
Chapter 10

Relativity for cyclists

Physicists like symmetry more than Nature

— Rich Kerswell

What if the laws of motion retain their form for a family of coordinate fra-
mes related bycontinuoussymmetries? The notion of ‘fundamental do-
main’ is of no use here. If the symmetry is continuous, the dynamical

system should be reduced to a lower-dimensional, desymmetrized system, with
‘ignorable’ coordinates eliminated (but not forgotten).

We shall describe here two ways of reducing a continuous symmetry. In the
‘method of slices’ or ‘moving frames’ of sect. 10.4 we slice the state space in
such a way that an entire class of symmetry-equivalent points is represented by a
single point. In the Hilbert polynomial basis approach of sect. 10.5 we replace the
equivariant dynamics by the dynamics rewritten in terms of invariant coordinates.
In either approach we retain the option of computing in the original coordinates,
and then, when done, projecting the solution onto the symmetry reduced state
space.

Instead of writing yet another tome on group theory, in what follows we con-
tinue to serve group theoretic nuggets on need-to-know basis, through a series of
pedestrian examples (but take a slightly higher, cyclist road in the text proper).

10.1 Continuous symmetries

First of all, why worry about continuous symmetries? Here isan example of exercise 10.1
exercise 10.8the effect a continuous symmetry has on dynamics (for physics background, see

remark 10.2).

Example 10.1 Complex Lorenz flow: Consider a complex generalization of Lorenz
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Figure 10.1: A typical {x1, x2, z} trajectory of the com-
plex Lorenz flow, with a short trajectory of figure 10.4
whose initial point is close to the relative equilibrium
TW1 superimposed. See also figure 10.7. (R. Wilczak)

equations (2.12),

ẋ = −σx+ σy , ẏ = (ρ − z)x− ay

ż = (xy∗ + x∗y)/2− bz, (10.1)

where x, y are complex variables, z is real, while the parameters σ, b are real and
ρ = ρ1+ iρ2, a = 1− ie are complex. Recast in real variables, this is a set of five coupled
ODEs

ẋ1 = −σx1 + σy1

ẋ2 = −σx2 + σy2

ẏ1 = (ρ1 − z)x1 − ρ2x2 − y1 − ey2

ẏ2 = ρ2x1 + (ρ1 − z)x2 + ey1 − y2

ż = −bz+ x1y1 + x2y2 . (10.2)

In all numerical examples that follow, the parameters will be set to ρ1 = 28, ρ2 = 0, b =
8/3, σ = 10, e = 1/10, unless explicitly stated otherwise. As we shall show in exam-
ple 10.7, this is a dynamical system with a continuous SO(2) (but no discrete) symmetry.

Figure 10.1 offers a visualization of its typical long-time dynamics. What is
wrong with this picture? It is a mess. As we shall show here, the attractor is built up by
a nice ‘stretch & fold’ action, but that is totally hidden from the view by the continuous
symmetry induced drifts. In the rest of this chapter we shall investigate various ways
of ‘quotienting’ this SO(2) symmetry, and reducing the dynamics to a 4-dimensional
reduced state space. We shall not rest until we attain the simplicity of figure 10.12, and
the bliss of the 1-dimensional return map of figure 10.14.

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift.’ In a presence of a continuous symmetry an orbit
explores the manifold swept by combined action of the dynamics and the sym-
metry induced drifts. Further problems arise when we try to determine whether
an orbit shadows another orbit (see the figure 13.1 for a sketch of a close pass
to a periodic orbit), or develop symbolic dynamics (partition the state space, as
in chapter 11): here a 1-dimensional trajectory is replacedby a (N+1)-dimens-
ional ‘sausage,’ a dimension for each continuous symmetry (N being the total
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number of parameters specifying the continuous transformation, and ‘1’ for the
time parametert). How are we to measure distances between such objects? In
this chapter we shall learn here how to develop more illuminating visualizations
of such flow than figure 10.1, ‘quotient’ symmetries, and offer computationally
straightforward methods of reducing the dynamics to lower-dimensional, reduced
state spaces. The methods should also be applicable to high-dimensional flows,
such as translationally invariant fluid flows bounded by pipes or planes (see ex-
ample 10.4).

But first, a lightning review of the theory of Lie groups. The group-theoretical
concepts of sect. 9.1 apply to compact continuous groups as well, and will not be
repeated here. All the group theory that we shall need is in principle contained in
thePeter-Weyl theorem, and its corollaries: A compact Lie groupG is completely
reducible, its representations are fully reducible, everycompact Lie group is a
closed subgroup of a unitary groupU(n) for somen, and every continuous, unitary,
irreducible representation of a compact Lie group is finite dimensional.

Example 10.2 Special orthogonal group SO(2) (or S1) is a group of length-
preserving rotations in a plane. ‘Special’ refers to requirement that detg = 1, in con-
tradistinction to the orthogonal group O(n) which allows for length-preserving inversions
through the origin, with detg = −1. A group element can be parameterized by angle φ,
with the group multiplication law g(φ′)g(φ) = g(φ′+φ), and its action on smooth periodic
functions u(φ + 2π) = u(φ) generated by

g(φ′) = eφ
′T , T =

d
dφ
. (10.3)

Expand the exponential, apply it to a differentiable function u(φ), and you will recognize
a Taylor series. So g(φ′) shifts the coordinate by φ′, g(φ′) u(φ) = u(φ′ + φ) .

Example 10.3 Translation group: Differential operator T in (10.3) is reminiscent
of the generator of spatial translations. The ‘constant velocity field’ v(x) = v = c ·
T’ acts on x j by replacing it by the velocity vector c j . It is easy to verify by Taylor
expanding a function u(x) that the time evolution is nothing but a coordinate translation
by (time× velocity):

e−τc·Tu(x) = e−τc·
d
dx u(x) = u(x− τ c) . (10.4)

As x is a point in the Euclidean Rd space, the group is not compact. In general, a
sequence of time steps in time evolution always forms an abelian Lie group, albeit
never as trivial as this free ballistic motion.

If the group actions consist of N rotations which commute, for example act on
an N-dimensional cell with periodic boundary conditions, the group is an abelian group
that acts on a torus TN.

Example 10.4 Continuous symmetries of the plane Couette flow. (continued
from example 9.7) The plane Couette flow is a Navier-Stokes flow bounded by two
countermoving planes, in a cell periodic in streamwise and spanwise directions. Every
solution of Navier-Stokes equations belongs, by the SO(2) × SO(2) symmetry, to a 2-
torus T2 of equivalent solutions. Furthermore these tori are interrelated by a discrete D2

group of spanwise and streamwise flips of the flow cell. (continued in example 10.10)
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Figure 10.2: (a) The group orbitMx(0) of state
space pointx(0), and the group orbitMx(t) reached
by the trajectoryx(t) time t later. As any point on
the manifoldMx(t) is physically equivalent to any
other, the state space is foliated into the union of
group orbits. (b) Symmetry reductionM → M̂
replaces each full state space group orbitMx by a
single point ˆx ∈ M̂.
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Let G be a group, andgM −→ M a group action on the state spaceM. The
[d×d] matricesg acting on vectors in thed-dimensional state spaceM form a
linear representation of the groupG. If the action of every elementg of a groupG
commutes with the flow

gv(x) = v(gx) , g fτ(x) = f τ(gx) , (10.5)

G is a symmetry of the dynamics, and, as in (9.7), the dynamics is said to be
invariant underG, or G-equivariant.

In order to explore the implications of equivariance for thesolutions of dyn-
amical equations, we start by examining the way a compact Liegroup acts on state
spaceM. For anyx ∈ M, thegroup orbitMx of x is the set of all group actions
(see page 162 and figure 10.2)

Mx = {g x | g ∈ G} . (10.6)

As we saw in example 10.3, the time evolution itself is a noncompact 1-
parameter Lie group. Thus the time evolution and the continuous symmetries
can be considered on the same Lie group footing. For a given state space point
x a symmetry group ofN continuous transformations together with the evolution
in time sweeps out, in general, a smooth (N+1)-dimensional manifold of equiv-
alent solutions (if the solution has a nontrivial symmetry,the manifold may have
a dimension less thanN + 1). For solutionsp for which the group orbit ofxp is
periodic in timeTp, the group orbit sweeps out acompactinvariant manifoldMp.
The simplest example is theN = 0, no symmetry case, where the invariant mani-
foldMp is the 1-torus traced out by a periodic trajectoryp. If M is a smoothC∞

manifold, andG is compact and acts smoothly onM, the reduced state space can
be realized as a ‘stratified manifold,’ meaning that each group orbit (a ‘stratum’)
is represented by a point in the reduced state space, see sect. 10.4. Generalizing
the description of a non–wandering set of sect. 2.1.1, we saythat for flows with
continuous symmetries the non–wandering setΩ of dynamics (2.2) is the closure
of the set of compact invariant manifoldsMp. Without symmetries, we visualize
the non–wandering set as a set of points; in presence of a continuous symmetry,
each such ‘point’ is a group orbit.
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10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular
momentum.’

— Mason A. Porter’s student

Definition: A Lie group is a topological groupG such that (i)G has the struc-
ture of a smooth differential manifold, and (ii) the composition mapG×G→ G :
(g, h) → gh−1 is smooth, i.e.,C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy here
emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier analysis.
By a ‘smooth differential manifold’ one means objects like the circle of angles that
parameterize continuous rotations in a plane, example 10.2, or the manifold swept
by the three Euler angles that parameterize SO(3) rotations.

An element of a compact Lie group continuously connected to identity can be
written as

g(φ) = eφ·T , φ · T =
∑

φaTa, a = 1, 2, · · · ,N , (10.7)

whereφ ·T is aLie algebraelement, andφa are the parameters of the transforma-
tion. Repeated indices are summed throughout this chapter,and the dot product
refers to a sum over Lie algebra generators. The Euclidian product of two vectors
x, y will be indicated byx-transpose timesy, i.e., xTy =

∑d
i xiyi . Unitary trans-

formations exp(φ · T) are generated by sequences of infinitesimal steps of form

g(δφ) ≃ 1+ δφ · T , δφ ∈ RN , |δφ| ≪ 1 , (10.8)

whereTa, the generatorsof infinitesimal transformations, are a set of linearly
independent [d×d] anti-hermitian matrices, (Ta)† = −Ta, acting linearly on the
d-dimensional state spaceM. In order to streamline the exposition, we postpone
discussion of combining continuous coordinate transformations with the discrete
ones to sect. 10.2.1. . exercise 10.2

For continuous groups the Lie algebra, i.e., the set ofN generatorsTa of
infinitesimal transformations, takes the role that the|G| group elements play in the
theory of discrete groups. The flow field at the state space point x induced by the
action of the group is given by the set ofN tangent fields

ta(x)i = (Ta)i j x j , (10.9)
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which span thetangent space. Any representation of a compact Lie groupG is
fully reducible, and invariant tensors constructed by contractions ofTa are useful
for identifying irreducible representations. The simplest such invariant is

TT · T =
∑

α

C(α)
2 11(α) , (10.10)

whereC(α)
2 is the quadratic Casimir for irreducible representation labeledα, and

11(α) is the identity on theα-irreducible subspace, 0 elsewhere. The dot product of
two tangent fields is thus a sum weighted by Casimirs,

t(x)T · t(x′) =
∑

α

C(α)
2 xi δ

(α)
i j x′j . (10.11)

Example 10.5 SO(2) irreducible representations: (continued from example 10.2) Ex-
pand a smooth periodic function u(φ + 2π) = u(φ) as a Fourier series

u(φ) = a0 +

∞
∑

m=1

(am cosmφ + bm sinmφ) . (10.12)

The matrix representation of the SO(2) action (10.3) on the mth Fourier coefficient pair
(am, bm) is

g(m)(φ′) =

(

cosmφ′ sinmφ′

− sinmφ′ cosmφ′

)

, (10.13)

with the Lie group generator

T(m) =

(

0 m
−m 0

)

. (10.14)

The SO(2) group tangent (10.9) to state space point u(φ) on the mth invariant subspace
is

t(m)(u) = m

(

bm
−am

)

. (10.15)

The L2 norm of t(u) is weighted by the SO(2) quadratic Casimir (10.10), C(m)
2 = m2,

∮

dφ
2π

(Tu(φ))TTu(2π − φ) =
∞
∑

m=1

m2
(

a2
m+ b2

m

)

, (10.16)

and converges only for sufficiently smooth u(φ). What does that mean? We saw in
(10.4) that T generates translations, and by (10.14) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If |u(m)| does not fall off faster
the 1/m, the action of SO(2) is overwhelmed by the high Fourier modes.
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Example 10.6 SO(2) rotations for complex Lorenz equations: Substituting the
Lie algebra generator

T =



































0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0



































(10.17)

acting on a 5-dimensional space (10.2) into (10.7) yields a finite angle SO(2) rotation:

g(φ) =



































cosφ sinφ 0 0 0
− sinφ cosφ 0 0 0

0 0 cosφ sinφ 0
0 0 − sinφ cosφ 0
0 0 0 0 1



































. (10.18)

From (10.13) we see that the action of SO(2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspace with
multiplicity 2.

