
Chapter 17

Averaging

Why think when you can compute?
—Maciej Zworski

We discuss first the necessity of studying the averages of observables in
chaotic dynamics. A time average of an observable is computed by inte-
grating its value along a trajectory. The integral along trajectory can be

split into a sum of over integrals evaluated on trajectory segments; if exponenti-
ated, this yields amultiplicativeweight for successive trajectory segments. This
elementary observation will enable us to recast the formulas for averages in a mul-
tiplicative form that motivates the introduction of evolution operators and further
formal developments to come. The main result is that anydynamicalaverage mea-
surable in a chaotic system can be extracted from the spectrum of an appropriately
constructed evolution operator. In order to keep our toes closer to the ground, in
sect. 17.4 we try out the formalism on the first quantitative diagnosis whether a
system is chaotic, the Lyapunov exponent.

17.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-
tial condition, no matter how precise, will fill out the entire accessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamics one cannot follow
individual trajectories for a long time; what is attainable, however, is a description
of the geometry of the set of possible outcomes, and the evaluation of long-time
averages. Examples of such averages are transport coefficients for chaotic dynam-
ical flows, such as escape rates, mean drifts and diffusion rates; power spectra; and
a host of mathematical constructs such as generalized dimensions, entropies, and
Lyapunov exponents. Here we outline how such averages are evaluated within the
evolution operator framework. The key idea is to replace theexpectation values of
observables by the expectation values of generating functionals. This associates
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CHAPTER 17. AVERAGING 350

an evolution operator with a given observable, and relates the expectation value of
the observable to the leading eigenvalue of the evolution operator.

17.1.1 Time averages

Let a = a(x) be anyobservable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reportson a property of
the dynamical system. The observable is a device, such as a thermometer or laser
Doppler velocitometer. The device itself does not change during the measurement.
The velocity fieldai(x) = vi(x) is an example of a vector observable; the length
of this vector, or perhaps a temperature measured in an experiment at instantτ
are examples of scalar observables. We define theintegrated observable At as the
time integral of the observablea evaluated along the trajectory of the initial point
x0,

At(x0) =
∫ t

0
dτa[x(τ)] , x(t) = f t(x0) . (17.1)

If the dynamics are given by an iterated mapping and the time is discrete, the
integrated observable aftern iterations is given by

An(x0) =
n−1
∑

k=0

a(xk) , xk = f k(x0)) (17.2)

(we suppress vectorial indices for the time being).

Example 17.1 Integrated observables. (a) If the observable is the velocity, ai(x) =
vi(x), its time integral At

i(x0) is the trajectory At
i(x0) = xi(t).

(b) For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase-space point x0 = [q(0), p(0)] is:

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (17.3)

Thetime averageof the observable along an orbit is defined by

a(x0) = lim
t→∞

1
t
At(x0) . (17.4)

If a does not behave too wildly as a function of time – for example,if a(x) is the
Chicago temperature, bounded between−80oF and+130oF for all times –At(x0)
is expected to grow no faster thant, and the limit (17.4) exists. For an example of
a time average - the Lyapunov exponent - see sect. 17.4.
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CHAPTER 17. AVERAGING 351

The time average is a property of the orbit, independent of the initial point on
that orbit: if we start at a later state space pointf T(x0) we get a couple of extra
finite contributions that vanish in thet → ∞ limit:

a[ f T (x0)] = lim
t→∞

1
t

∫ t+T

T
dτa[ f τ(x0)]

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτa[ f τ(x0)] −

∫ t+T

t
dτa[ f τ(x0)]

)

= a(x0) .

Example 17.2 Lyapunov exponent. Given a 1-dimensional map, consider observ-
able λ(x) = ln | f

′

(x)| and integrated observable

An(x0) =
n−1
∑

k=0

ln | f
′

(xk)| = ln
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∣

∣

∣
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∣
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The Lyapunov exponent is the average rate of the expansion

λ(x0) = lim
n→∞

1
n

n−1
∑

k=0

ln | f
′

(xk)| .

See sect. 17.4.1 for further details.

The integrated observableAt(x0) and the time averagea(x0) take a particularly
simple form when evaluated on a periodic orbit. Define exercise 4.6

Ap =















apTp =
∫ Tp

0 dτa[ f τ(x0)] for a flow
apnp =

∑np

i=1 a[ f i(x0)] for a map
, x0 ∈ Mp , (17.5)

wherep is a prime cycle,Tp is its period, andnp is its discrete time period in the
case of iterated map dynamics. The quantityAp is a loop integral of the observable
along a single traversal of a prime cyclep, so it is an intrinsic property of the cycle,
independent of the starting pointx0 ∈ Mp. (If the observablea is not a scalar but
a vector or matrix we might have to be more careful in defining an average which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtainAp repeatedr times. Evaluation of the asymptotic time
average (17.4) therefore requires only a single traversal of the cycle:

ap = Ap/Tp . (17.6)

However,a(x0) is in general a wild function ofx0; for a hyperbolic system it
takes the same value〈a〉 for almost all initial x0, but a different value (17.6) on
any periodic orbit, i.e., on a dense set of points (figure 17.1(b)).
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CHAPTER 17. AVERAGING 352

