
Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol’d’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover
it.

—Sir Michael V. Berry

Writing a history of anything is a reckless undertaking, especially a history of
something that has preoccupied at one time or other any serious thinker from
ancient Sumer to today’s Hong Kong. A mathematician, to takean example, might
see it this way: “History of dynamical systems.” Nevertheless, here comes yet
another very imperfect attempt.

A.1 Chaos is born

I’ll maybe discuss more about its history when I learn
more about it.

—Maciej Zworski

(R. Mainieri and P. Cvitanović)

Trying to predict the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for deter-
mining the longitude of ships while traversing open seas.
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Kepler’s Rudolphine tables had been a great improvement over previous ta-
bles, and Kepler was justly proud of his achievements. He wrote in the introduc-
tion to the announcement of Kepler’s third law,Harmonice Mundi(Linz, 1619) in
a style that would not fly with the contemporaryPhysical Review Letterseditors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long before
I had seen Ptolemy’sHarmonics–what I had promised my friends in the title
of this book, which I named before I was sure of my discovery–what sixteen
years ago, I urged as the thing to be sought–that for which I joined Tycho
Brahé, for which I settled in Prague, for which I have devoted the best part
of my life to astronomical contemplations, at length I have brought to light,
and recognized its truth beyond my most sanguine expectations. It is not
eighteen months since I got the first glimpse of light, three months since
the dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if youare angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothesis,
and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already possessed. To do that one has
to consider the motion of three bodies: the Moon, the Earth, and the Sun. When
the planets are replaced by point particles of arbitrary masses, the problem to be
solved is known as the three-body problem. The three-body problem was also
a model to another concern in astronomy. In the Newtonian model of the solar
system it is possible for one of the planets to go from an elliptic orbit around the
Sun to an orbit that escaped its dominion or that plunged right into it. Knowing
if any of the planets would do so became the problem of the stability of the solar
system. A planet would not meet this terrible end if solar system consisted of
two celestial bodies, but whether such fate could befall in the three-body case
remained unclear.

After many failed attempts to solve the three-body problem,natural philoso-
phers started to suspect that it was impossible to integrate. The usual technique for
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integrating problems was to find the conserved quantities, quantities that do not
change with time and allow one to relate the momenta and positions at different
times. The first sign on the impossibility of integrating thethree-body problem
came from a result of Burns that showed that there were no conserved quantities
that were polynomial in the momenta and positions. Burns’ result did not pre-
clude the possibility of more complicated conserved quantities. This problem was
settled by Poincaré and Sundman in two very different ways.

In an attempt to promote the journalActa Mathematica, Mittag-Leffler got
the permission of the King Oscar II of Sweden and Norway to establish a mathe-
matical competition. Several questions were posed (although the king would have
preferred only one), and the prize of 2500 kroner would go to the best submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend ourunder-
standing of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of state
space flow, the role of periodic orbits and their cross sections, the homoclinic
points.

The interesting thing about Poincaré’s work was that it didnot solve the prob-
lem posed. He did not find a function that would give the coordinates as a function
of time for all times. He did not show that it was impossible either, but rather that
it could not be done with the Bernoulli technique of finding a conserved quantity
and trying to integrate. Integration would seem unlikely from Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-bornSwedish mathe-
matician Sundman. Sundman showed that to integrate the three-body problem
one had to confront the two-body collisions. He did that by making them go away
through a trick known as regularization of the collision manifold. The trick is not
to expand the coordinates as a function of timet, but rather as a function of3

√
t.

To solve the problem for all times he used a conformal map intoa strip. This
allowed Sundman to obtain a series expansion for the coordinates valid for all
times, solving the problem that was proposed by Weirstrass in the King Oscar II’s
competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
through series that, although divergent, produce better numerical results. The con-
formal map and the collision regularization mean that the series are effectively in

the variable 1− e−
3√t. Quite rapidly this gets exponentially close to one, the ra-