The generator T is indeed anti-hermitian, T† = −T, and the group is compact,
its elements parametrized by φ mod 2π. Locally, at x ∈ M, the infinitesimal action of the
group is given by the group tangent field t(x) = Tx = (x2,−x1, y2,−y1, 0). In other words,
the flow induced by the group action is normal to the radial direction in the (x1, x2) and
(y1, y2) planes, while the z-axis is left invariant.

fast track:

sect. 10.2, p. 189

10.1.2 Lie groups for cyclists

Henriette Roux: “Why do you devote to Lie groups only
a page, while only a book-length monograph can do it
justice?” A: “ChaosBook tries its utmost to minimize
the Gruppenpest jargon damage, which is a total turnoff

to our intended audience of working plumbers and elec-
tricians. The sufferings of our master plumber Fabian
Waleffe while reading chapter 9 - World in a mirror are
chicken feed in comparison to the continuous symmetry
reduction nightmare that we embark upon here.”

—

appendix A.2.3

All the group theory that we shall need is in principle contained in thePeter-Weyl
theorem, and its corollaries: A compact Lie groupG is completely reducible, its
representations are fully reducible, every compact Lie group is a closed subgroup
of a unitary groupU(n) for somen, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Here comes all of the theory of Lie groups in one quick serving. You will live
even if you do not digest this section, or, to spell it out; skip this section unless
you already know the theory of Lie algebras.
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The [d×d] matricesg acting on vectors in the state spaceM form a linear
representation of the groupG. Tensors transform as

h′i j
k = gi

i′g j
j′gk

k′hi′ j′
k′ . (10.19)

A multilinear functionh(q, r , . . . , s) is an invariant function if (and only if) for any
transformationg ∈ G and for any set of vectorsq, r, s, . . . it is unchanged by the
coordinate transformation

h(gq, gr, . . . gs) = h(q, r, . . . , s) = hab···
···c qarb · · · sc . (10.20)

Examples of such invariant functions are the lengthr(x)2 = δ
j
i xi x j and the volume

V(x, y, z) = ǫ i jk xiy jzk. Substitute the infinitesimal form of group action (10.8) into
(10.19), keep the linear terms. In the index-notation longhand, the Lie algebra
generator acts on each index separately,

(Ta)i′
i h k...

i′ j... + (Ta) j′

j h k...
i j ′ ... − (Ta)k

k′h
k′...

i j ... + . . . = 0 . (10.21)

Hence the tensorh ...k
i j ... is invariant ifTah = 0, i.e., theN generatorsTa ‘annihi-

late’ it.

As one does not want the symmetry rules to change at every step, the genera-
torsTa, a = 1, 2, . . . ,N, are themselves invariant tensors:

(Ta) i
j = gi

i′g j
j′gaa′ (Ta′)

i′
j′ , (10.22)

wheregab =
[

e−iφ·C
]

ab
is the adjoint [N×N] matrix representation ofg ∈ G. The

[d×d] matricesTa are in general non-commuting, and from (10.21) it follows that
they closeN-elementLie algebra

[Ta,Tb] = TaTb − TbTa = −CabcTc , a, b, c = 1, 2, ...,N ,

where the fully antisymmetric adjoint representation hermitian generators

[Cc]ab = Cabc = −Cbac = −Cacb

are thestructure constantsof the Lie algebra.

As we will not use non-abelian Lie groups in this chapter, we omit the deriva-
tion of the Jacobi relation betweenCabc’s, and you can safely ignore all this talk of
tensors and Lie algebra commutators as far as the pedestrianapplications at hand
are concerned.

continuous - 15june2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 10. RELATIVITY FOR CYCLISTS 188

10.1.3 Equivariance under infinitesimal transformations

A flow ẋ = v(x) is G-equivariant (10.5), if symmetry transformations commute
with time evolutions exercise 10.4

exercise 10.5

v(x) = g−1 v(g x) , for all g ∈ G . (10.23)

For an infinitesimal transformation (10.8) theG-equivariance condition becomes

v(x) = (1− φ · T) v(x+ φ · Tx) + · · · = v(x) − φ · Tv(x) +
dv
dx
φ · Tx+ · · · .

Thev(x) cancel, andφa are arbitrary. Denote thegroup flow tangent fieldat x by
ta(x)i = (Ta)i j x j . Thus the infinitesimal, Lie algebraG-equivariance condition is

ta(v) − A(x) ta(x) = 0 , (10.24)

where A = ∂v/∂x is the stability matrix (4.3). If case you find such learned
remarks helpful: the left-hand side of (10.24) is theLie derivativeof the dynamical
flow field v along the direction of the infinitesimal group-rotation induced flow
ta(x) = Tax,

Ltav =

(

Ta −
∂

∂y
(Tax)

)

v(y)

∣

∣

∣

∣

∣

∣

y=x

. (10.25)

exercise 10.6
exercise 10.7
exercise 10.12The equivariance condition (10.24) states that the two flows, one induced by the

dynamical vector fieldv, and the other by the group tangent fieldt, commute if
their Lie derivatives (or the ‘Lie brackets ’ or ‘Poisson brackets’) vanish.

Example 10.7 Equivariance of complex Lorenz flow: That complex Lorenz flow
(10.2) is equivariant under SO(2) rotations (10.18) can be checked by substituting the
Lie algebra generator (10.17) and the stability matrix (4.3) for complex Lorenz flow
(10.2),

A =



































−σ 0 σ 0 0
0 −σ 0 σ 0
ρ1 − z −ρ2 −1 −e −x1
ρ2 ρ1 − z e −1 −x2
y1 y2 x1 x2 −b



































, (10.26)

into the equivariance condition (10.24). Considering that t(v) depends on the full set of
equations (10.2), and A(x) is only its linearization, this is not an entirely trivial statement.
For the parameter values (10.2) the flow is strongly volume contracting (4.42),

∂ivi =

5
∑

i=1

λi(x, t) = −b− 2(σ + 1) = −24− 2/3 , (10.27)

at a coordinate-, ρ- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.24) iseasier than checking
it for global, finite angle rotations (10.23).
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10.2 Symmetries of solutions

Let v(x) be the dynamical flow, andf τ the trajectory or ‘time-τ forward map’ of
an initial pointx0,

dx
dt
= v(x) , x(τ) = f τ(x0) = x0 +

∫ τ

0
dτ′ v(x(τ′)) . (10.28)

As discussed in sect. 9.2, solutionsx(τ) of an equivariant system can satisfy all
of the system’s symmetries, a subgroup of them, or have no symmetry at all. For
a given solutionx(τ), the subgroup that contains all symmetries that fixx (that
satisfy gx = x) is called the isotropy (or stabilizer) subgroup ofx. A generic
ergodic trajectoryx(τ) has no symmetry beyond the identity, so its isotropy group
is {e}, but recurrent solutions often do. At the other extreme is equilibrium, whose
isotropy group is the full symmetry groupG.

The simplest solutions are theequilibria or steadysolutions (2.8).

Definition: Equilibrium xEQ =MEQ is a fixed, time-invariant solution,

v(xEQ) = 0 ,

x(xEQ, τ) = xEQ +

∫ τ

0
dτ′ v(x(τ′)) = xEQ . (10.29)

An equilibriumwith full symmetry,

g xEQ = xEQ for all g ∈ G ,

lies, by definition, in Fix(G) subspace subspace, for example thex3 axis in fig-
ure 10.3 (a). The multiplicity of such solution is one. An equilibrium xEQ with
symmetryGEQ smaller than the full groupG belongs to a group orbitG/GEQ. exercise 10.13

exercise 10.14If G is finite there are|G|/|GEQ| equilibria in the group orbit, and ifG is contin-
uous then the group orbit ofx is a continuous family of equilibria of dimension
dimG− dimGEQ. For example, if the angular velocityc in figure 10.3 (b) equals
zero, the group orbit consists of a circle of (dynamically static) equivalent equi-
libria.

Definition: Relative equilibrium solutionxTW(τ) ∈ MTW: the dynamical flow
field points along the group tangent field, with constant ‘angular’ velocity c, and
the trajectory stays on the group orbit, see figure 10.3 (a): exercise 10.17

exercise 10.19
exercise 10.20
exercise 10.21
exercise 10.22
exercise 10.26
exercise 10.27

v(x) = c · t(x) , x ∈ MTW

x(τ) = g(−τ c) x(0) = e−τ c·T x(0) . (10.30)
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Figure 10.3: (a) A relative equilibrium orbitstarts out
at some pointx(0), with the dynamical flow fieldv(x) =
c · t(x) pointing along the group tangent space. For the
SO(2) symmetry depicted here, the flow traces out the
group orbit ofx(0) in timeT = 2π/c. (b) An equilib-
rium lives either in the fixed Fix(G) subspace (x3 axis
in this sketch), or on a group orbit as the one depicted
here, but with zero angular velocityc. In that case the
circle (in general,N-torus) depicts a continuous family
of fixed equilibria, related only by the group action.

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 

Figure 10.4: {x1, x2, z} plot of the complex Lorenz
flow with initial point close toTW1. In figure 10.1 this
relative equilibrium is superimposed over the strange
attractor. (R. Wilczak)

A traveling wave remark 10.3

x(τ) = g(−cτ) xTW = xTW− cτ , c ∈ Rd (10.31)

is a special type of a relative equilibrium of equivariant evolution equations, where
the action is given by translation (10.4),g(y) x(0) = x(0) + y . A rotating waveis
another special case of relative equilibrium, with the action is given by angular
rotation. By equivariance, all points on the group orbit areequivalent, the mag-
nitude of the velocityc is same everywhere along the orbit, so a ‘traveling wave’
moves at a constant speed. For anN > 1 trajectory traces out a line within the
group orbit. As theca components are generically not in rational ratios, the tra-
jectory explores theN-dimensional group orbit (10.6) quasi-periodically. In other
words, the group orbitg(τ) x(0) coincides with the dynamical orbitx(τ) ∈ MTW

and is thus flow invariant.