Figure 17.1: (a) A typical chaotic trajectory ex-
plores the state space with the long time visitation
frequency building up the natural measureρ0(x).
(b) time average evaluated along an atypical tra-
jectory such as a periodic orbit fails to explore the
entire accessible state space. (A. Johansen)

(a)

x

M (b)

Example 17.3 Deterministic diffusion. The phase space of an open system such as
the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 25.1)
is dense with initial points that correspond to periodic runaway trajectories. The mean
distance squared traversed by any such trajectory grows as x(t)2 ∼ t2, and its contri-
bution to the diffusion rate D ∝ x(t)2/t, (17.4) evaluated with a(x) = x(t)2, diverges.
Seemingly there is a paradox; even though intuition says the typical motion should be
diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by also averaging over
the initial x and worrying about the measure of the ‘pathological’ trajectories. (contin-
ued in example 17.4)

section 25.1

17.1.2 Spatial averages

Thespace averageof a quantitya evaluated over all state space trajectoriesx(t) at
time t is given by thed-dimensional integral over all initial pointsx0 at timet = 0:

〈a〉(t) =
1
|M|

∫

M

dx0 a[x(t)] , x(t) = f t(x0)

|M| =

∫

M

dx = volume ofM . (17.7)

The spaceM is assumed to have finite volume - open systems like the 3-diskgame
of pinball are discussed in sect. 17.3.

What is it wereally do in experiments? We cannot measure the time average
(17.4), as there is no way to prepare a single initial condition with infinite preci-
sion. The best we can do is prepare an initial densityρ(x), perhaps concentrated on
some small (but always finite) neighborhood. Then we can abandon the uniform
space average (17.7) and consider instead the weighted spatial average

〈a〉ρ(t) =
1
|Mρ|

∫

M

dx0 ρ(x0) a[x(t)] , |Mρ| =

∫

M

dxρ(x) . (17.8)

For ergodic mixing systems,anysmooth initial density will tend to the asymptotic
natural measure in thet → ∞ limit ρ(x, t) → ρ0(x). This allows us to take any
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CHAPTER 17. AVERAGING 353

smooth initialρ(x) and define theexpectation value〈a〉 of an observablea as the
asymptotic time and space average over the state spaceM

〈a〉 =
1
|M|

∫

M

dxa[x] = lim
t→∞

1
|M|

∫

M

dx0
1
t

∫ t

0
dτa[x(t)] . (17.9)

We use the same〈· · ·〉 notation as for the space average (17.7) and distinguish the
two by the presence of the time variable in the argument: if the quantity〈a〉(t)
being averaged depends on time, then it is a space average; ifit is the infinite time
limit, it is the expectation value〈a〉.

The expectation value is a space average of time averages, with everyx ∈ M
used as a starting point of a time average. The advantage of averaging over space
is that it smears the starting points which were problematicfor the time average
(such as periodic points). While easy to define, the expectation value〈a〉 turns out
not to be particularly tractable in practice.

Here comes a simple idea that is the basis of all that follows:Such averages
are more conveniently studied by investigating instead of〈a〉 the space averages
of form

〈

eβ·A
t〉

=
1
|M|

∫

M

dx eβ·A
t(x) . (17.10)

In the present contextβ is an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space average by differentiation,

〈

At
〉

=
∂

∂β

〈

eβ·A
t〉
∣

∣

∣

∣

∣

β=0
.

In most applicationsβ is a scalar, but if the observable is ad-dimensional vector
a(x) ∈ Rd, thenβ ∈ Rd; if the observable is a [d × d] tensor,β is also a rank-2
tensor, and so on. Here we will mostly limit the considerations to scalarβ.

If the time average limita(x0) (17.4) exists for ‘almost all’ initialx0’s and
the system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the
time average along almost all trajectories to tend to the same valuea, and the
integrated observableAt to tend tot a. The space average (17.10) is an integral
over exponentials and hence also grows exponentially with time. So ast → ∞ we
would expect the space average of exp(β · At(x)) to grow exponentially with time

〈

eβ·A
t〉

→ (const)ets(β) ,

and its rate of growth to be given by the limit

s(β) = lim
t→∞

1
t

ln
〈

eβ·A
t〉

. (17.11)
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Now we understand one reason for why it is smarter to compute
〈

exp(β · At)
〉

rather than〈a〉: the expectation value of the observable (17.9) and the moments of
the integrated observable (17.1) can be computed by evaluating the derivatives of
s(β)

∂s
∂β

∣

∣

∣

∣

∣

β=0
= lim

t→∞

1
t

〈

At
〉

= 〈a〉 ,

∂2s

∂β2

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1
t

(〈

AtAt
〉

−
〈

At
〉 〈

At
〉)

= lim
t→∞

1
t

〈

(At − t 〈a〉)2
〉

,

(17.12)

exercise 17.2

and so forth. We have explicitly written out the formulas fora scalar observable;
the vector case is worked out in exercise 17.2 (we could have used full derivative
ds/dβ in (17.12), but for vector observable we do need partial derivatives∂s/∂βi).
If we can compute the functions(β), we have the desired expectation value without
having to estimate any infinite time limits from finite time data.

Suppose we could evaluates(β) and its derivatives. What are such formulas
good for? A typical application arises in the problem of determining transport
coefficients from underlying deterministic dynamics.

