typical turbulent trajectory
of pipe flow has no symmetry beyond the identity, so its symmetry group is the
trivial {e}. For compact invariant sets, such as fixed points and periodic orbits the
situation is very different. For example, the symmetry of the laminar solution of
the plane Couette flow is the full symmetry of its Navier-Stokes equations. In
between we find solutions whose symmetries are subgroups of the full symmetry
of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space pointx into itself,

Gx = {g ∈ G : gx= x} , (9.17)

discrete - 7feb2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 9. WORLD IN A MIRROR 164

is called theisotropy groupor little group of x.

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics.
We thus also need a notion ofset-wiseinvariance, as opposed to thepoint-wise
invariance underGx. exercise 9.2

Definition: Symmetry of a solution,Gp-symmetric cycle. We shall refer to the
subset of nontrivial group actionsGp ⊆ G on state space points within a compact
setMp, which leave no point fixed but leave the set invariant, as thesymmetryGp

of the solutionMp,

Gp = {g ∈ Gp : gx ∈ Mp, gx, x for g , e} , (9.18)

and reserve the notion of ‘isotropy’ of a setMp for the subgroupGp that leaves
each point in it fixed.

A cycle p is Gp-symmetric(set-wise symmetric, self-dual) if the action of
elements ofGp on the set of periodic pointsMp reproduces the set.g ∈ Gp acts
as a shift in time, mapping the periodic pointx ∈ Mp into another periodic point.

Example 9.10 D1-symmetric cycles: For D1 the period of a set-wise symmetric
cycle is even (ns = 2ns̃), and the mirror image of the xs periodic point is reached by
traversing the relative periodic orbit segment s̃ of length ns̃, f ns̃(xs) = σxs, see fig-
ure 9.4 (b).

Definition: Conjugate symmetry subgroups. The splitting of a groupG into
a symmetry groupGp of orbitMp andm− 1 cosetscGp relates the orbitMp to
m−1 other distinct orbitscMp. All of them have equivalent symmetry subgroups,exercise 9.4

or, more precisely, the points on the same group orbit haveconjugate symmetry
subgroups(or conjugate stabilizers):

Gc p = c Gp c−1 , (9.19)

i.e., if Gp is the symmetry of orbitMp, elements of the coset spaceg ∈ G/Gp

generate themp − 1 distinct copies ofMp, so for discrete groups the multiplicity
of orbit p is mp = |G|/|Gp|.

Definition: Gp-fixed orbits: An equilibriumxq or a compact solutionp is point-
wise orGp-fixedif it lies in the invariant points subspace Fix

(

Gp

)

, gx = x for all
g ∈ Gp, andx = xq or x ∈ Mp. A solution that isG-invariant under all groupG
operations has multiplicity 1. Stability of such solutionswill have to be examined
with care, as they lie on the boundaries of domains related bythe action of the
symmetry group.
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Figure 9.4: The D1-equivariant bimodal sawtooth
map of figure 9.2 has three types of periodic or-
bits: (a) D1-fixed fixed pointC, asymmetric fixed
points pair{L,R}. (b) D1-symmetric (setwise in-
variant) 2-cycleLR. (c) Asymmetric 2-cycles pair
{LC,CR}. (continued in figure 9.8) (Y. Lan)
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Example 9.11 D1-invariant cycles: In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.4 (a). As
reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 9.16, and work out the symbolic dynamics
of such reflection symmetric systems in example 12.5.

In the literature the symmetry group of a solution is often called stabilizer
or isotropy subgroup. Saying thatGp is the symmetry of the solutionp, or that
the orbitMp is ‘Gp-invariant,’ accomplishes as much without confusing you with
all these names (see remark 9.1). In what follows we say “the symmetry of the
periodic orbitp is C2 = {e,R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.
We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup
Gs̃ set-wise invariant cycless built by repeats of relative cycle segments ˜s, and
(iii) isotropy subgroupGEQ-invariant equilibria or point-wiseGp-fixed cyclesb.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xa} ∩ {gxa} = ∅ for anyg ∈ G, where{xa} is the set of periodic points
belonging to the cyclea. Thusg ∈ G generate|G| distinct orbits with the same
number of points and the same stability properties.