Example 10.8 A relative equilibrium: For complex Lorenz equations and our
canonical parameter values of (10.2) a computation yields the relative equilibrium TW1

with a representative group orbit point

(x1, x2, y1, 0, z)TW1 = (8.48492, 0.0771356,8.48562, 0, 26.9999), (10.32)

and angular velocity cTW1 = 1/11. This corresponds to period TTW1 = 2π/c ≈ 69, so
a simulation has to be run up to time of order of at least 70 for the strange attractor in
figure 10.1 to start filling in.

Figure 10.4 shows the complex Lorenz flow with the initial point (10.32) on the
relative equilibrium TW1. It starts out by drifting in a circle around the z-axis, but as the
numerical errors accumulate, the trajectory spirals out.
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Figure 10.5: A periodic orbit starts out atx(0) with the
dynamicalv and group tangentt flows pointing in dif-
ferent directions, and returns after timeTp to the initial
point x(0) = x(Tp). The group orbit of the temporal
orbit of x(0) sweeps out a (1+N)-dimensional torus, a
continuous family of equivalent periodic orbits, two of
which are sketched here. For SO(2) this is topologi-
cally a 2-torus.
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x1

gv

gt

gx(0)
g

t

v

x(T) = x(0)

Calculation of the relative equilibrium stability reveals that it is spiral-out un-
stable, with the very short period Tspiral = 0.6163. This is the typical time scale for
fast oscillations visible in figure 10.1, with some 100 turns for one circumambulation
of the TW1 orbit. In that time an initial deviation from xTW1 is multiplied by the factor
Λradial ≈ 500. It would be sweet if we could eliminate the drift time scale ≈ 70and focus
just on the fast time scale of ≈ 0.6. That we will attain by reformulating the dynamics in
a reduced state space.

Definition: Periodic orbit. Let x be a periodic point on the periodic orbitp of
periodT,

f T(x) = x , x ∈ Mp.

By equivariance,g x is another periodic point, with the orbits ofx andgx either
identical or disjoint.

If gx lands on the same orbit,g is an element of periodic orbit’s symmetry
groupGp. If the symmetry group is the full groupG, we are back to (10.30),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium. The
other option is that the isotropy group is discrete, the orbit segment{x, gx} is pre-
periodic (or eventually periodic),x(0) = gpx(Tp), whereTp is a fraction of the
full period,Tp = T/m, and thus

x(0) = gpx(Tp) , x ∈ Mp , gp ∈ Gp

x(0) = gm
p x(m Tp) = x(T) = x(0) . (10.33)

If the periodic solutions are disjoint, as in figure 10.5, their multiplicity (if G
is finite, see sect. 9.1), or the dimension of the manifold swept under the group
action (ifG is continuous) can be determined by applications ofg ∈ G. They form
a family of conjugate solutions (9.19),

Mg p = gMp g−1 . (10.34)
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Figure 10.6: A relative periodic orbit starts out atx(0)
with the dynamicalv and group tangentt flows point-
ing in different directions, and returns to the group or-
bit of x(0) after timeTp at x(Tp) = gpx(0), a rotation of
the initial point bygp. For flows with continuous sym-
metry a generic relative periodic orbit (not pre-periodic
to a periodic orbit) fills out ergodically what is topo-
logically a torus, as in figure 10.5; if you are able to
draw such a thing, kindly send us the figure. As il-
lustrated by figure 10.8 (a) this might be a project for
Lucas Films.
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Definition: Relative periodic orbit p is an orbitMp in state spaceM which
exactly recurs

xp(0) = gpxp(Tp) , xp(τ) ∈ Mp , (10.35)

at a fixedrelative period Tp, but shifted by a fixed group actiongp which brings
the endpointxp(Tp) back into the initial pointxp(0), see figure 10.6. The group
actiongp parametersφ = (φ1, φ2, · · ·φN) are referred to as “phases,” or “shifts.”
In contrast to the pre-periodic (10.33), the phase here are irrational, and the tra-
jectory sweeps out ergodically the group orbit without everclosing into a periodic
orbit. For dynamical systems with only continuous (no discrete) symmetries, the
parameters{t, φ1, · · · , φN} are real numbers, ratiosπ/φ j are almost never rational,
likelihood of finding a periodic orbit for such system is zero, and such relative
periodic orbits are almost never eventually periodic.

Relative periodic orbits are to periodic solutions what relative equilibria (trav-
eling waves) are to equilibria (steady solutions). Equilibria satisfy f τ(x) − x = 0
and relative equilibria satisfyf τ(x) − g(τ) x = 0 for anyτ. In a co-moving frame,
i.e., frame moving along the group orbit with velocityv(x) = c · t(x), the relative
equilibrium appears as an equilibrium. Similarly, a relative periodic orbit is peri-
odic in its mean velocitycp = φp/Tp co-moving frame (see figure 10.8), but in the
stationary frame its trajectory is quasiperiodic. A co-moving frame is helpful in
visualizing a single ‘relative’ orbit, but useless for viewing collections of orbits,
as each one drifts with its own angular velocity. Visualization of all relative peri-
odic orbits as periodic orbits we attain only by global symmetry reductions, to be
undertaken in sect. 10.4.

Example 10.9 Complex Lorenz flow with relative periodic orbit: Figure 10.7 is
a group portrait of the complex Lorenz equations state space dynamics, with several
important players posing against a generic orbit in the background.

The unstable manifold of relative equilibrium TW1 is characterized by a 2-
dimensional complex eigenvector pair, so its group orbit is a 3-dimensional. Only one
representative trajectory on it is plotted in the figure. The unstable manifold of equi-
librium EQ0 has one expanding eigenvalue, but its group orbit is a cone originating at
EQ0. Only one representative trajectory on this cone is shown in the figure. It lands
close to TW1, and then spirals out along its unstable manifold. 3 repetitions of a short
relative periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional
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Figure 10.7: (Figure 10.1 continued) A group portrait
of the complex Lorenz equations state space dynamics.
Plotted are relative equilibriumTW1 (red), its unsta-
ble manifold (brown), equilibriumEQ0, one trajectory
from the group orbit of its unstable manifold (green), 3
repetitions of relative periodic orbit01 (magenta) and
a generic orbit (blue). (E. Siminos)

Figure 10.8: A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a) the
stationary state space coordinate frame{v1, v2, v3},
traced for four periodsTp; (b) the co-moving
{ṽ1, ṽ2, ṽ3} coordinate frame, moving with the
mean angular velocitycp = φp/Tp. (from
ref. [10.1])

(a)

v1v2

v3

(b)

v�1
v�2

v�3

2

orbitM01. The assignment of its symbolic dynamics label will be possible only after the
symmetry reduction, see figure 10.14 and figure 11.9.

10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajectory that starts on and
returns to a given torus of a symmetry equivalent solutions is unlikely to intersect
it at the initial point, unless forced to do so by a discrete symmetry. This we
will make explicit in sect. 10.4, where relative periodic orbits will be viewed as
periodic orbits of the reduced dynamics.

If, in addition to a continuous symmetry, one has a discrete symmetry which is
not its subgroup, one does expect equilibria and periodic orbits. However, a relati-
ve periodic orbit can be pre-periodic if it is equivariant under a discrete symmetry,
as in (10.33): Ifgm = 1 is of finite orderm, then the corresponding orbit is periodic
with periodmTp. If g is not of a finite order, a relative periodic orbit is periodic
only after a shift bygp, as in (10.35). Morally, as it will be shown in chapter 21,
such orbit is the true ‘prime’ orbit, i.e., the shortest segment that under action of
G tiles the entire invariant submanifoldMp.

Definition: Relative orbit MGx in state spaceM is the time evolvedgroup
orbitMx of a state space pointx, the set of all points that can be reached fromx
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by all symmetry group actions and evolution of each in time.

Mx(t) = {gxt : t ∈ R, g ∈ G} . (10.36)

In presence of symmetry, an equilibrium is the set of all equilibria related by
symmetries, an relative periodic orbit is the hyper-surface traced by a trajectory in
time T and all group actions, etc..

Example 10.10 Relative orbits in the plane Couette flow. (continued from
example 10.4) Translational symmetry allows for relative equilibria (traveling waves),
characterized by a fixed profile Eulerian velocity uTW(x) moving with constant velocity
c, i.e.

u(x, τ) = uTW(x− cτ) . (10.37)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to see
where the relative equilibrium (traveling wave) solutions come from. A relative equi-
librium solution hugs close to one of the walls and drifts with it with constant velocity,
slower than the wall, while maintaining its shape. A relative periodic solution is a solu-
tion that recurs at time Tp with exactly the same disposition of the Eulerian velocity fields
over the entire cell, but shifted by a 2-dimensional (streamwise,spanwise) translation
gp. By discrete symmetries these solutions come in counter-traveling pairs uq(x− cτ),
−uq(−x + cτ): for example, for each one drifting along with the upper wall, there is a
counter-moving one drifting along with the lower wall. Discrete symmetries also imply
existence of strictly stationary solutions, or ‘standing waves.’ For example, a solution
with velocity fields antisymmetric under reflection through the midplane has equal flow
velocities in opposite directions, and is thus an equilibrium stationary in time.

chapter 21

10.3 Stability

A spatial derivative of the equivariance condition (10.5) yields the matrix equiv-
ariance condition satisfied by the stability matrix (statedhere both for the finite
group actions, and for the infinitesimal, Lie algebra generators): exercise 10.28

exercise 10.29

gA(x)g−1 = A(gx) , [Ta,A] =
∂A
∂x

ta(x) . (10.38)

For a flow within the fixed Fix(G) subspace,t(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of the Fix (G) subspace. As
in this subspace stability matrixA commutes with the Lie algebra generatorsT,
the spectrum of its eigenvalues and eigenvectors is decomposed into irreducible
representations of the symmetry group. This we have alreadyobserved for the
EQ0 of the Lorenz flow in example 9.14.

A infinitesimal symmetry group transformation maps the initial and the end
point of a finite trajectory into a nearby, slightly rotated equivalent points, so we
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expect the perturbations along to group orbit to be marginal, with unit eigenvalues.
The argument is akin to (4.7), the proof of marginality of perturbations along a pe-
riodic orbit. Consider two nearby initial points separatedby anN-dimensional in-
finitesimal group transformation (10.8):δx0 = g(δφ)x0− x0 = δφ ·Tx0 = δφ · t(x0).
By the commutativity of the group with the flow,g(δφ) f τ(x0) = f τ(g(δφ)x0). Ex-
panding both sides, keeping the leading term inδφ, and using the definition of the
Jacobian matrix (4.6), we observe thatJτ(x0) transports theN-dimensional group
tangent space atx(0) to the rotated tangent space atx(τ) at timeτ:

ta(τ) = Jτ(x0) ta(0) , ta(τ) = Ta x(τ) . (10.39)

For a relative periodic orbit,gpx(Tp) = x(0), at any point along cyclep the group
tangent vectorta(τ) is an eigenvector of the Jacobian matrix with an eigenvalueof
unit magnitude,

Jp ta(x) = ta(x) , Jp(x) = gpJTp(x) , x ∈ Mp . (10.40)

For a relative equilibrium flow and group tangent vectors coincide,v = c · t(x) .
Dotting by the velocityc (i.e., summing overcata) the equivariance condition
(10.24),ta(v) − A(x) ta(x) = 0, we get

(c · T − A)v = 0 . (10.41)

In other words, in the co-rotating frame the eigenvalues corresponding to group
tangent are marginal, and the velocityv is the corresponding right eigenvector.