Example 17.4 Deterministic diffusion. (continued from example 17.3) Con-
sider a point particle scattering elastically off a d-dimensional array of scatterers. If
the scatterers are sufficiently large to block any infinite length free flights, the particle
will diffuse chaotically, and the transport coefficient of interest is the diffusion constant
〈

x(t)2
〉

≈ 4Dt. In contrast to D estimated numerically from trajectories x(t) for finite
but large t, the above formulas yield the asymptotic D without any extrapolations to the
t → ∞ limit. For example, for ai = vi and zero mean drift 〈vi〉 = 0, in d dimensions the
diffusion constant is given by the curvature of s(β) at β = 0, section 25.1

D = lim
t→∞

1
2dt

〈

x(t)2
〉

=
1
2d

d
∑

i=1

∂2s

∂β2
i

∣

∣

∣

∣

∣

∣

β=0

, (17.13)

so if we can evaluate derivatives of s(β), we can compute transport coefficients that
characterize deterministic diffusion. As we shall see in chapter 25, periodic orbit theory
yields an exact and explicit closed form expression for D.

We turn to the problem of evaluating
〈

eβ·A
t〉

in sect. 17.2, but first we review
some elementary facts of statistics that will be useful later on.

fast track:

sect. 17.2, p. 355
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Figure 17.2: Space averaging pieces together the
time average computed along thet → ∞ orbit
of figure 17.1 by a space average over infinitely
many shortt trajectory segments starting at all ini-
tial points at once. rgb]0,0,0x1

rgb]0,0,0x2 rgb]0,0,0x2

rgb]0,0,0x1

rgb]0,0,0ρ(x)
rgb]0,0,0

[

Lt ◦ ρ
]

(x)

17.2 Evolution operators

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

The above simple shift of focus, from studying〈a〉 to studying
〈

exp
(

β · At)〉 is
the key to everything that follows. Make the dependence on the flow explicit by
rewriting this quantity as

〈

eβ·A
t〉

=
1
|M|

∫

M

dx
∫

M

dyδ
(

y− f t(x)
)

eβ·A
t(x) . (17.14)

Hereδ
(

y− f t(x)
)

is the Dirac delta function: for a deterministic flow an initial
point x maps into a unique pointy at timet. Formally, all we have done above is
to insert the identity

1 =
∫

M

dyδ
(

y− f t(x)
)

, (17.15)

into (17.10) to make explicit the fact that we are averaging only over the trajec-
tories that remain inM for all times. However, having made this substitution
we have replaced the study of individual trajectoriesf t(x) by studying the evolu-
tion of the density ofthe totalityof initial conditions. Instead of trying to extract a
temporal average from an arbitrarily long trajectory whichexplores the state space
ergodically, we can now probe the entire state space with short (and controllable)
finite time pieces of trajectories originating from every point inM.

As a matter of fact (and that is why we went to the trouble of defining the gen-
erator (16.27) of infinitesimal transformations of densities) infinitesimallyshort
time evolution induced by the generatorA of (16.27) suffices to determine the
spectrum and eigenvalues ofLt.

We shall refer to the kernel of the operation (17.14) as theevolution operator

Lt(y, x) = δ
(

y− f t(x)
)

eβ·A
t(x) . (17.16)
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The simplest example is theβ = 0 case, i.e., the Perron-Frobenius operator intro-
duced in sect. 16.2. Another example - designed to deliver the Lyapunov exponent
- will be the evolution operator (17.41) discussed below. The action of the evolu-
tion operator on a functionφ is given by

[

Ltφ
]

(y) =
∫

M

dxδ
(

y− f t(x)
)

eβ·A
t(x)φ(x) . (17.17)

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observableAt in the exponential. Its job is
to deliver the expectation value ofa, but before showing that it accomplishes that,
we need to verify the semigroup property of evolution operators.

By its definition, the integral over the observablea is additive along the tra-
jectory

x(t1+t2)


x(0)
 = x(0)

x(t1)


+

x(t1+t2)


x(t1)


At1+t2(x0) =
∫ t1

0
dτa[ f τ(x)] +

∫ t1+t2

t1
dτa[ f τ(x)]

= At1(x0) + At2( f t1(x0)) .
exercise 16.3

As At(x) is additive along the trajectory, the evolution operator generates a semi-
group section 16.5

Lt1+t2(y, x) =
∫

M

dzLt2(y, z)Lt1(z, x) , (17.18)

as is easily checked by substitution

[

Lt2Lt1a
]

(y) =
∫

M

dxδ(y− f t2(x))eβ·A
t2(x)

[

Lt1a
]

(x) =
[

Lt1+t2a
]

(y) .

This semigroup property is the main reason why (17.14) is preferable to (17.9) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

In terms of the evolution operator, the space average of the generating function
(17.14) is given by

〈

eβ·A
t〉

=
1
|M|

∫

M

dx
∫

M

dyφ(y)Lt(y, x)φ(x) .

whereφ(x) is the constant functionφ(x) = 1. If the linear operatorLt can be
thought of as a matrix, high powers of a matrix are dominated by its fastest grow-
ing matrix elements, and the limit (17.11)

s(β) = lim
t→∞

1
t

ln
〈

Lt
〉

. (17.19)
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yields the leading eigenvalues0(β), and, through it, all desired expectation values
(17.12).