Example 9.12 Group D1 - a reflection symmetric 1d map: Consider the bimodal
‘sawtooth’ map of example 9.4, with the state spaceM = [−1, 1] split into three regions
M = {ML,MC,MR}which we label with a 3-letter alphabet L(eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C,R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D1-equivariance of the map,
D1 = {e, σ}, implies that if {xn} is a trajectory, so is {σxn}.

Fix (G), the set of points invariant under group action of D1, M̃ ∩ σM̃, is just
this fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, σmaps
it into the reflected cycle σa, with the same period and the same stability properties,
see the fixed points pair {L,R} and the 2-cycles pair {LC,CR} in figure 9.4 (c).

The next illustration brings in the non-abelian, noncommutative group struc-
ture: for the 3-disk game of pinball of sect. 1.3, example 9.1and example 9.17,
the symmetry group has elements that do not commute. exercise 9.5
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Example 9.13 3-disk game of pinball - cycle symmetries: (continued from exam-
ple 9.9) The C3 subgroup Gp = {e,C1/3,C2/3} invariance is exemplified by the two cy-
cles 123and 132which are invariant under rotations by 2π/3 and 4π/3, but are mapped
into each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the symmetries of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312= 1213, so the invariant subgroup
is Gp̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2π/3 rotations, figure 9.7 (b).

A cycle of no symmetry, such as 12123, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132and 13232),
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
313212121= 121213132which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.17)

Consider next perhaps the simplest 3-dimensional flow with asymmetry, the
iconic flow of Lorenz. The example is long but worth working throug: the symmetry-
reduced dynamics is much simpler than the original Lorenz flow. exercise 9.7

exercise 9.8
exercise 9.9

Example 9.14 Desymmetrization of Lorenz flow: (continuation of example 9.5) Lorenz
equation (2.12) is equivariant under (9.9), the action of order-2 group C2 = {e,C1/2},
where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ C1/2(x, y, z) = (−x,−y, z) . (9.20)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible sub-
spacesM =M+⊕M−, the z-axisM+ and the [x, y] planeM−, with projection operators
onto the two subspaces given by (see sect. ??)

P+ =
1
2

(1+C1/2) =





0 0 0
0 0 0
0 0 1




, P− =

1
2

(1−C1/2) =





1 0 0
0 1 0
0 0 0




. (9.21)

As the flow is C2-invariant, so is its linearization ẋ = Ax. Evaluated at EQ0, A com-
mutes with C1/2, and, as we have already seen in example 4.7, the EQ0 stability matrix
decomposes into [x, y] and z blocks.

The 1-dimensional M+ subspace is the fixed-point subspace, with the z-axis
points left point-wise invariant under the group action

M+ = Fix (C2) = {x ∈ M : g x= x for g ∈ {e,C1/2}} (9.22)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A C2-fixed point x(t)
in Fix (C2) moves with time, but according to (9.15) remains within x(t) ∈ Fix (C2) for all
times; the subspaceM+ = Fix (C2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (2.12) is
reduced to the exponential contraction to the EQ0 equilibrium,

ż= −b z. (9.23)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
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Figure 9.5: Lorenz attractor of figure 3.4, the full state
space coordinates [x, y, z], with the unstable manifold
orbitsWu(EQ0). (Green) is a continuation of the unsta-
ble e(1) of EQ0, and (brown) is itsπ-rotated symmetric
partner. Compare with figure 9.6. (E. Siminos)