Two successive points along the cycle separated byδx0 = δφ · t(τ) have the
same separation after a completed periodδx(Tp) = gpδx0, hence eigenvalue of
magnitude 1. In presence of anN-dimensional Lie symmetry group,N eigenval-
ues equal unity.

10.4 Reduced state space

Maybe when I’m done with grad school I’ll be able to fig-
ure it all out. . .

— Rebecca Wilczak, undergraduate

Given Lie groupG acting smoothly on aC∞ manifoldM, we can think of
each group orbit as an equivalence class.Symmetry reductionis the identification
of a unique point on a group orbit as the representative of itsequivalence class.
We call the set of all such group orbit representatives thereduced state space
M/G. In the literature this space is often rediscovered, and thus has many names
- it is alternatively called ‘desymmetrized state space,’ ‘symmetry-reduced space,’
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Figure 10.9: A point xon the full state space trajectory
x(t) is equivalent up to a group rotationg(t) to the point
x̂ on the curve ˆx(t) if the two points belong to the same
group orbitMx, see (10.6).

‘orbit space’ (because every group orbit in the original space is mapped to a sin-
gle point in the orbit space), or ‘quotient space’ (because the symmetry has been
‘divided out’), obtained by mapping equivariant dynamics to invariant dynamics
(‘image’) by methods such as ‘moving frames,’ ‘cross sections,’ ‘slices,’ ‘freez- remark 10.1

ing,’ ‘Hilbert bases,’ ‘quotienting,’ ‘lowering of the degree,’ ‘lowering the order,’
or ‘desymmetrization.’

Symmetry reduction replaces a dynamical system (M, f ) with a symmetry by
a ‘desymmetrized’ system (̂M, f̄ ), a system where each group orbit is replaced
by a point, and the action of the group is trivial,gx̂ = x̂ for all x̂ ∈ M̂, g ∈ G.
The reduced state spacêM is sometimes called the ‘quotient space’M/G because
the symmetry has been ‘divided out.’ For a discrete symmetry, the reduced state
spaceM/G is given by the fundamental domain of sect. 9.4. In presence of a
continuous symmetry, the reduction toM/G amounts to a change of coordinates
where the ‘ignorable angles’{φ1, · · · , φN} that parameterizeN group translations
can be separated out.

We start our discussion of symmetry reduction by considering the finite-rotations
method of moving frames, and its differential formulation, themethod of slices.

10.4.1 Go with the flow: method of moving frames

The idea: We can, at least locally, map each point along any solution x(τ) to the
unique representative ˆx(τ) of the associated group orbit equivalence class, by a
suitable rotation

x(τ) = g(τ) x̂(τ) . (10.42)

Equivariance implies the two points are equivalent. In the ‘method of slices’ the
reduced state space representative ˆx of a group orbit equivalence class is picked
by slicing across the group orbits by a fixed hypersurface. Westart by describing
how the method works for a finite segment of the full state space trajectory.
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Figure 10.10: SliceM̂ is a hyperplane (10.43) pass-
ing through the slice-fixing point ˆx′, and normal to the
group tangentt′ at x̂′. It intersects all group orbits (in-
dicated by dotted lines here) in an open neighborhood
of x̂′. The full state space trajectoryx(τ) and the re-
duced state space trajectory ˆx(τ) belong to the same
group orbitMx(τ) and are equivalent up to a group ro-
tationg(τ), defined in (10.42).

M x(0)

x(t)

x(t)

g(t)

g

x’
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Definition: Slice. LetG act regularly on ad-dimensional manifoldM, i.e., with
all group orbitsN-dimensional. Aslice through point ˆx′ is a (d−N)-dimensional
submanifoldM̂ such that all group orbits in an open neighborhood of the slice-
defining point ˆx′ intersectM̂ transversally and only once (see figure 10.10).

The simplestslice conditiondefines a linear slice as a (d−N)-dimensional
hyperplaneM̂ normal to theN group rotation tangentst′a at point x̂′:

(x̂− x̂′)T t′a = 0 , t′a = ta(x̂′) = Ta x̂′ . (10.43)

In other words, ‘slice’ is a Poincaré section (3.6) for group orbits. Each ‘big
circle’ –group orbit tangent tot′a– intersects the hyperplane exactly twice, with
the two solutions separated byπ. As for a Poincaré section (3.4), we add an
orientation condition, and select the intersection with the clockwise rotation angle
into the slice.

Definition: Moving frame. Assume that for a givenx ∈ M and a given slice
M̂ there exists a unique group elementg = g(x) that rotatesx into the slice,
gx = x̂ ∈ M̂. The map that associates to a state space pointx a Lie group action
g(x) is called amoving frame. exercise 6.1

exercise 10.30

As (x̂′)T t′a = 0 by the antisymmetry ofTa, the slice condition (10.43) fixesφ
for a givenx by

0 = x̂T t′a = xTg(φ)T t′a , (10.44)

wheregT denotes the transpose ofg. The method of moving frames can be
interpreted as a change of variables

x̂(τ) = g−1(τ) x(τ) , (10.45)

that is passing to a frame of reference in which condition (10.44) is identically
satisfied, see example 10.11. Therefore the name ‘moving frame.’ Method of
moving frames should not be confused with the co-moving frames, such as the
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one illustrated in figure 10.8. Each relative periodic orbithas its own co-moving
frame. In the method of moving frames (or the method of slices) one fixes a
stationary slice, and rotates all solutions back into the slice.

The method of moving frames is a post-processing method; trajectories are
computed in the full state space, then rotated into the slicewhenever desired, with
the slice condition easily implemented. The slice group tangentt′ is a given vec-
tor, andg(φ) x is another vector, linear inx and a function of group parametersφ.
Rotation parametersφ are determined numerically, by a Newton method, through
the slice condition (10.44).

Figure 10.11 illustrates the method of moving frames for an SO(2) slice nor-
mal to thex2 axis. Looks innocent, except there is nothing to prevent a trajectory
from going through (x1, x2) = (0, 0), and whatφ is one to use then? We can always
chose a finite time step that hops over this singularity, but in the continuous time
formulation we will not be so lucky.

How does one pick a slice point ˆx′? A generic point ˆx′ not in an invariant
subspace (on the complex Lorenz equationsz axis, for example) should suffice
to fix a slice. The rules of thumb are much like the ones for picking Poincaré
sections, sect. 3.1.2. The intuitive idea is perhaps best visualized in the context
of fluid flows. Suppose the flow exhibits an unstable coherent structure that –
approximately– recurs often at different spatial dispositions. One can fit a ‘tem-
plate’ to one recurrence of such structure, and describe other recurrences as its
translations. A well chosen slice point belongs to such dynamically important
equivalence class (i.e., group orbit). A slice is locally isomorphic toM/G, in an
open neighborhood of ˆx′. As is the case for the dynamical Poincaré sections, in
general a single slice does not suffice to reduceM→M/G globally.

The Euclidian product of two vectorsx, y is indicated in (10.43) byx-transpose
timesy, i.e.,xTy =

∑d
i xiyi . More general bilinear norms〈x, y〉 can be used, as long

as they areG-invariant, i.e., constant on each irreducible subspace. An example is
the quadratic Casimir (10.11).

Example 10.11 An SO(2) moving frame: (continued from example 10.2) The
SO(2) action

(x̂1, x̂2) = (x1 cosθ + x2 sinθ, −x1 sinθ + x2 cosθ) (10.46)

is regular on R2\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere line),
through x̂′ = (0, 1), with group tangent t′ = (1, 0), and ensure uniqueness by clockwise
rotation into positive x2 axis. Hence the reduced state space is the half-line x1 = 0, x̂2 =

x2 > 0. The slice condition then simplifies to x̂1 = 0 and yields the explicit formula for
the moving frame parameter

θ(x1, x2) = tan−1(x1/x2) , (10.47)

i.e., the angle which rotates the point (x1, x2) back to the slice, taking care that tan−1

distinguishes (x1, x2) plane quadrants correctly. Substituting (10.47) back to (10.46)
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Figure 10.11: Method of moving frames for a flow
SO(2)-equivariant under (10.18) with slice through
x̂′ = (0,1, 0,0, 0), group tangentt′ = (1,0, 0,0, 0).
The clockwise orientation condition restricts the slice
to half-hyperplane ˆx1 = 0, x̂2 > 0. A trajectory started
on the slice at ˆx(0), evolves to a state space point with
a non-zerox1(t1). Compute the polar angleφ1 of x(t1)
in the (x1, x2) plane. Rotatex(t1) clockwise byφ1 to
x̂(t1) = g(−φ1) x(t1), so that the equivalent point on the
circle lies on the slice, ˆx1(t1) = 0. Thus after every
finite time step followed by a rotation the trajectory
restarts from the ˆx1(tk) = 0 reduced state space.

2x(t )

1x(t ) θ2

θ1

x =y 2       21y(t )
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and using cos(tan−1 a) = (1+ a2)−1/2, sin(tan−1 a) = a(1+ a2)−1/2 confirms x̂1 = 0. It also
yields an explicit expression for the transformation to variables on the slice,

x̂2 =

√

x2
1 + x2

2 . (10.48)

This was to be expected as SO(2) preserves lengths, x2
1 + x2

2 = x̂2
1 + x̂2

2. If dynamics is
in plane and SO(2) equivariant, the solutions can only be circles of radius (x2

1 + x2
2)1/2,

so this is the “rectification” of the harmonic oscillator by a change to polar coordinates,
example 6.1. Still, it illustrates the sense in which the method of moving frames yields
group invariants. (E. Siminos)

The slice condition (10.43) fixesN directions; the remaining vectors(x̂N+1 . . . x̂d)
span the slice hyperplane. They ared − N fundamental invariants, in the sense
that any other invariant can be expressed in terms of them, and they are function-
ally independent. Thus they serve to distinguish orbits in the neighborhood of the
slice-fixing point x̂′, i.e., two points lie on the same group orbit if and only if all
the fundamental invariants agree.

10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

As an alternative to the post-processing approach of the preceding sections, we
can proceed as follows: Split up the integration into a sequence of finite time
steps, each followed by a rotation of the final point (and the whole coordinate
frame with it; the ‘moving frame’) such that the next segment’s initial point is in
theslicefixed by a point ˆx′, see figure 10.11. It is tempting to see what happens
if the steps are taken infinitesimal. As we shall see, we do geta flow restricted to
the slice, but at a price.

Using decomposition (10.42) one can always write the full state space tra-
jectory asx(τ) = g(τ) x̂(τ), where the (d−N)-dimensional reduced state space
trajectoryx̂(τ) is to be fixed by some condition, andg(τ) is then the corresponding
curve on theN-dimensional group manifold of the group action that rotates x̂ into
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x at timeτ. The time derivative is then ˙x = v(gx̂) = ġx̂+gv̂, with the reduced state
space velocity field given by ˆv = dx̂/dt. Rewriting this as ˆv = g−1v(g x̂) − g−1ġ x̂
and using the equivariance condition (10.23) leads to

v̂ = v− g−1ġ x̂ .

The Lie group element (10.7) and its time derivative describe the group tangent
flow

g−1ġ = g−1 d
dt

eφ·T = φ̇ · T .