In what follows we shall learn how to extract not only the leading eigenvalue
ofLt, but much of the dominant part of its spectrum. Clearly, we are not interested
into the eigenvalues ofLt for any particular finite timet, but their behavior as
t →∞. That is achievedvia a Laplace transform, see sect. 17.2.3.

17.2.1 Spectrum of an evolution operator

An exposition of a subject is of necessity sequential and onecannot explain ev-
erything at once. As we shall actually never use eigenfunctions of evolution oper-
ators, we postpone their discussion to sect. 23.6. For the time being we ask the
reader to accept uncritically the following sketch:

Schematically, a linear operator has a spectrum of eigenvaluessα and eigen-
functionsϕα(x)

[

Ltϕα
]

(x) = esαtϕα(x) , α = 0, 1, 2, . . . (17.20)

ordered so that Resα ≥ Resα+1. For continuous time flow eigenvalues cannot
depend on time, they are eigenvalues of the time-evolution generator (16.26) we
always write the eigenvalues of an evolution operator in exponentiated formesα

rather than as multipliersλα We find it convenient to write them this way both for
the continuous timeLt and the discrete timeL = L1 cases, and we shall assume
that spectrum ofL is discrete.

Lt is a linear operator acting on a density of initial conditions ρ(x), x ∈ M, so
the t → ∞ limit will be dominated bys0 = s(β), the leading eigenvalue ofLt,

[

Ltρβ
]

(y) :=
∫

M

dxδ
(

y− f t(x)
)

eβ·A
t(x)ρβ(x) = ets(β)ρβ(y) , (17.21)

whereρβ(x) is the corresponding eigenfunction. Forβ = 0 the evolution operator
(17.16) is the Perron-Frobenius operator (16.10), withρ0(x) the natural measure.

From now on we have to be careful to distinguish the two kinds of linear
operators. In chapter 5 we have characterized the evolutionof the local linear
neighborhood of a state space trajectory by eigenvalues andeigenvalues of the
linearized flow Jacobian matrices. Evolution operators described in this chapter
areglobal, and they act on densities of orbits, not on individual trajectories. As
we shall see, ne of the wonders of chaotic dynamics is that themore unstable
individual trajectories, the nicer are the corresponding global density functions.
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17.2.2 Evolution for infinitesimal times

For infinitesimal timeδt, the evolution operator (17.7) acts as

ρ(y, δt) =
∫

dx eβA
δt(x)δ(y− f δt(x)) ρ(x, 0)

=

∫

dx eβa(x)δtδ(y− x− δt v(x)) ρ(x, 0)

= (1+ δt βa(y))
ρ(y, 0)− δt v · ∂

∂xρ(y, 0)

1+ δt ∂v
∂x

,

(the denominator arises from theδt linearization of the jacobian) giving the conti-
nuity equation (16.25) a source term

∂ρ

∂t
+
∂

∂xi
(viρ) = βaρ . (17.22)

The evolution generator (16.27) eigenfunctions now satisfy

(s(β) −A) ρ(x, β) = βa(x) ρ(x, β) . (17.23)

Differentiating with respect toβ

s′(β) ρ(x, β) + s(β)
∂

∂β
ρ(x, β) +

∂

∂x

(

v(x)
∂

∂β
ρ(x, β)

)

= a(x) ρ(x, β) + βa(x)
∂

∂β
ρ(x, β)

In the vanishing auxiliary parameter limitβ→ 0, we haves(0) = 0,ρ(x, 0) = ρ0(x)

s′(0)ρ0(x) +
∂

∂xi

(

vi(x)
∂

∂β
ρ(x, 0)

)

= a(x) ρ0(x) .

By integrating, the second term vanishes by Gauss’ theorem

s′(0) =
∫

dx a(x) ρ0(x) = 〈a〉 ,

verifying equation (17.8): spatial average of the observable a is given by the
derivative of the leading eigenvalues′(0).

fast track:

sect. 18, p. 371
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17.2.3 Resolvent ofL

Here we limit ourselves to a brief remark about the notion of the ‘spectrum’ of a
linear operator.

The Perron-Frobenius operatorL acts multiplicatively in time, so it is reason-
able to suppose that there exist constantsM > 0, s0 ≥ 0 such that||Lt || ≤ Mets0 for
all t ≥ 0. What does that mean? The operator norm is defined in the samespirit in
which one defines matrix norms: We are assuming that no value of Ltρ(x) grows
faster than exponentially for any choice of functionρ(x), so that the fastest pos-
sible growth can be bounded byets0, a reasonable expectation in the light of the
simplest example studied so far, the escape rate (1.3). If that is so, multiplying
Lt by e−ts0 we construct a new operatore−ts0Lt = et(A−s0) which decays exponen-
tially for large t, ||et(A−s0)|| ≤ M. We say thate−ts0Lt is an element of abounded
semigroup with generatorA − s0I . Given this bound, it follows by the Laplace
transform

∫ ∞

0
dt e−stLt =

1
s−A

, Res> s0 , (17.24)

that theresolventoperator (s−A)−1 is bounded

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
s−A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ ∞

0
dt e−stMets0 =

M
s− s0

. (17.25)

If one is interested in the spectrum ofL, as we will be, the resolvent operator is a
natural object to study; it has no time dependence, and it is bounded. It is called
‘resolvent’ because it separates the spectrum ofL into individual constituents, one
for each spectral ’line’. From (17.19), it is clear that the leading eigenvalues0(β)
corresponds to the pole in (17.25); as we shall see in chapter18, the rest of the
spectrum is similarly resolved into further poles of the Laplace transform.