EQ2EQ1

EQ0

x

y

z

Figure 9.6: (a) Lorenz attractor plotted in [ ˆx, ŷ, z],
the doubled-polar angle coordinates (9.24), with
points related byπ-rotation in the [x, y] plane iden-
tified. Stable eigenvectors ofEQ0: e(3) and e(2),
along thez axis (9.23). Unstable manifold orbit
Wu(EQ0) (green) is a continuation of the unstable
e(1) of EQ0. (b) Blow-up of the region nearEQ1:
The unstable eigenplane ofEQ1 defined by Ree(2)

and Ime(2), the stable eigenvectore(3). The descent
of the EQ0 unstable manifold (green) defines the
innermost edge of the strange attractor. As it is
clear from (a), it also defines its outermost edge.
(E. Siminos)

(a) (b)

plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

The M− subspace is, however, not flow-invariant, as the nonlinear terms ż =
xy−bzin the Lorenz equation (2.12) send all initial conditions withinM− = (x(0), y(0), 0)
into the full, z(t) , 0 state spaceM/M+.

By taking as a Poincaré section any C1/2-equivariant, non-self-intersecting sur-
face that contains the z axis, the state space is divided into a half-space fundamental
domain M̃ =M/C2 and its 180o rotation C1/2M̃. An example is afforded by the P plane
section of the Lorenz flow in figure 3.4. Take the fundamental domain M̃ to be the half-
space between the viewer and P. Then the full Lorenz flow is captured by re-injecting
back into M̃ any trajectory that exits it, by a rotation of π around the z axis.

As any such C1/2-invariant section does the job, a choice of a ‘fundamental
domain’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M̃ explicit, through any
state space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (x, y) in polar
coordinates (x, y) = (r cosθ, r sinθ), and then plotting the flow in the ‘doubled-polar
angle representation:’ section 9.5

exercise 9.8
(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (9.24)

as in figure 9.6 (a). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [ x̂, ŷ, z] is G-invariant, see example 9.18.
In this representation the M̃ =M/C2 fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [ x̂, ŷ] plane. (continued in example 11.4)
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(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as the doubled-polar angle
representation (9.24) arenot required to implement the symmetry quotienting
M/G.We deploy them only as a visualization aid that might help the reader dis-
entangle 2-dimensional projections of higher-dimensional flows. All numerical
calculations can still be carried in the initial, full statespace formulation of a flow,
with symmetry-related points identified bylinear symmetry transformations.

in depth:

appendix H, p. 841

9.3 Relative periodic orbits

So far we have demonstrated that symmetry relates classes oforbits. Now we
show that a symmetry reduces computation of periodic orbitsto repeats of shorter,
‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symmetry image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to themultiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetricunder symmetry operationg ∈ Gp if the operation
acts on it as a shift in time, advancing a cycle point to a cyclepoint on the sym-
metry related segment. The cyclep can thus be subdivided intomp repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry the notion of a periodic
orbit is replaced by the notion of the shortest segment of thefull state space cycle
which tiles the cycle under the action of the group. In what follows we refer to this
segment as arelative periodic orbit. In the literature this is sometimes referred to
as ashort periodic orbit, or, for finite symmetry groups, as apre-periodicorbit.

Relative periodic orbits (orequivariant periodic orbits) are orbitsx(t) in state
spaceM which exactly recur

x(t) = g x(t + T) (9.25)

for the shortest fixedrelative period Tand a fixed group actiong ∈ Gp. Parameters
of this group action are referred to as ‘phases’ or ‘shifts.’For a discrete group
gm = e for some finitem, by (9.6), so the corresponding full state space orbit is
periodic with periodmT.

The period of the full orbit is given by themp× (period of the relative periodic
orbit), Tp = |Gp|Tp̃, and theith Floquet multiplierΛp,i is given byΛ

mp

p̃,i of the
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Figure 9.7: Cycle 121212313 has multiplicity 6;
shown here is121313132= σ23121212313. How-
ever,121231313 which has the same stability and
period is related to121313132 by time reversal,
but not by any C3v symmetry.

relative periodic orbit. The elements of the quotient spaceb ∈ G/Gp generate the
copiesbp, so the multiplicity of the full state space cyclep is mp = |G|/|Gp|.