This is the group tangent velocityg−1ġ x̂ = φ̇ · t(x̂) evaluated at the point ˆx, i.e.,
with g = 1 . The flowv̂ = dx̂/dt in the (d−N) directions transverse to the group
flow is now obtained by subtracting the flow along the group tangent direction,

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , (10.49)

for any factorization (10.42) of the flow of formx(τ) = g(τ) x̂(τ). To integrate
these equations we first have to fix a particular flow factorization by imposing
conditions on ˆx(τ), and then integrate phasesφ(τ) on a given reduced state space
trajectoryx̂(τ). exercise 10.31

exercise 10.32

Here we demand that the reduced state space is confined to a hyperplane slice.
Substituting (10.49) into the time derivative of the fixed slice condition (10.44),

v̂(x̂)T t′a = v(x̂)T t′a − φ̇a · t(x̂)T t′a = 0 ,

yields the equation for the group phases flowφ̇ for the slice fixed by ˆx′, together
with the reduced state spacêM flow v̂(x̂):

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , x̂ ∈ M̂ (10.50)

φ̇a(x̂) =
v(x̂)T t′a
t(x̂)T · t′

. (10.51)

Each group orbitMx = {g x|g ∈ G} is an equivalence class; method of slices
represents the class by its single slice intersection pointx̂. By construction ˆvT t′ =
0, and the motion stays in the (d−N)-dimensional slice. We have thus replaced the
original dynamical system{M, f } by a reduced system{M̂, f̄ }.

In the pattern recognition and ‘template fitting’ settings (10.51) is called the
‘reconstruction equation.’ Integrated together, the reduced state space trajectoryexercise 10.33

exercise 10.35(10.50) andg(τ) = exp{φ(τ) · T}, the integrated phase (10.51), reconstruct the full
state space trajectoryx(τ) = g(τ) x̂(τ) from the reduced state space trajectory ˆx(τ),
so no information about the flow is lost in the process of symmetry reduction.
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Figure 10.12: A slice fixed by taking as a tem-
plate a point on the complex Lorenz equations
relative equilibrium group orbit, ˆx′ = xTW1. (a)
The strange attractor of figure 10.1 in the reduced
state space of (10.50),{x1, x2, z} projection. (b)
{x2, y2, z} projection. The reduced state space com-
plex Lorenz flow strange attractor of figure 10.1
now exhibits a discontinuity due to the vanishing
denominator in (10.52).

(a) (b)

Example 10.12 A slice for complex Lorenz flow. (continuation of example 10.6) Here
we can use the fact that

t(x̂)T · t′ = x̄TTT · T x̂′ = x̄1x′1 + x̄2x′2 + ȳ1y′1 + ȳ2y′2

is the dot-product restricted to the m = 1 4-dimensional representation of SO(2). A
generic x̂′ can be brought to form x̂′ = (0, 1, y′1, y

′
2, z) by a rotation and rescaling. Then

T x̂′ = (1, 0, y′2,−y′1, 0), and

v(x̄) · t′
t(x̄) · t′ = −

v1 + v3y′2 − v4y′1
x̄2 + ȳ1y′1 + ȳ2y′2

. (10.52)

A long time trajectory of (10.50) with x̂′ on the relative equilibrium TW1 group orbit
is shown in figure 10.12. As initial condition we chose the initial point (10.32) on the
unstable manifold of TW1, rotated back to the slice by angle φ as prescribed by (10.44).
We show the part of the trajectory for t ∈ [70, 100]. The relative equilibrium TW1, now an
equilibrium of the reduced state space dynamics, organizes the flow into a Rössler type
attractor (see figure 2.6). The denominator in (10.51) vanishes and the phase velocity
φ̇(x̂) diverges whenever the direction of group action on the reduced state space point
is perpendicular to the direction of group action on the slice point x̂′. While the reduced
state space flow appears continuous in the {x1, x2, z} projection, figure 10.12 (a), this
singularity manifests itself as a discontinuity in the {x2, y2, z} projection, figure 10.12 (b).
The reduced state space complex Lorenz flow strange attractor of figure 10.1 now
exhibits a discontinuity whenever the trajectory crosses this 3-dimensional subspace.

Slice flow equations (10.50) and (10.51) are pretty, but there is a trouble in
the paradise. The slice flow encounters singularities in subsets of state space, with
phase velocitẏφ divergent whenever the denominator in (10.52) changes sign, see
{x2, y2, z} projection of figure 10.12 (b). Hence a single slice does not in general
suffice to coverM/G globally.

10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanović)

Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl nearly a century
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Figure 10.13: Invariant ‘image’ of complex Lorenz
flow, figure 10.1, projected onto the invariant polyno-
mials basis (10.53). Note the unstable manifold con-
nection from the equilibriumEQ0 at the origin to the
strange attractor controlled by the rotation around rela-
tive equilibriumEQ1 (the reduced state space image of
TW1); as in the Lorenz flow figure 3.4, natural measure
close toEQ0 is vanishingly small but non-zero.

u3

u4

z

Q1

ago? Indeed, the most common approach to symmetry reductionis by means
of a Hilbert invariant polynomial bases (9.27), motivated intuitively by existence
of such nonlinear invariants as the rotationally-invariant length r2 = x2

1 + x2
2 +

· · · + x2
d, or, in Hamiltonian dynamics, the energy function. One trades in the

equivariant state space coordinates{x1, x2, · · · , xd} for a non-unique set ofm ≥ d
polynomials{u1, u2, · · · , um} invariant under the action of the symmetry group.
These polynomials are linearly independent, but functionally dependent through
m− d + N relations calledsyzygies.

Example 10.13 An SO(2) Hilbert basis. (continued from example 9.18) The
Hilbert basis

u1 = x2
1 + x2

2 , u2 = y2
1 + y2

2 ,

u3 = x1y2 − x2y1 , u4 = x1y1 + x2y2 ,

u5 = z. (10.53)

is invariant under the SO(2) action on a 5-dimensional state space (10.18). That im-
plies, in particular, that the image of the full state space relative equilibrium TW1 group
orbit of figure 10.4 is the stationary equilibrium point EQ1, see figure 10.13. The poly-
nomials are linearly independent, but related through one syzygy,

u1u2 − u2
3 − u2

4 = 0 , (10.54)

yielding a 4-dimensional M/SO(2) reduced state space, a symmetry-invariant repre-
sentation of the 5-dimensional SO(2) equivariant dynamics. (continued in exam-
ple 10.14)

The dynamical equations follow from the chain rule

u̇i =
∂ui

∂x j
ẋ j , (10.55)

upon substitution{x1, x2, · · · , xd} → {u1, u2, · · · , um}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,
equivariant basis in terms of these invariant polynomials. exercise 10.15
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Example 10.14 Complex Lorenz equations in a Hilbert basis. (continuation of
example 10.13) Substitution of (10.2) and (10.53) into (10.55) yields complex Lorenz
equations in terms of invariant polynomials:

u̇1 = 2σ (u4 − u1) ,

u̇2 = −2( u2 − ρ2 u3 − (ρ1 − u5) u4) ,

u̇3 = −(σ + 1)u3 + ρ2 u1 + e u4 , (10.56)

u̇4 = −(σ + 1)u4 + (ρ1 − u5) u1 + σu2 − e u3 ,

u̇5 = u4 − b u5 .

As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.56). It suffices to integrate the original, unreduced flow of Figure 10.1, but
plot the solution in the image space, i.e., ui invariant, Hilbert polynomial coordinates,
as in figure 10.13. (continued in example 10.15)

Reducing dimensionality of a dynamical system by elimination of variables
through inclusion of syzygies such as (10.54) introduces singularities. Such elimi-
nation of variables, however, is not needed for visualization purposes; syzygies
merely guarantee that the dynamics takes place on a submanifold in the projec-
tion on the{u1, u2, · · · , um} coordinates. However, when onereconstructsthe dy-
namics in the original spaceM from its imageM/G, the transformations have
singularities at the fixed-point subspaces of the isotropy subgroups inM.

Example 10.15 Hilbert basis singularities. (continuation of example 10.14) When
one takes syzygies into account in rewriting a dynamical system, singularities are intro-
duced. For instance, if we solve (10.54) for u2 and substitute into (10.56), the reduced
set of equations,

u̇1 = 2σ (u4 − u1)

u̇3 = −(σ + 1)u3 + ρ2 u1 + e u4

u̇4 = −(σ + 1)u4 + (ρ1 − u5) u1 + σ (u2
3 + u2

4)/u1 − e u3

u̇5 = u4 − b u5 , (10.57)

is singular as u1→ 0. (E. Siminos)

Nevertheless we can now easily identify a suitable Poincar´e section, guided
by the Lorenz flow examples of chapter 9, as one that contains the z-axis and
the image of the relative equilibriumTW1, here defined by the conditionu1 =

u4. As in example 11.4, we construct the first return map using ascoordinate
the Euclidean arclength along the intersection of the unstable manifold ofTW1

with the Poincaré surface of section, see figure 10.14. Thusthe goals set into
the introduction to this chapter are attained: we have reduced the messy strange
attractor of figure 10.1 to a 1-dimensional return map. As will be explained in
example 11.4 for the Lorenz attractor, we now have the symbolic dynamics and
can compute as many relative periodic orbits of the complex Lorenz flow as we
wish, missing none.
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Figure 10.14: Return map to the Poincaré section
u1 = u4 for complex Lorenz equations projected on
invariant polynomials (10.53). The return map coor-
dinate is the Euclidean arclength distance fromTW1,
measured along the Poincaré section of its spiral-out
unstable manifold, as for the Lorenz flow return map
of example 11.4. 0 100 200 300 400 500
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What limits the utility of Hilbert basis methods are not suchsingularities, but
rather the fact that the algebra needed to determine a Hilbert basis becomes com-
putationally prohibitive as the dimension of the system or of the group increases.
Moreover, even if such basis were available, rewriting the equations in an invari-
ant polynomial basis seems impractical, so in practice Hilbert basis computations
appear not feasible beyond state space dimension of order ten. When our goal is
to quotient continuous symmetries of high-dimensional flows, such as the Navier-
Stokes flows, we need a workable framework. The method of moving frames of
sect. 10.4 is one such minimalist alternative.

Résum é

The message: If a dynamical systems has a symmetry, use it! Here we have
described how, and offered two approaches to continuous symmetry reduction.
In the method of slicesone fixes a ‘slice’ ( ˆx − x̂′)T t′ = 0, a hyperplane normal
to the group tangentt′ that cuts across group orbits in the neighborhood of the
slice-fixing point x̂′. Each class of symmetry-equivalent points is represented by
a single point, with the symmetry-reduced dynamics in the reduced state space
M/G given by (10.50):

v̂ = v− φ̇ · t , φ̇a = (vT t′a)/(t · t′) .

In practice one runs the dynamics in the full state space, andpost-processes the
trajectory by the method of moving frames. In theHilbert polynomial basisap-
proach one transforms the equivariant state space coordinates into invariant ones,
by a nonlinear coordinate transformation

{x1, x2, · · · , xd} → {u1, u2, · · · , um} + {syzygies} ,

and studies the invariant ‘image’ of dynamics (10.55) rewritten in terms of invari-
ant coordinates.

Continuous symmetry reduction is considerably more involved than the dis-
crete symmetry reduction to a fundamental domain of chapter9. Slices are only
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local sections of group orbits, and Hilbert polynomials arenon-unique and diffi-
cult to compute for high-dimensional flows. However, there is no need to actually
recast the dynamics in the new coordinates: either approachcan be used as a vi-
sualization tool, with all computations carried out in the original coordinates, and
then, when done, projecting the solutions onto the symmetryreduced state space
by post-processing the data. The trick is to construct a goodset of symmetry
invariant Poincaré sections (see sect. 3.1), and that is always a dark art, with or
without a symmetry.