The main lesson of this brief aside is that for continuous time flows, the
Laplace transform is the tool that brings down the generatorin (16.29) into the
resolvent form (17.24) and enables us to study its spectrum.

17.3 Averaging in open systems

If M is a compact region or set of regions to which the dynamics is con-
fined for all times, (17.9) is a sensible definition of the expectation value. How-
ever, if the trajectories can exitM without ever returning,

∫

M

dyδ(y− f t(x0)) = 0 for t > texit , x0 ∈ M ,
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Figure 17.3: A piecewise-linear repeller (16.11): All
trajectories that land in the gap between thef0 and f1
branches escape (Λ0 = 4,Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

we might be in trouble. In particular, arepeller is a dynamical system for which
the trajectoryf t(x0) eventually leaves the regionM, unless the initial pointx0 is
on the repeller, so the identity

∫

M

dyδ(y− f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (17.26)

might apply only to a fractal subset of initial points of zeroLebesgue measure
(non–wandering set is defined in sect. 2.1.1). Clearly, for open systems we need
to modify the definition of the expectation value to restrictit to the dynamics on
the non–wandering set, the set of trajectories which are confined for all times.

Denote byM a state space region that encloses all interesting initial points,
say the 3-disk Poincaré section constructed from the disk boundaries and all pos-
sible incidence angles, and denote by|M| the volume ofM. The volume of state
space containing all trajectories, which start out within the state space regionM
and recur within that region at timet, is given by

|M(t)| =
∫

M

dxdyδ
(

y− f t(x)
)

∼ |M|e−γt. (17.27)

As we have already seen in sect. 1.4.3, this volume is expected to decrease ex-
ponentially, with the escape rateγ. The integral overx takes care of all possible
initial points; the integral overy checks whether their trajectories are still within
M by the timet. For example, any trajectory that falls off the pinball table in section 22.1

figure 1.1 is gone for good.

If we expand an initial distributionρ(x) in (17.20), the eigenfunction basis
ρ(x) =

∑

α aαϕα(x) , we can also understand the rate of convergence of finite-time
estimates to the asymptotic escape rate. For an open system the fraction of trapped
trajectories decays as section 17.3

ΓM(t) =

∫

M
dx

[

Ltρ
]

(x)
∫

M
dxρ(x)

=
∑

α

esαtaα

∫

M
dxϕα(x)

∫

M
dxρ(x)

= es0t
(

(const.)+O(e(s1−s0)t)
)

. (17.28)
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The constant depends on the initial densityρ(x) and the geometry of state space
cutoff regionM, but the escape rateγ = −s0 is an intrinsic property of the re-
pelling set. We see, at least heuristically, that the leading eigenvalue ofLt domi-
natesΓM(t) and yields the escape rate, a measurable property of a givenrepeller.

The non–wandering set can be very difficult to describe; but for any finite
time we can construct a normalized measure from the finite-time covering volume
(17.27), by redefining the space average (17.10) as

〈

eβ·A
t〉

=

∫

M

dx
1
|M(t)|

eβ·A
t(x) ∼

1
|M|

∫

M

dx eβ·A
t(x)+γt . (17.29)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factoreγt. What
does this mean? Once we have computedγ we can replenish the density lost to
escaping trajectories, by pumping ineγt of new trajectories in such a way that the
overall measure is correctly normalized at all times,〈1〉 = 1.

Example 17.5 Escape rate for a piecewise-linear repeller: (continuation of exam-
ple 16.1) What is gained by reformulating the dynamics in terms of ‘operators’? We
start by considering a simple example in which the operator is a [2×2] matrix. Assume
the expanding 1-dimensional map f (x) of figure 17.3, a piecewise-linear 2–branch re-
peller (16.11). Assume a piecewise constant density (16.12). There is no need to
define ρ(x) in the gap betweenM0 andM1, as any point that lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (16.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] ‘transfer’ matrix (16.13) exercise 16.1

exercise 16.5
(

ρ0

ρ1

)

→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

) (

ρ0

ρ1

)

,

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density at
every iteration. In this example the density is constant after one iteration, so L has only
one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1| ≤ 1, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|

intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (17.30)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rates at infinite time. (continued in example 23.5)
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Figure 17.4: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.
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x(t )1

1

x(0)

0

x(t )2

17.4 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics in this sub-
ject: Is a given system ‘chaotic’? And if so, how chaotic? If all points in a neigh- example 2.3

borhood of a trajectory converge toward the same trajectory, the attractor is a fixed
point or a limit cycle. However, if the attractor is strange,any two trajectories section 1.3.1

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx0) (17.31)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible state space. This
sensitivity to initial conditionscan be quantified as

|δx(t)| ≈ eλt |δx0| (17.32)

whereλ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent.