Example 9.15 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.14) The relation between the full state space periodic orbits, and the fundamen-
tal domain (9.24) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rpmaps into a single cycle p̃ in the fundamental domain, and
any self-dual cycle p = Rp= p̃Rp̃ is a repeat of a relative periodic orbit p̃.

9.4 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental
concepts.

—John F. Gibson

So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into classes, and slicing them into ‘prime’ relative orbit
segments. The next step achieves much more: it replaces eachclass by a single
(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dynamically equivalent
domains, and thus induces a natural partition of state space: If the dynamics
is invariant under a discrete symmetry, the state spaceM can be completely
tiled by a fundamental domainM̃ and its symmetry images̃Ma = aM̃,
M̃b = bM̃, . . . under the action of the symmetry groupG = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| . (9.26)

2. Discrete symmetriy can be used to restrict all computations to the funda-
mental domainM̃ =M/G, the reduced state space quotient of the full state
spaceM by the group actions ofG.

We can use the invariance condition (9.7) to move the starting point x into
the fundamental domainx = ax̃, and then use the relationa−1b = h−1 to
also relate the endpointy ∈ M̃b to its image in the fundamental domaiñM.
While the global trajectory runs over the full spaceM, the restricted trajec-
tory is brought back into the fundamental domaiñM any time it exits into
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Figure 9.8: The bimodal Ulam sawtooth map of
figure 9.4 with the D1 symmetry f (−x) = − f (x)
restricted to the fundamental domain.f (x) is in-
dicated by the thin line, and fundamental domain
map f̃ (x̃) by the thick line. (a) Boundary fixed
pointC is the fixed point0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point2,
and the full state space symmetric 2-cycleLR is
reduced to the fixed point1. (b) The asymmetric
2-cycle pair{LC,CR} is reduced to 2-cycle01. (c)
All fundamental domain fixed points and 2-cycles.
(Y. Lan) ������
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an adjoining tile; the two trajectories are related by the symmetry operation
h which maps the global endpoint into its fundamental domain image.

3. Cycle multiplicities induced by the symmetry are removedby reduction
of the full dynamics to the dynamics on a fundamental domain.Each
symmetry-related set of global cyclesp corresponds to precisely one fun-
damental domain (or relative) cycle ˜p.

4. Conversely, each fundamental domain cycle ˜p traces out a segment of the
global cyclep, with the end point of the cycle ˜p mapped into the irreducible
segment ofp with the group elementhp̃. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundamental domain.

5. The group elementsG = {e, g2, . . . , g|G|} which map the fundamental do-
mainM̃ into its copiesgM̃, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symmetries, see sect. 10.4.
exercise 9.6

Example 9.16 Group D1 and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of exam-
ple 9.12, with symmetry group D1 = {e, σ}. The state spaceM = [−1, 1] can be tiled by
half-line M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using σ.

In figure 9.8 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0
segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
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Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwise121232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle001.

(a)

(b)

2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c).

Example 9.17 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ǫi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk
increments gi , where gi is the discrete group element that maps disk i−1 into disk i. For
3-disk system gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.3(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of
such orbits are shown in figures 9.7 and 9.9. (continued in example 12.7)

9.5 Invariant polynomials

Physical laws should have the same form in symmetry-equivalent coordinate frames,
so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
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· · ·) invariant under a given set of symmetries. The key result ofthe representation
theory of invariant functions is:

Hilbert-Weyl theorem. For a compact groupG there exists a finiteG-invariant
homogenous polynomial basis{u1, u2, . . . , um}, m ≥ d, such that anyG-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (9.27)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations calledsyzygies.

Example 9.18 Polynomials invariant under discrete operations on R
3. (continued

from example 9.2) σ is a reflection through the [x, y] plane. Any {e, σ}-invariant
function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.