We conclude with a few general observations: Higher dimensional dynamics
requires study of compact invariant sets of higher dimension than 0-dimensional
equilibria and 1-dimensional periodic orbits studied so far. In sect. 2.1.1 we made
an attempt to classify ‘all possible motions:’ (1) equilibria, (2) periodic orbits, (3)
everything else. Now one can discern in the fog of dynamics anoutline of a more
serious classification - long time dynamics takes place on the closure of a set of
all invariant compact sets preserved by the dynamics, and those are: (1) 0-dimens-
ional equilibriaMEQ, (2) 1-dimensional periodic orbitsMp, (3) global symmetry
inducedN-dimensional relative equilibriaMTW, (4) (N+1)-dimensional relative
periodic orbitsMp, (5) terra incognita. We have some inklings of the ‘terra incog-
nita:’ for example, in symplectic symmetry settings one finds KAM-tori, and in
general dynamical settings we encounterpartially hyperbolic invariant M-tori,
isolated tori that are consequences of dynamics, not of a global symmetry. They
are harder to compute than anything we have attempted so far,as they cannot be
represented by a single relative periodic orbit, but require a numerical computa-
tion of full M-dimensional compact invariant sets and their infinite-dimensional
linearized Jacobian matrices, marginal inM dimensions, and hyperbolic in the
rest. We expect partially hyperbolic invariant tori to playimportant role in high-
dimensional dynamics. In this chapter we have focused on thesimplest example
of such compact invariant sets, where invariant tori are a robust consequence of
a global continuous symmetry of the dynamics. The direct product structure of a
global symmetry that commutes with the flow enables us to reduce the dynamics
to a desymmetrized (d−1−N)-dimensional reduced state spaceM/G.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to unstable (N+1)-dimension-
al compact manifoldsMp invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. In presence of a continuous symmetry,
likelihood of finding a periodic orbit iszero. Relative periodic orbits are almost
never eventually periodic, i.e., they almost never lie on periodic trajectories in
the full state space, so looking for periodic orbits in systems with continuous
symmetries is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of chapter 9, for
example the orthogonal group O(n). In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subspaces are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can everenter these discrete
invariant subspaces) they will be important for periodic orbit theory, as there the

continuous - 15june2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 10. RELATIVITY FOR CYCLISTS 206

shortest orbits dominate, and they tend to be the most symmetric solutions. chapter 21

Commentary

Remark 10.1 A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued from remark 9.1): The literature on
symmetries in dynamical systems is immense, most of it deliriously unintelligible. Would
it kill them to say ‘symmetry of orbitp’ instead of carrying on about ‘isotropies, quotients,
factors, normalizers, centralizers and stabilizers?’ [10.9, 10.10, 10.8, 9.15] Group action
being ‘free, faithful, proper, regular?’ Symmetry-reduced state space being ‘orbitfold?’
For the dynamical systems applications at hand we need only basic the Lie group facts, on
the level of any standard group theory textbook [10.2]. We found Roger Penrose [10.3]
introduction to the subject both enjoyable and understandable. Chapter 2. of ref. [10.4]
offers a pedagogical introduction to Lie groups of transformations, and Nakahara [10.5]
to Lie derivatives and brackets. The presentation given here is in part based on Siminos
thesis [10.6] and ref. [10.7]. The reader is referred to the monographs of Golubitsky and
Stewart [10.8], Hoyle [10.9], Olver [10.11], Bredon [10.12], and Krupa [10.13] for more
depth and rigor than would be wise to wade into here.

Relative equilibria and relative periodic solutions are related by symmetry reduction
to equilibria and periodic solutions of the reduced dynamics. They appear in many physi-
cal applications, such as celestial mechanics, molecular dynamics, motion of rigid bodies,
nonlinear waves, spiralling patterns, and fluid mechanics.A relative equilibrium is a solu-
tion which travels along an orbit of the symmetry group at constant speed; an introduction
to them is given, for example, in Marsden [?]. According to Cushman, Bates [10.14] and
Yoder [10.15], C. Huygens [10.16] understood the relative equilibria of a spherical pen-
dulum many years before publishing them in 1673. A reductionof the translation sym-
metry was obtained by Jacobi (for a modern, symplectic implementation, see Laskaret
al. [10.17]). In 1892 German sociologist Vierkandt [10.18] showed that on a symmetry-
reduced space (the constrained velocity phase space modulothe action of the group of
Euclidean motions of the plane) all orbits of the rolling disk system are periodic [10.19].
According to Chenciner [10.20], the first attempt to find (relative) periodic solutions of
the N-body problem was the 1896 short note by Poincaré [10.21], in the context of the
3-body problem. Poincaré named such solutions ‘relative.’ Relative equilibria of theN-
body problem (known in this context as the Lagrange points, stationary in the co-rotating
frame) are circular motions in the inertial frame, and relative periodic orbits correspond
to quasiperiodic motions in the inertial frame. For relative periodic orbits in celestial me-
chanics see also ref. [10.22]. A striking application of relative periodic orbits has been
the discovery of “choreographies” in theN-body problems [10.23, 10.24, 10.25].

The modern story on equivariance and dynamical systems starts perhaps with S.
Smale [10.26] and M. Field [10.27], and on bifurcations in presence of symmetries with
Ruelle [10.28]. Ruelle proves that the stability matrix/Jacobian matrix evaluated at an
equilibrium/fixed pointx ∈ MG decomposes into linear irreducible representations ofG,
and that stable/unstable manifold continuations of its eigenvectors inherit their symmetry
properties, and shows that an equilibrium can bifurcate to arotationally invariant periodic
orbit (i.e., relative equilibrium).

Gilmore and Lettelier monograph [10.29] offers a very clear, detailed and user friendly
discussion of symmetry reduction by means of Hilbert polynomial bases (do not look for
‘Hilbert’ in the index, though). Vladimirov, Toronov and Derbov [10.30] use an invari-
ant polynomial basis different from (10.53) to study bounding manifolds of the symme-
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try reduced complex Lorenz flow and its homoclinic bifurcations. There is no general
strategy how to construct a Hilbert basis; clever low-dimensional examples have been
constructed case-by-case. The example 10.13, with one obvious syzygy, is also mislead-
ing - syzygies proliferate rapidly with increase in dimensionality. The determination of a
Hilbert basis appears computationally prohibitive for state space dimensions larger than
ten [10.31, 10.32], and rewriting the equations of motions in invariant polynomial bases
appears impractical for high-dimensional flows. Thus, by 1920’s the problem of rewrit-
ing equivariant flows as invariant ones was solved by Hilbertand Weyl, but at the cost
of introducing largely arbitrary extra dimensions, with the reduced flows on manifolds
of lowered dimensions, constrained by sets of syzygies. Cartan found this unsatisfactory,
and in 1935 he introduced [10.33] the notion of amoving frame, a map from a manifold to
a Lie group, which seeks no invariant polynomial basis, but instead rewrites the reduced
M/G flow in terms ofd − N fundamental invariantsdefined by a generalization of the
Poincaré section, a slice that cuts across all group orbitsin some open neighborhood. Fels
and Olver view the method as an alternative to the Gröbner bases methods for computing
Hilbert polynomials, to compute functionally independentfundamental invariant bases
for general group actions (with no explicit connection to dynamics, differential equations
or symmetry reduction). ‘Fundamental’ here means that theycan be used to generate all
other invariants. Olver’s monograph [10.11] is pedagogical, but does not describe the
original Cartan’s method. Fels and Olver papers [10.34, 10.35] are lengthy and technical.
They refer to Cartan’s method as method of ‘moving frames’ and view it as a special and
less rigorous case of their ‘moving coframe’ method. The name ‘moving coframes’ arises
through the use of Maurer-Cartan form which is a coframe on the Lie groupG, i.e., they
form a pointwise basis for the cotangent space. In refs. [10.6, 10.7] the invariant bases
generated by the moving frame method are used as a basis to project a full state space
trajectory to the slice (i.e., theM/G reduced state space).

The basic idea of the ‘method of slices’ is intuitive and frequently reinvented, often
under a different name; for example, it is stated without attribution asthe problem 1. of
Sect. 6.2 of Arnol’dOrdinary Differential Equations[10.36]. The factorization (10.42)
is stated on p. 31 of Anosov and Arnol’d [10.37], who note, without further elaboration,
that in the vicinity of a point which is not fixed by the group one can reduce the order of
a system of differential equations by the dimension of the group. Ref. [10.38] refers to
symmetry reduction as ‘lowering the order.’ For the definition of ‘slice’ see, for example,
Chossat and Lauterbach [10.32]. Briefly, a submanifoldMx̂′ containingx̂′ is called a
slice through x̂′ if it is invariant under isotropyGx̂′(Mx̂′ ) = Mx̂′ . If x̂′ is a fixed point
of G, than slice is invariant under the whole group. The slice theorem is explained, for
example, in Encyclopaedia of Mathematics. Slices tend to bediscussed in contexts much
more difficult than our application - symplectic groups, sections in absence of global
charts, non-compact Lie groups. We follow refs. [10.39] in referring to a local group-orbit
section as a ‘slice.’ Refs. [10.12, 10.40] and others refer to global group-orbit sections as
‘cross-sections,’ a term that we would rather avoid, as it already has a different and well
established meaning in physics. Duistermaat and Kolk [10.41] refer to ‘slices,’ but the
usage goes back at least to Guillemin and Sternberg [10.40] in 1984, Palais [10.42] in
1961 and Mastow [10.43] in 1957. Bredon [10.12] discusses both cross-sections and
slices. Guillemin and Sternberg [10.40] define the ‘cross-section,’ but emphasize that
finding it is very rare: “existence of a global section is a very stringent condition on a
group action. The notion of ‘slice’ is weaker but has a much broader range of existence.”

Several important fluid dynamics flows exhibit continuous symmetries which are
either SO(2) or products of SO(2) groups, each of which act ondifferent coordinates
of the state space. The Kuramoto-Sivashinsky equations [26.3, 26.4], plane Couette
flow [H.31, 26.15, 10.55, B.1], and pipe flow [10.56, 10.57] all have continuous symme-
tries of this form. In the 1982 paper Rand [10.58] explains how presence of continuous
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symmetries gives rise to rotating and modulated rotating (quasiperiodic) waves in fluid
dynamics. Haller and Mezić [10.59] reduce symmetries of three-dimensional volume-
preserving flows and reinvent method of moving frames, underthe name ‘orbit projection
map.’ There is extensive literature on reduction of symplectic manifolds with symme-
try; Marsden and Weinstein 1974 article [10.60] is an important early reference. Then
there are studies of the reduced phase spaces for vortices moving on a sphere such as
ref. [10.61], and many, many others.

Reaction-diffusion systems are often equivariant with respect to the action of a finite
dimensional (not necessarily compact) Lie group. Spiral wave formation in such non-
linear excitable media was first observed in 1970 by Zaikin and Zhabotinsky [10.44].
Winfree [10.45, 10.46] noted that spiral tips execute meandering motions. Barkley and
collaborators [10.47, 10.48] showed that the noncompact Euclidean symmetry of this class
of systems precludes nonlinear entrainment of translational and rotational drifts and that
the interaction of the Hopf and the Euclidean eigenmodes leads to observed quasiperiodic
and meandering behaviors. Fiedler, in the influential 1995 talk at the Newton Institute,
and Fiedler, Sandstede, Wulff, Turaev and Scheel [10.49, 10.50, 10.51, 10.52] treat Eu-
clidean symmetry bifurcations in the context of spiral waveformation. The central idea
is to utilize the semidirect product structure of the Euclidean groupE(2) to transform the
flow into a ‘skew product’ form, with a part orthogonal to the group orbit, and the other
part within it, as in (10.50). They refer to a linear slicêM near relative equilibrium as a
Palais slice, with Palais coordinates. As the choice of the slice is arbitrary, these coordi-
nates are not unique. According to these authors, the skew product flow was first written
down by Mielke [10.53], in the context of buckling in the elasticity theory. However, this
decomposition is no doubt much older. For example, it was used by Krupa [10.13, 10.32]
in his local slice study of bifurcations of relative equilibria. Biktashev, Holden, and Niko-
laev [10.54] cite Anosov and Arnol’d [10.37] for the ‘well-known’ factorization (10.42)
and write down the slice flow equations (10.50).