17.4.1 Lyapunov exponent as a time average

We can start out with a smallδxand try to estimateλ from (17.32), but now that we
have quantified the notion of linear stability in chapter 4 and defined the dynamical
time averages in sect. 17.1.1, we can do better. The problem with measuring the
growth rate of the distance between two points is that as the points separate, the
measurement is less and less a local measurement. In the study of experimental
time series this might be the only option, but if we have equations of motion, a
better way is to measure the growth rate of vectors transverse to a given orbit.

The mean growth rate of the distance|δx(t)|/|δx0| between neighboring tra-
jectories (17.32) is given by theLyapunov exponent, which for long (but not too
long) timet can be estimated as

λ ≃
1
t

ln |δx(t)|/|δx0| (17.33)
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Figure 17.5: The symmetric matrixJ =
(

Jt)T Jt maps
a swarm of initial points in an infinitesimal spherical
neighborhood ofx0 into a cigar-shaped neighborhood
finite time t later, with semiaxes determined by the lo-
cal stretching/shrinking |Λ1|, but local individual tra-
jectory rotations by the complex phase ofJt ignored.
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(For notational brevity we shall often suppress the dependence of quantities such
asλ = λ(x0), δx(t) = δx(x0, t) on the initial pointx0). One can take (17.33) as is,
take a small initial separationδx0, track distance between two nearby trajectories
until |δx(t1)| gets significantly bigger, then recordt1λ1 = ln(|δx(t1)|/|δx0|), rescale
δx(t1) by factor |δx0|/|δx(t1)|, and continue add infinitum, as in figure 17.4, with
the leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑

i

tiλi . (17.34)

However, we can do better. Given the equations of motion, forinfinitesimalδx we
know theδxi(t)/δx j(0) ratio exactly, as this is by definition the Jacobian matrix
(4.38)

lim
δx(0)→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j (x0) ,

so the leading Lyapunov exponent can be computed from the linear approximation
(4.23)

λ(x0) = lim
t→∞

1
t

ln

∣

∣

∣Jt(x0)δx0

∣

∣

∣

|δx0|
= lim

t→∞

1
2t

ln
(

n̂T (

Jt)T Jtn̂
)

. (17.35)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector ˆn = δx0/|δx0| matters. The eigenval-
ues ofJ are either real or come in complex conjugate pairs. AsJ is in general
not symmetric and not diagonalizable, it is more convenientto work with the
symmetric and diagonalizable matrixM =

(

Jt)T Jt, with real positive eigenval-
ues{|Λ1|

2 ≥ . . . ≥ |Λd|
2}, and a complete orthonormal set of eigenvectors of

{u1, . . . , ud}. Expanding the initial orientation ˆn =
∑

(n̂ · ui)ui in theMui = |Λi |
2ui

eigenbasis, we have

n̂TM n̂ =
d

∑

i=1

(n̂ · ui)
2|Λi |

2 = (n̂ · u1)2e2µ1t
(

1+O(e−2(µ1−µ2)t)
)

, (17.36)

where ln|Λi(x0, t)| = tµi, with real parts of characteristic exponents (4.18) ordered
by µ1 ≥ µ2 ≥ µ3 · · ·. For long times the largest Lyapunov exponent dominates
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Figure 17.6: A numerical estimate of the leading Lya-
punov exponent for the Rössler flow (2.17) from the
dominant expanding eigenvalue formula (17.35). The
leading Lyapunov exponentλ ≈ 0.09 is positive, so
numerics supports the hypothesis that the Rössler at-
tractor is chaotic. The big unexplained jump illustrates
perils of Lyapunov exponents numerics. (J. Math-
iesen)
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exponentially (17.35), provided the orientation ˆn of the initial separation was not
chosen perpendicular to the dominant expanding eigen-direction u1. The Lya-
punov exponent is the time average

λ(x0) = lim
t→∞

1
t

{

ln |n̂ · u1| + ln |Λ1(x0, t)| +O(e−2(λ1−λ2)t)
}

= lim
t→∞

1
t

ln |Λ1(x0, t)| , (17.37)

whereΛ1(x0, t) is the leading eigenvalue ofJt(x0). By choosing the initial dis-
placement such that ˆn is normal to the first (i-1) eigen-directions we can define
not only the leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (17.38)

The leading Lyapunov exponent now follows from the Jacobianmatrix by numer-
ical integration of (4.9). The equations can be integrated accurately for a finite
time, hence the infinite time limit of (17.35) can be only estimated from plots of
1
2 ln(n̂TM n̂) as function of time, such as figure 17.6 for the Rössler flow (2.17).