C1/2 is a [x, y]-plane rotation by π about the z-axis. Any {e,C1/2}-invariant func-
tion can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z}, with one
syzygy between the basis polynomials, (x2)(y2) − (xy)2 = 0.

P is an inversion through the point (0, 0, 0). Any {e,P}-invariant function can be
expressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three syzy-
gies between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.

For the D2 dihedral group G = {e, σ,C1/2,P} the G-invariant polynomial basis
is {u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0. (continued in
example 10.13)

In practice, explicit construction ofG-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimensional
cases, such as the 5-dimensional example of sect. 10.5. We prefer to apply the
symmetry to the system as given, rather than undertake a series of nonlinear co-
ordinate transformations that the theorem suggests. (What‘compact’ in the above
refers to will become clearer after we have discussed continuous symmetries. For
now, it suffices to know that any finite discrete group is compact.) exercise 9.1

Résum é

A groupG is asymmetryof the dynamical system (M, f ) if its ‘law of motion’
retains its form under all symmetry-group actions,f (x) = g−1 f (gx) . A mappingu
is said to beinvariant if gu= u, whereg is any element ofG. If the mapping and
the group actions commute,gu = ug, u is said to beequivariant. The governing
dynamical equations are equivariant with respect toG.

We have shown here that if a dynamical system (M, f ) has a symmetryG,
the symmetry should be deployed to ‘quotient’ the state space toM̂ =M/G, i.e.,
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identify all symmetry-equivalentx ∈ M on each group orbit, thus replacing the
full state space dynamical system (M, f ) by the symmetry-reduced (̂M, f̂ ). The
main result of this chapter can be stated as follows:

In presence of a discrete symmetryG, associated with each full state space
solution p is the group of its symmetriesGp ⊆ G of order 1≤ |Gp| ≤ |G|, whose
elements leave the orbitMp invariant. The elements ofGp act onp as shifts, tiling
it with |Gp| copies of its shortest invariant segment, the relative periodic orbit p̃.
The elements of the cosetb ∈ G/Gp generatemp = |G|/|Gp| equivalent copies of
p.

Once you grasp the relation between the full state spaceM and the desym-
metrized,G-quotiented reduced state spaceM/G, you will find the life as a funda-
mentalist so much simpler that you will never return to your full state space ways
of yesteryear. The reduction to the fundamental domainM̃ = M/G simplifies
symbolic dynamics and eliminates symmetry-induced degeneracies. For the short
orbits the labor saving is dramatic. For example, for the 3-disk game of pinball
there are 256 periodic points of length 8, but reduction to the fundamental domain
non-degenerate prime cycles reduces this number to 30. In the next chapter con-
tinuous symmetries will induce relative periodic orbits that never close a periodic
orbit, and in the chapter 25 they will tile the infinite periodic state space, and re-
duce calculation of diffusion constant in an infinite domain to a calculation on a
compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [9.1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. Byron and Fuller [9.2], the last
chapter of volume two, offers an introduction even more compact than Tinkham’s. For
a summary of the theory of discrete groups see, for example, ref. [9.3]. Chapter 3 of
Rebecca Hoyle [9.4] is a very student-friendly overview of the group theory a non-
linear dynamicist might need, with exception of the quotienting, reduction of dynam-
ics to a fundamental domain, which is not discussed at all. Wefound sites such as
en.wikipedia.org/wiki /Quotientgroup helpful. Curiously, we have not read any of the
group theory books that Hoyle recommends as background reading, which just confirms
that there are way too many group theory books out there. For example, one that you
will not find useful at all is ref. [9.5]. The reason is presumably that in the 20th century
physics (which motivated much of the work on the modern grouptheory) the focus is onappendix A.2.3
the linear representations used in quantum mechanics, crystallography and quantum field
theory. We shall need these techniques in Chapter 21, where we reduce the linear action
of evolution operators to irreducible subspaces. However,here we are looking at nonlin-
ear dynamics, and the emphasis is on the symmetries of orbits, their reduced state space
sisters, and the isotypic decomposition of their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations, the
landscape between the boredom of regular motions and the thrills of chaos. Chapter 4
of Rebecca Hoyle [9.4] is a student-friendly introduction to the treatment of bifurcations
in presence of symmetries, worked out in full detail and generality in monographs by
Golubitsky, Stewart and Schaeffer [9.6], Golubitsky and Stewart [9.7] and Chossat and
Lauterbach [9.8]. Term ‘stabilizer’ is used, for example, by Broeret al. [9.9] to refer to a
periodic orbit withZ2 symmetry; they say that the relative or pre-periodic segment is in
this case called a ‘short periodic orbit.’ In Efstathiou [9.10] a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropy group or stabilizer.’ Chap. 8
of Govaerts [9.11] offers a review of numerical methods that employ equivariance with
respect to compact, and mostly discrete groups. (continuedin remark 10.1)