Neither Fiedleret al. [10.49] nor Biktashevet al. [10.54] implemented their methods
numerically. That was done by Rowley and Marsden for the Kuramoto-Sivashinsky [10.39]
and the Burgers [10.62] equations, and Beyn and Thümmler [10.63, 10.64] for a number
of reaction-diffusion systems, described by parabolic partial differential equations on un-
bounded domains. We recommend the Barkley paper [10.48] fora clear explanation of
how the Euclidean symmetry leads to spirals, and the Beyn andThümmler paper [10.63]
for inspirational concrete examples of how ‘freezing’/‘slicing’ simplifies the dynamics
of rotational, traveling and spiraling relative equilibria. Beyn and Thümmler write the
solution as a composition of the action of a time dependent group elementg(t) with a
‘frozen,’ in-slice solution ˆu(t) (10.42). In their nomenclature, making a relative equilib-
rium stationary by going to a co-moving frame is ‘freezing’ the traveling wave, and the
imposition of the phase condition (i.e., slice condition (10.43)) is the ‘freezing ansatz.’
They find it more convenient to make use of the equivariance byextending the state space
rather than reducing it, by adding an additional parameter and a phase condition. The
‘freezing ansatz’ [10.63] is identical to the Rowley and Marsden [10.62] and our slicing,
except that ‘freezing’ is formulated as an additional constraint, just as when we compute
periodic orbits of ODEs we add Poincaré section as an additional constraint, i.e., increase
the dimensionality of the problem by 1 for every continuous symmetry (see sect. 13.4). section 13.4

Derivation of sect. 10.4.2 follows most closely Rowley and Marsden [10.62] who,
in the pattern recognition setting refer to the slice point as a ‘template,’ and call (10.51)
the ‘reconstruction equation’ [?, 10.65]. They also describe the ‘method of connections’
(called ‘orthogonality of time and group orbit at successive times’ in ref. [10.63]), for
which the reconstruction equation (10.51) denominator ist(x̂)T ·t(x̂) and thus nonvanishing
as long as the action of the group is regular. This avoids the spurious slice singularities, but
it is not clear what the ‘method of connections’ buys us otherwise. It does not reduce the
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dimensionality of the state space, and it accrues ‘geometric phases’ which prevent relati-
ve periodic orbits from closing into periodic orbits. Geometric phase in laser equations,
including complex Lorenz equations, has been studied in ref. [10.66, 10.67, 10.69, 10.70,
10.71]. Another theorist’s temptation is to hope that a continuous symmetry would lead us
to a conserved quantity. However, Noether theorem requiresthat equations of motion be
cast in Lagrangian form and that the Lagrangian exhibits variational symmetries [10.72,
10.73]. Such variational symmetries are hard to find for dissipative systems.

Sect. 10.1.2 title ‘Lie groups for cyclists’ is bit of a joke in more ways than one.
First, ‘cyclist,’ ‘pedestrian’ throughout ChaosBook.orgrefer jokingly both to the title of
Lipkin’s Lie groups for pedestrians[10.74] and to our preoccupations with actual cy-
cling. Lipkin’s ‘pedestrian’ is fluent in Quantum Field Theory, but wobbly on Dynkin
diagrams. More to the point, it is impossible to dispose of Lie groups in a page of text. As
a counterdote to the 1-page summary of sect. 10.1.2, consider reading Gilmore’s mono-
graph [10.75] which offers a quirky, personal and enjoyable distillation of a lifetime of
pondering Lie groups. As seems to be the case with any textbook on Lie groups, it will
not help you with the problem at hand, but it is the only place you can learn both what
Galois actually did when he invented the theory of finite groups in 1830, and what, in-
spired by Galois, Lie actually did in his 1874 study of symmetries of ODEs. Gilmore
also explains many things that we pass over in silence here, such as matrix groups, group
manifolds, and compact groups.

One would think that with all this literature the case is shutand closed, but not so.
Applied mathematicians are inordinately fond of bifurcations, and almost all of the pre-
vious work focuses on equilibria, relative equilibria, andtheir bifurcations, and for these
problems a single slice works well. Only when one tries to describe the totality of chaotic
orbits does the non-global nature of slices become a seriousnuisance.

(E. Siminos and P. Cvitanović)

Remark 10.2 Complex Lorenz equations (10.1) were introduced by Gibbon and
McGuinness [10.76, 10.77] as a low-dimensional model of baroclinic instability in the at-
mosphere. They are a generalization of Lorenz equations (2.12). Ning and Haken [10.78]
have shown that equations isomorphic to complex Lorenz equations also appear as a trun-
cation of Maxwell-Bloch equations describing a single mode, detuned, ring laser. They
sete+ ρ2 = 0 so that SO(2)-orbits of detuned equilibria exist [10.77].Zeghlache and
Mandel [?] also use equations isomorphic to complex Lorenz equationswith e+ρ2 = 0 in
their studies of detuned ring lasers. This choice is ‘degenerate’ in the sense that it leads to
non-generic bifurcations. As existence of relative equilibria in systems with SO(2) sym-
metry is the generic situation, we follow Bakasov and Abraham [10.79] who setρ2 = 0
ande, 0 in order to describe detuned lasers. Here, however, we are not interested in the
physical applications of these equations; rather, we studythem as a simple example of a
dynamical system with continuous (but no discrete) symmetries, with a view of testing
methods of reducing the dynamics to a lower-dimensional reduced state space. Complex
Lorenz flow examples and exercises in this chapter are based on E. Siminos thesis [10.6]
and R. Wilczak project report [10.80].

Remark 10.3 Velocity vs. Speed Velocity is a vector, the rate at which the object
changes its position.Speed, or the magnitude of the velocity, is a scalar quantity which
describes how fast an object moves. We denote the rate of change of group phases, or
the phase velocityby the vectorc = (φ̇1, · · · , φ̇N) = (c1, · · · , cN), a component for each
of the N continuous symmetry parameters. These are converted to state space velocity
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components along the group tangents by

v(x) = c(t) · t(x) . (10.58)

For rotational waves these are called “angular velocities.”

Remark 10.4 Killing fields. The symmetry tangent vector fields discussed here are a
special case of Killing vector fields of Riemannian geometryand special relativity. If this
poetry warms the cockles of your heart, hang on. From wikipedia (this wikipedia might
also be useful): A Killing vector field is a set of infinitesimal generators of isometries on
a Riemannian manifold that preserve the metric. Flows generated by Killing fields are
continuous isometries of the manifold. The flow generates a symmetry, in the sense that
moving each point on an object the same distance in the direction of the Killing vector
field will not distort distances on the object. A vector fieldX is a Killing field if the Lie
derivative with respect toX of the metricg vanishes:

LXg = 0 . (10.59)

Killing vector fields can also be defined on any (possibly nonmetric) manifoldM if we
take any Lie groupG acting on it instead of the group of isometries. In this broader sense,
a Killing vector field is the pushforward of a left invariant vector field onG by the group
action. The space of the Killing vector fields is isomorphic to the Lie algebrag of G.

If the equations of motion can be cast in Lagrangian form, with the Lagrangian ex-
hibiting variational symmetries [10.72, 10.73], Noether theorem associates a conserved
quantity with each Killing vector.

(E. Siminos and P. Cvitanović)

Exercises

10.1. Visualizations of the 5-dimensional complex Lorenz
flow: Plot complex Lorenz flow projected on any
three of the five{x1, x2, y1, y2, z} axes. Experiment with
different visualizations.

10.2. SO(2) rotations in a plane: Show by exponentiation
(10.7) that the SO(2) Lie algebra elementT generates
rotationg in a plane,

g(θ) = eTθ = cosθ

(

1 0
0 1

)

+ sinθ

(

0 1
−1 0

)

=

(

cosθ sinθ
− sinθ cosθ

)

. (10.60)

10.3. Invariance under fractional rotations. Argue that
if the isotropy group of the velocity fieldv(x) is the dis-
crete subgroup Cm of SO(2) rotations about an axis (let’s
say the ‘z-axis’),

C1/mv(x) = v(C1/mx) = v(x) , (C1/m)m = e,

the only non-zero components of Fourier-transformed
equations of motion area jm for j = 1, 2, · · ·. Argue that
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the Fourier representation is then the quotient map of
the dynamics,M/Cm. (Hint: this sounds much fancier
than what is - think first of how it applies to the Lorenz
system and the 3-disk pinball.)

10.4. U(1) equivariance of complex Lorenz equations for
finite angles: Show that the vector field in complex
Lorenz equations (10.1) is equivariant under (10.7), the
unitary group U(1) acting onR5

� C
2 × R by

g(θ)(x, y, z) = (eiθx, eiθy, z) , θ ∈ [0, 2π) .(10.61)

(E. Siminos)

10.5. SO(2) equivariance of complex Lorenz equations for
finite angles: Show that complex Lorenz equations
(10.2) are equivariant under rotation for finite angles.

10.6. Stability matrix of complex Lorenz flow: Compute
the stability matrix (10.26) for complex Lorenz equa-
tions (10.2).

10.7. SO(2) equivariance of complex Lorenz equations for
infinitesimal angles. Show that complex Lorenz
equations are equivariant under infinitesimal SO(2) ro-
tations.

10.8. A 2-mode SO(2)-equivariant flow: Complex Lorenz
equations (10.1) of Gibbon and McGuinness [10.76]
have a degenerate 4-dimensional subspace, with SO(2)
acting only in its lowest non-trivial representation. Here
is a possible model, still 5-dimensional, but with SO(2)
acting in the two lowest representations. Such models
arise as truncations of Fourier-basis representations of
PDEs on periodic domains. In the complex form, the
simplest such modification of complex Lorenz equations
may be the “2-mode” system

ẋ = −σx+ σx∗y

ẏ = (ρ − z)x2 − ay

ż = −bz+
1
2

(

x2y∗ + x∗2y
)

, (10.62)

wherex, y, ρ, a are complex andz, b, σ are real. Rewrit-
ten in terms of real variablesx = x1 + i x2 , y = y1 + i y2

this is a 5-dimensional first order ODE system

ẋ1 = −σx1 + σ(x1y1 − x2y2)

ẋ2 = −σx2 + σ(x1y2 − x2y1)

ẏ1 = −y1 + ey2 + (ρ1 − z)(x2
1 − x2

2) − 2ρ2x1x2

ẏ2 = −y2−ey1 + ρ2(x2
1 − x2

2) + (ρ1 − z)(2x1x2)

ż = −bz+ (x2
1 − x2

2)y1 + 2x1x2y2 . (10.63)

Verify (10.63) by substitutingx = x1+ i x2 , y = y1+ i y2,
ρ = ρ1 + i ρ2, a = 1+ i e into the complex 2-mode equa-
tions (10.62).

10.9. U(1) equivariance of 2-mode system for finite angles:
Show that 2-mode system (10.62) is equivariant under
rotation for finite angles.