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low level is
caused by a close passage to a folding point of the attractor,an illustration of why
numerical evaluation of the Lyapunov exponents, and proving the very existence
of a strange attractor is a difficult problem. The approximately monotone part
of the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (17.37) directly.First of all, the state
space is dense with atypical trajectories; for example, ifx0 happens to lie on a
periodic orbitp, λ would be simply ln|Λp|/Tp, a local property of cyclep, not a
global property of the dynamical system. Furthermore, evenif x0 happens to be a
‘generic’ state space point, it is still not obvious that ln|Λ(x0, t)|/t should be con-
verging to anything in particular. In a Hamiltonian system with coexisting elliptic
islands and chaotic regions, a chaotic trajectory gets captured in the neighborhood
of an elliptic island every so often and can stay there for arbitrarily long time; as
there the orbit is nearly stable, during such episode ln|Λ(x0, t)|/t can dip arbitrar-
ily close to 0+. For state space volume non-preserving flows the trajectorycan
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traverse locally contracting regions, and ln|Λ(x0, t)|/t can occasionally go nega-
tive; even worse, one never knows whether the asymptotic attractor is periodic or
‘chaotic’, so any finite estimate ofλ might be dead wrong. exercise 17.1

17.4.2 Evolution operator evaluation of Lyapunov exponents

A solution to these problems was proposed in sect. 17.2 - replace time averaging
along a single orbit by action of a multiplicative evolutionoperator on the entire
state space, and extract average of the Lyapunov exponent from its leading eigen-
value. from finite length cycles. If the chaotic motion fills the whole state space,
we are indeed computing the asymptotic Lyapunov exponent. If the chaotic mo-
tion is transient, leading eventually to some long attractive cycle, our Lyapunov
exponent, computed on a non–wandering set, will characterize the chaotic tran-
sient; this is actually what any experiment would measure, as even a very small
amount of external noise suffices to destabilize a long stable cycle with a minute
immediate basin of attraction. The main idea - what is the Lyapunov ‘observable’
- can be illustrated by the dynamics of a 1-dimensional map.

Example 17.6 Lyapunov exponent, discrete time 1-dimensional dynamics. Due
to the chain rule (4.47) for the derivative of an iterated map, the stability of a 1-dimensional
mapping is multiplicative along the flow, so the integral (17.1) of the observable a(x) =
ln | f ′(x)|, the local trajectory divergence rate, evaluated along the trajectory of x0, is
additive:

An(x0) = ln
∣

∣

∣ f n′(x0)
∣

∣

∣ =

n−1
∑

k=0

ln
∣

∣

∣ f ′(xk)
∣

∣

∣ . (17.39)

For a 1-dimensional iterative mapping, the Lyapunov exponent is then the expectation
value (17.9) given by a spatial integral (17.8) weighted by the natural measure

λ =
〈

ln | f ′(x)|
〉

=

∫

M

dxρ0(x) ln | f ′(x)| . (17.40)

The associated (discrete time) evolution operator (17.16) is

L(y, x) = δ(y− f (x)) eβ ln | f ′(x)| . (17.41)

Here we have restricted our considerations to 1-d maps, as for higher-dimensional
flows only the Jacobian matrices are multiplicative, not theindividual eigenvalues.
Construction of the evolution operator for evaluation of the Lyapunov spectra for
a d-dimensional flow requires more cleverness than warranted at this stage in the
narrative: an extension of the evolution equations to a flow in the tangent space.

All that remains is to determine the value of the Lyapunov exponent

λ =
〈

ln | f ′(x)|
〉

=
∂s(β)
∂β

∣

∣

∣

∣

∣

β=0
= s′(0) (17.42)
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from (17.12), the derivative of the leading eigenvalues0(β) of the evolution oper-
ator (17.41). example 20.2

The only question is: How? (By chapter 20 you will know.)

Résum é

The expectation value〈a〉 of an observablea(x) integrated,At(x) =
∫ t

0 dτa(x(τ)),
and time averaged,At/t, over the trajectoryx→ x(t) is given by the derivative

〈a〉 =
∂s
∂β

∣

∣

∣

∣

∣

β=0

of the leading eigenvalueets(β) of the evolution operatorLt.

By computing the leading eigenfunction of the Perron-Frobenius operator
(16.10), one obtains the expectation value (16.20) of any observablea(x). Thus
we can construct a specific, hand-tailored evolution operatorL for each and every
observable. The good news is that, by the time we arrive at chapter 20, the scaf- chapter 20

folding will be removed, bothL’s and their eigenfunctions will be gone, and only
the explicit and exact periodic orbit formulas for expectation values of observables
will remain.

The next question is: How do we evaluate the eigenvalues ofL? In exam-
ple 17.5, we saw a piecewise-linear example where these operators reduce to fi-
nite matricesL , but for generic smooth flows, they are infinite-dimensionallinear
operators, and finding smart ways of computing their eigenvalues requires some
thought. In chapter 11 we undertook the first step, and replaced thead hocparti-
tioning (16.14) by the intrinsic, topologically invariantpartitioning. In chapter 15
we applied this information to our first application of the evolution operator for-
malism, evaluation of the topological entropy, and the growth rate of the number
of topologically distinct orbits. In chapters 18 and 19, this small victory will
be refashioned into a systematic method for computing eigenvalues of evolution
operators in terms of periodic orbits.

Commentary

Remark 17.1 ‘Pressure’. The quantity
〈

exp(β · At)
〉

is called a ‘partition function’
by Ruelle [19.1]. Mathematicians decorate it with considerably more Greek and Gothic
letters than is done in this treatise. Ruelle [17.1] and Bowen [17.2] had given name
‘pressure’P(a) to s(β) (wherea is the observable introduced in sect. 17.1.1), defined by
the ‘large system’ limit (17.11). As we shall also apply the theory to computating the
physical gas pressure exerted on the walls of a container by abouncing particle , we refer
to s(β) as simply the leading eigenvalue of the evolution operatorintroduced in sect. 16.5.
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The ‘convexity’ properties such asP(a) ≤ P(|a|) will be pretty obvious consequences
of the definition (17.11). In the case thatL is the Perron-Frobenius operator (16.10), the
eigenvalues{s0(β), s1(β), · · ·} are called theRuelle-Pollicott resonances[17.3, 17.4, 17.5],
with the leading one,s(β) = s0(β) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, we shall try to point out the notational
correspondences whenever appropriate. The rigorous formalism is replete with lims, sups,
infs,Ω-sets which are not really essential to understanding of thetheory, and are avoided
in this book.