Remark 9.2 Symmetries of the Lorenz equation: (continued from remark 2.3) Af-
ter having studied example 9.14 you will appreciate whyChaosBook.org starts out with
the symmetry-less Rössler flow (2.17), instead of the better known Lorenz flow (2.12).
Indeed, getting rid of symmetry was one of Rössler’s motivations. He threw the baby out
with the water; for Lorenz flow dimensionalities of stable/unstable manifolds make pos-
sible a robust heteroclinic connection absent from Rössler flow, with unstable manifold
of an equilibrium flowing into the stable manifold of anotherequilibrium. How such con-
nections are forced upon us is best grasped by perusing the chapter 13 ‘Heteroclinic tan-
gles’ of the inimitable Abraham and Shaw illustrated classic [9.12]. Their beautiful hand-
drawn sketches elucidate the origin of heteroclinic connections in the Lorenz flow (and
its high-dimensional Navier-Stokes relatives) better than any computer simulation. Mi-
randa and Stone [9.13] were first to quotient the C2 symmetry and explicitly construct the
desymmetrized, ‘proto-Lorenz system,’ by a nonlinear coordinate transformation into the
Hilbert-Weyl polynomial basis invariant under the action of the symmetry group [9.14].
For in-depth discussion of symmetry-reduced (‘images’) and symmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, invariant polynomial bases etc., of
Lorenz, Rössler and many other low-dimensional systems there is no better reference
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than the Gilmore and Letellier monograph [9.15]. They interpret [9.16] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes,’ and call
quotiented flows such as (Lorenz)/C2 ‘images.’ Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, integrate the flow and construct
Poincaré sections and return maps in the original Lorenz [x, y, z] coordinates, without any
nonlinear coordinate transformations. The Poincaré return map figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paper,and the one plotted in a
radial coordinate by Gilmore and Letellier. Nevertheless,it is profoundly different: our
return maps are from unstable manifold→ itself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [9.17]. This construction isnecessary for high-dimensional
flows in order to avoid problems such as double-valuedness ofreturn map projections on
arbitrary 1-dimensional coordinates encountered alreadyin the Rössler example of fig-
ure 3.3. More importantly, as we know the embedding of the unstable manifold into the
full state space, a periodic point of our return mapis - regardless of the length of the cycle
- the periodic point in the full state space, so no additionalNewton searches are needed.
In homage to Lorenz, we note that his return map was already symmetry-reduced: asz
belongs to the symmetry invariant Fix(G) subspace, one can replace dynamics in the full
space by ˙z, z̈, · · ·. That isG-invariant by construction [9.15].