10.10. SO(2) equivariance of the 2-mode system for in-
finitesimal angles. Verify that the 2-mode system
(10.63) is equivariant under infinitesimal SO(2) rota-
tions (10.18) by showing that the stability matrix (4.3)
for the system is given byA =





































σ(y1 − 1) σy2 σx1
σy2 −σ(y1 + 1) −σx

2ρ1x1 − 2ρ2x2 − 2x1z 2x2z− 2ρ2x1 − 2ρ1x2 −1
2ρ1x2 + 2ρ2x1 − 2x2z 2ρ1x1 − 2ρ2x2 − 2x1z −e

2x1y1 + 2x2y2 2x1y2 − 2x2y1 x2
1 − x

and substituting the Lie algebra generator

T =



































0 1 0 0 0
−1 0 0 0 0
0 0 0 2 0
0 0 −2 0 0
0 0 0 0 0



































(10.65)

and the stability matrix (10.64) into the equivariance
condition (10.24).

10.11. Visualizations of the 5-dimensional 2-mode system:
Plot 2-mode system projected on any three of the five
{x1, x2, y1, y2, z} axes. For complex Lorenz flow nu-
merical examples we have set the parameters toρ1 =

28, ρ2 = 0, b = 8/3, σ = 10, e = 1/10, but here you
will have to play with them until you find something
that looks interestingly chaotic. Experiment with differ-
ent visualizations. It’s a big mess - have no clue what
parameters to take, what the trajectory will do.

10.12. Discover the equivariance of a given flow:

Suppose you were given complex Lorenz equa-
tions, but nobody told you they are SO(2) equivariant.
More generally, you might encounter a flow without re-
alizing that it has a continuous symmetry - how would
you discover it?

10.13. Equilibria of complex Lorenz equations: Find all
equilibria of complex Lorenz equations. Hint: Equilib-
ria come either in the fixed Fix(G) subspace, or on a
group orbit.

10.14. More equilibria of complex Lorenz equations:

In exercise 10.13 we found only one equi-
librium of complex Lorenz equations. The Ning and
Haken [10.78] version of complex Lorenz equations (a
truncation of Maxwell-Bloch equations describing a sin-
gle mode ring laser) setse+ ρ2 = 0 so that a detuned
equilibrium exists. Test your routines on 2 cases: (a)
e = 0, ρ2 = 0. As discussed by Siminos [10.6], reality
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of parametersa, ρ in (10.1) implies existence of a dis-
crete C2 symmetry. (b)e+ ρ2 = 0, e , 0. You might
want to compare results with those of Ning and Haken.

10.15. Complex Lorenz equations in a Hilbert basis. (con-
tinuation of example 10.13) Derive complex Lorenz
equations (10.56) in terms of invariant polynomials
(10.56), plot the strange attractor in projections you find
illuminating (one example is figure 10.13).

10.16. Hilbert basis singularities. When one takes syzygies
into account in rewriting a dynamical system, singulari-
ties are introduced. For instance, eliminateu2 using the
syzygy, and show that you get the reduced set of equa-
tions,

u̇1 = 2σ (u4 − u1)

u̇3 = −(σ + 1)u3 + ρ2 u1 + e u4

u̇4 = −(σ + 1)u4 + (ρ1 − u5) u1 + σ (u2
3 + u2

4)/u1 − e u3

u̇5 = u4 − b u5 , (10.66)

singular asu1→ 0. (E. Siminos)

10.17. Complex Lorenz equations in polar coordinates.
Rewrite complex Lorenz equations from Cartesian to
polar coordinates, using (x1, x2, y1, y2, z) =

(r1 cosθ1, r1 sinθ1, r2 cosθ2, r2 sinθ2, z) , (10.67)

wherer1 ≥ 0 , r2 ≥ 0. Show that in polar coordinates the
equations take form





































ṙ1

θ̇1
ṙ2

θ̇2
ż





































=





































−σ (r1 − r2 cosθ)
−σ r2

r1
sinθ

−r2 + r1 ((ρ1 − z) cosθ − ρ2 sinθ)
e+ r1

r2
((ρ1 − z) sinθ + ρ2 cosθ)
−bz+ r1r2 cosθ





































,

where angles always appear in the combinationθ =
θ1−θ2 We know from classical mechanics that for trans-
lationally or rotationally invariant flows the relative dis-
tance is invariant (that is why one speaks of ‘relative’
equilibria), hence we introduce a variableθ = θ1 − θ2.
Show that this new variable allows us to rewrite the com-
plex Lorenz equations as 4 coupled polar coordinates
equations:



























ṙ1
ṙ2

θ̇
ż



























=





























−σ (r1 − r2 cosθ)
−r2 + (ρ1 − z)r1 cosθ

−e−
(

σ r2
r1
+ (ρ1 − z) r1

r2

)

sinθ
−bz+ r1r2 cosθ





























(10.68)

where we have setρ2 = 0. (hints: review (6.4), exam-
ple 6.1, exercise 6.1, and (10.55))

10.18. 2-mode system in polar coordinates. Show that the
2-mode system (10.63) rewritten in polar coordinates

(10.67) is given by

ṙ1 = −σr1 + σr1r2 cos(θ)

ṙ2 = −r2 + r2
1((ρ1 − z) cos(θ) − ρ2 sin(θ))

θ̇1 = −σr2 sin(θ) , θ̇2 = −e+
r2
1

r2
((ρ1 − z) sin(θ) + ρ

ż = −bz+
r2
1

r2
cos(θ) ,

where θ = 2θ1 − θ2. Rewriting the angular part as
θ̇ = 2θ̇1 − θ̇2, we have

θ̇ = e−
r2
1

r2
((ρ1−z) sin(θ)+ρ2 cos(θ))−2r2σ sin(θ) .(10.70)

D. Borrero

10.19. Visualizations of the complex Lorenz flow in polar
coordinates:
Plot a long-time solution of (10.68) and show that the
polar representation introduces singularities into what
initially was a smooth flow:

We shall encounter the same problem in implementing
thex1 = 0 slice, .θ is very small until the trajectory ap-
proaches eitherr1 → 0 or r2 → 0, whereMathematica
continues through the singularity by a rapid change ofθ

byπ. The fixed Fix(G) subspace (r1, r2, θ, z) = (0, 0, θ, z)
separates the two folds of the attractor.

Plot complex Lorenz flow projected on any three of the
{r1, r2, θ, z} coordinates. Experiment with different visu-
alizations. The flow is singular asr j → 0, with angleθ j

going through a rapid change there: is that a problem?
Does it make sense to insist onr1 ≥ 0 , r2 ≥ 0, or should
one let them have either sign in order that theθ trajectory
be continuous?

10.20. Computing the relative equilibrium TW1: The two
rotation anglesθ1 andθ2 change in time, but at the rela-
tive equilibria the difference between them is constant,
θ̇ = 0. Find the relative equilibria of the complex Lorenz
equations by finding the equilibria of the system in polar
coordinates (10.68). Show that

(a) The relative equilibrium (hereafter referred
to [10.6] asTW1) is given by
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(r1, r2, θ, z) =
(√

b (ρ1 − d),
√

bd(ρ1 − d),

cos−1
(

1/
√

d
)

, ρ1 − d
)

, (10.71)

whered = 1+ e2/(σ + 1)2,

(b) The angular velocity of relative equilibriumTW1

is

θ̇i = σe/(σ + 1) , (10.72)

with the periodTTW1 = 2π(σ + 1)/σe.

10.21. Relative equilibrium TW1 in polar coordinates: Plot
the equilibriumTW1 in polar coordinates.

10.22. Relative equilibrium TW1 in Cartesian coordinates:
Show that for (10.2) parameter values,

xTW1 = (x1, x2, y1, y2, z) (10.73)

= (8.4849, 0.077135, 8.4856, 0, 26.999),

is a point on theTW1 orbit. Plot the relative equilibrium
TW1 in Cartesian coordinates. State the velocity of rela-
tive equilibrium, compare with the imaginary part of the
complex stability eigenvalue, and explain the two time
scales visible in the ‘horn’, as well as the expansion rate
per turn of the spiral.

10.23. The relative equilibria of the 2-mode system: Find
the relative equilibria of the 2-mode system by finding
the equilibria of the system in polar coordinates (10.68).

10.24. Plotting the relative equilibria of the 2-mode system
in polar coordinates: Plot the relative equilibria of
the 2-mode system in polar coordinates.

10.25. Plotting the relative equilibria of the 2-mode system
in Cartesian coordinates: Plot the relative equilibria
of the 2-mode system in Cartesian coordinates.

10.26. Eigenvalues and eigenvectors ofTW1 stability ma-
trix: Compute the eigenvalues and eigenvectors of
the stability matrix (10.26) evaluated atTW1 and using
the (10.2) parameter values, in (a) Cartesian coordinates,
(b) polar coordinates.

10.27. The eigen-system ofTW1 stability matrix in polar co-
ordinates: Plot the eigenvectors ofA at TW1 in polar
coordinates, as well as the complex Lorenz flow at val-
ues very nearTW1.

10.28. Eigenvalues and eigenvectors ofEQ0 stability ma-
trix: Find the eigenvalues and the eigenvectors of the
stability matrixA (10.26) atEQ0 = (0, 0, 0, 0, 0) deter-
mined in exercise 10.13. ChaosBook convention is to
order eigenvalues from most positive (unstable) to the
most negative. Follow that. Replace complex eigenvec-
tors by the real, imaginary parts, so you can plot them in
(real) state space.

10.29. The eigen-system of the stability matrix atEQ0: Plot
the eigenvectors ofA at EQ0 and the complex Lorenz
flow at values very close toEQ0.

10.30. SO(2) or harmonic oscillator slice: Construct a
moving frame slice for action of SO(2) onR2

(x, y) 7→ (xcosθ − ysinθ, xsinθ + ycosθ)

by, for instance, the positivey axis: x = 0, y > 0. Write
out explicitly the group transformations that bring any
point back to the slice. What invariant is preserved by
this construction? (E. Siminos)

10.31. State space reduction by a slice, ODE formulation:
Replace integration of the complex Lorenz equations by
a sequence of finite time steps, each followed by a ro-
tation such that the next segment initial point is in the
slice x̂2 = 0, x̂1 > 0. Reconsider this as a sequence of
infinitesimal time steps, each followed by an infinitesi-
mal rotation such that the next segment initial point is in
the slicex2 = 0, x1 > 0. Derive the corresponding 4d
reduced state space ODE for the complex Lorenz flow.

10.32. Accumulated phase shift: Derive the 1d equation
(10.51) for the accumulated phase shiftθ associated with
the 4-dimensional reduced state space ODE of exer-
cise 10.31.

10.33. The moving frame flow stays in the reduced state
space: Show that the flow (10.50) stays in a (d−1)-
dimensional slice.

10.34. Relative equilibrium TW1 by the method of slices:
Determine numerically the complex Lorenz equations
equilibrium TW1 by the method of slices, template ˆx′

of your choice.

10.35. State space reduction by a relative equilibriumTW1

template: Replace integration of the complex Lorenz
equations by a sequence of short time steps, each fol-
lowed by a rotation such that the next segment initial
point is in the relative equilibriumTW1 slice

(x̂− x̂TW1) · tTW1 = 0 , tTW1 = T x̂TW1 ,(10.74)

where for anyx, x̂ = g(θ) · x is the rotation that lies in
the slice. Check figure 10.12 by long-time integration of
(10.50).

10.36. Stability of a relative equilibrium in the reduced state
space: Find an expression for the stability matrix of
the system at a relative equilibrium when a linear slice
is used to reduce the symmetry of the flow.

10.37. Stability of a relative periodic orbit in the reduced
state space: Find an expression for the Jacobian
matrix (monodromy matrix) of a relative periodic orbit
when a linear slice is used to reduce the dynamics of the
flow.
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