Remark 17.2 Microcanonical ensemble. In statistical mechanics the space average
(17.7) performed over the Hamiltonian system constant energy surface invariant measure
ρ(x)dx= dqdpδ(H(q, p)− E) of volumeω(E) =

∫

M
dqdpδ(H(q, p)− E)

〈a(t)〉 =
1
ω(E)

∫

M

dqdpδ(H(q, p)− E)a(q, p, t) (17.43)

is called themicrocanonical ensemble average.

Remark 17.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Os-
eledec [17.6] states that the limits (17.35–17.38) exist for almost all pointsx0 and all
tangent vectors ˆn. There are at mostd distinct values ofλ as we let ˆn range over the
tangent space. These are the Lyapunov exponents [17.8]λi(x0).

We are doubtful of the utility of Lyapunov exponents as meansof predicting any
observables of physical significance, but that is the minority position - in the literature
one encounters many provocative speculations, especiallyin the context of foundations of
statistical mechanics (‘hydrodynamic’ modes) and the existence of a Lyapunov spectrum
in the thermodynamic limit of spatiotemporal chaotic systems.

There are volumes of literature on numerical computation ofthe Lyapunov exponents,
see for example refs. [17.14, 17.15, 17.17]. For early numerical methods to compute
Lyapunov vectors, see refs. [17.16, 17.17]. The drawback ofthe Gram-Schmidt method is
that the vectors so constructed are orthogonal by fiat, whereas the stable/ unstable eigen-
vectors of the Jacobian matrix are in general not orthogonal. Hence the Gram-Schmidt
vectors are not covariant, i.e., the linearized dynamics does not transport them into the
eigenvectors of the Jacobian matrix computed further downstream. For computation of
covariant Lyapunov vectors, see refs. [17.18, 17.20].

Remark 17.4 State space discretization. Ref. [17.21] discusses numerical dis-
cretizatons of state space, and construction of Perron-Frobenius operators as stochastic
matrices, or directed weighted graphs, as coarse-grained models of the global dynamics,
with transport rates between state space partitions computed using this matrix of tran-
sition probabilities; a rigorous discussion of some of the former features is included in
ref. [17.22].
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Exercises

17.1. How unstable is the H́enon attractor?

(a) Evaluate numerically the Lyapunov exponentλ by
iterating some 100,000 times or so the Hénon map

[

x′

y′

]

=

[

1− ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a = 1.39945219,b = 0.3. How much do you now
trust your result for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?

17.2. Expectation value of a vector observable.
Check and extend the expectation value formulas
(17.12) by evaluating the derivatives ofs(β) up to 4-th
order for the space average

〈

exp(β · At)
〉

with ai a vector
quantity:

(a)

∂s
∂βi

∣

∣

∣

∣

∣

β=0
= lim

t→∞

1
t

〈

At
i

〉

= 〈ai〉 , (17.44)

(b)

∂2s
∂βi∂β j

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1
t

(〈

At
i A

t
j

〉

−
〈

At
i

〉 〈

At
j

〉)

= lim
t→∞

1
t

〈

(At
i − t 〈ai〉)(A

t
j − t

〈

a j

〉

)
〉

.

Note that the formalism is smart: it automatically
yields thevariance from the mean, rather than
simply the 2nd moment

〈

a2
〉

.

(c) compute the third derivative ofs(β).

(d) compute the fourth derivative assuming that the
mean in (17.44) vanishes,〈ai〉 = 0. The 4-th order
moment formula

K(t) =

〈

x4(t)
〉

〈

x2(t)
〉2
− 3 (17.45)

that you have derived is known askurtosis: it mea-
sures a deviation from what the 4-th order moment
would be were the distribution a pure Gaussian
(see (25.22) for a concrete example). If the ob-
servable is a vector, the kurtosisK(t) is given by

∑

i j

[〈

AiAiA jA j

〉

+ 2
(〈

AiA j

〉 〈

A jAi

〉

− 〈AiAi〉
〈

A jA
(∑

i 〈AiAi〉
)2

17.3. Pinball escape rate from numerical simulation∗.
Estimate the escape rate forR : a = 6 3-disk pinball
by shooting 100,000 randomly initiated pinballs into the
3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison, a
numerical simulation of ref. [8.3] yieldsγ = .410. . ..

17.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponentλe of the Rössler attractor (2.17).

(b) Plot your own version of figure 17.6. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure 4.3.)

(c) Give your best estimate ofλe. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponentλc.
Even though it is much smaller thanλe, a glance
at the stability matrix (4.4) suggests that you can
probably get it by integrating the infinitesimal vol-
ume along a long-time trajectory, as in (4.42).
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