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of examples is endless, we list
here a handful that we found interesting. One has a C2 symmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [9.18,
9.19, 9.20], aD4 = C4v symmetry in quartic oscillators [9.21, 9.22], in the purex2y2

potential [9.23, 9.24] and in hydrogen in a magnetic field [9.25], and aD2 = C2v = V4 =

C2×C2 symmetry in the stadium billiard [9.26]. A very nice nontrivial desymmetrization
is carried out in ref. [9.27]. An example of a system with D3 = C3v symmetry is provided
by the motion of a particle in the Hénon-Heiles potential [9.28, 9.29, 9.30, 9.31]

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axiscannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require
the special treatment. A partial classification of the 67 possible symmetries of solutions
of the plane Couette flow of example 9.7, and their reduction 5conjugate classes is given
in ref. [9.32].
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Exercises

9.1. Polynomials invariant under discrete operations on
R

3. Prove that the{e, σ}, {e,C1/2}, {e,P} and
{e, σ,C1/2,P}-invariant polynomial basis and syzygies
are those listed in example 9.18.

9.2. Gx ⊂ G. Prove that the setGx as defined in (9.17) is a
subgroup ofG.

9.3. Transitivity of conjugation. Assume thatg1, g2, g3 ∈
G and bothg1 andg2 are conjugate tog3. Prove thatg1

is conjugate tog2.

9.4. Isotropy subgroup of gx. Prove that forg ∈ G, x and
gxhave conjugate isotropy subgroups:

Ggx = g Gx g−1

9.5. D3: symmetries of an equilateral triangle. Consider
group D3 � C3v, the symmetry group of an equilateral
triangle:

1

2  3 .

(a) List the group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups of D3.
(continued as exer:FractRot)

9.6. Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(a) Verify that the 3-disk cycles
{1 2,1 3,2 3}, {1 2 3,1 3 2}, {12 13+ 2 perms.},
{121 232 313+ 5 perms.}, {121 323+ 2 perms.},
· · ·,
correspond to the fundamental domain cycles0,1,
01,001,011,· · · respectively.

(b) Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

(c) Optional: Can you see how the group elements
listed in table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 12.6)

9.7. C2-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (2.12)

ẋ = v(x) =





ẋ
ẏ
ż




=





σ(y− x)
ρx− y− xz

xy− bz




(9.28)

is equivariant under the action of cyclic group C2 =

{e,C1/2} acting onR3 by aπ rotation about thezaxis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 9.5. (continued in exercise 9.8)

9.8. Lorenz system in polar coordinates: group the-
ory. Use (6.7), (6.8) to rewrite the Lorenz equa-
tion (9.28) in polar coordinates (r, θ, z), where (x, y) =
(r cosθ, r sinθ).

1. Show that in the polar coordinates Lorenz flow
takes form

ṙ =
r
2

(−σ − 1+ (σ + ρ − z) sin 2θ

+(1− σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z+ (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz+
r2

2
sin 2θ . (9.29)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by theπ rotation in the [x, y] plane.

4. Rewrite (9.28) in the invariant polynomial basis of
example 9.18 and exercise 9.29.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (9.29) is either a periodic or-
bit or a relative periodic orbit (9.25) of the Lorenz
flow in the (x, y, z) representation.
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By going to polar coordinates we have quotiented out the
π-rotation (x, y, z)→ (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.9. Proto-Lorenz system. Here we quotient out the C2
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.13].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

(u, v, z) = (x2 − y2, 2xy, z) , (9.30)

show that it takes form





u̇
v̇
ż




=





−(σ + 1)u+ (σ − r)v+ (1− σ)N + vz
(r − σ)u− (σ + 1)v+ (r + σ)N − uz− uN

v/2− bz





N =
√

u2 + v2 . (9.31)

2. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by theπ rotation (9.20).

3. Show that (9.30) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.31)
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for the Lorenz parameter valuesσ = 10,b = 8/3,
ρ = 28. Topologically, does it resemble more the
Lorenz, or the Rössler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit
of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.43)
look like now? Interpret.

10. Show that the coordinate change (9.30) is the same
as rewriting (9.29) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex numberz = x + iy, z2 =

u+ iv.

11. How is (9.31) related to the invariant polynomial
basis of example 9.18 and exercise 9.29?
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