dius of convergence of the series. Many terms, more terms than any one has ever
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wanted to compute, are needed to achieve numerical convergence. Though Sund-
man’s work deserves better credit than it gets, it did not live up to Weirstrass’s
expectations, and the series solution did not “considerably extend our understand-
ing of the solar system.’ The work that followed from Poincaré did.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had combined
the mechanics of Newton with notions of probability in orderto create statistical
mechanics, deriving thermodynamics from the equations of mechanics. To eval-
uate the heat capacity of even a simple system, Boltzmann hadto make a great
simplifying assumption of ergodicity: that the dynamical system would visit every
part of the phase space allowed by conservation laws equallyoften. This hypoth-
esis was extended to other averages used in statistical mechanics and was called
the ergodic hypothesis. It was reformulated by Poincaré tosay that a trajectory
comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end
of twentieth century it has only been shown true for a few systems and wrong
for quite a few others. Early on, as a mathematical necessity, the proof of the
hypothesis was broken down into two parts. First one would show that the me-
chanical system was ergodic (it would go near any point) and then one would show
that it would go near each point equally often and regularly so that the computed
averages made mathematical sense. Koopman took the first step in proving the
ergodic hypothesis when he realized that it was possible to reformulate it using
the recently developed methods of Hilbert spaces. This was an important step that
showed that it was possible to take a finite-dimensional nonlinear problem and
reformulate it as a infinite-dimensional linear problem. This does not make the
problem easier, but it does allow one to use a different set of mathematical tools
on the problem. Shortly after Koopman started lecturing on his method, von Neu-
mann proved a version of the ergodic hypothesis, giving it the status of a theorem.
He proved that if the mechanical system was ergodic, then thecomputed averages
would make sense. Soon afterwards Birkhoff published a much stronger version
of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory of
chaotic dynamical systems was the work on the nonlinear oscillators. The prob-
lem is to construct mechanical models that would aid our understanding of phys-
ical systems. Lord Rayleigh came to the problem through his interest in under-
standing how musical instruments generate sound. In the first approximation one
can construct a model of a musical instrument as a linear oscillator. But real in-
struments do not produce a simple tone forever as the linear oscillator does, so
Lord Rayleigh modified this simple model by adding friction and more realistic
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models for the spring. By a clever use of negative friction hecreated two basic
models for the musical instruments. These models have more than a pure tone
and decay with time when not stroked. In his bookThe Theory of SoundLord
Rayleigh introduced a series of methods that would prove quite general, such as
the notion of a limit cycle, a periodic motion a system goes toregardless of the
initial conditions.

A.1.4 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developed intwo directions. One
direction took an abstract approach and considered dynamical systems as trans-
formations of measurable spaces into themselves. Could we classify these trans-
formations in a meaningful way? This lead Kolmogorov to the introduction of the
concept of entropy for dynamical systems. With entropy as a dynamical invariant
it became possible to classify a set of abstract dynamical systems known as the
Bernoulli systems. The other line that developed from the ergodic hypothesis was
in trying to find mechanical systems that are ergodic. An ergodic system could
not have stable orbits, as these would break ergodicity. So in 1898 Hadamard
published a paper with a playful title of ‘... billiards ...,’ where he showed that
the motion of balls on surfaces of constant negative curvature is everywhere un-
stable. This dynamical system was to prove very useful and itwas taken up by
Birkhoff. Morse in 1923 showed that it was possible to enumerate the orbits of
a ball on a surface of constant negative curvature. He did this by introducing a
symbolic code to each orbit and showed that the number of possible codes grew
exponentially with the length of the code. With contributions by Artin, Hedlund,
and H. Hopf it was eventually proven that the motion of a ball on a surface of con-
stant negative curvature was ergodic. The importance of this result escaped most
physicists, one exception being Krylov, who understood that a physical billiard
was a dynamical system on a surface of negative curvature, but with the curvature
concentrated along the lines of collision. Sinai, who was the first to show that a
physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing, and
Hayashi. They found other systems in which the nonlinear oscillator played a role
and classified the possible motions of these systems. This concreteness of experi-
ments, and the possibility of analysis was too much of temptation for Mary Lucy
Cartwright and J.E. Littlewood [A.18], who set out to prove that many of the struc-
tures conjectured by the experimentalists and theoreticalphysicists did indeed fol-
low from the equations of motion. Birkhoff had found a ‘remarkable curve’ in a
two dimensional map; it appeared to be non-differentiable and it would be nice
to see if a smooth flow could generate such a curve. The work of Cartwright and
Littlewood lead to the work of Levinson, which in turn provided the basis for the
horseshoe construction of S. Smale. chapter 12
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In Russia, Lyapunov paralleled the methods of Poincaré andinitiated the
strong Russian dynamical systems school. Andronov carriedon with the study of
nonlinear oscillators and in 1937 introduced together withPontryagin the notion
of coarse systems. They were formalizing the understandinggarnered from the
study of nonlinear oscillators, the understanding that many of the details on how
these oscillators work do not affect the overall picture of the state space: there will
still be limit cycles if one changes the dissipation or spring force function by a lit-
tle bit. And changing the system a little bit has the great advantage of eliminating
exceptional cases in the mathematical analysis. Coarse systems were the concept
that caught Smale’s attention and enticed him to study dynamical systems.

A.2 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems for
which all points (as opposed to a non–wandering set) admit the hyperbolic struc-
ture, and it was in honor of this result that Smale named thesesystems Axiom-A.
In Kiev Smale found a receptive audience that had been thinking about these prob-
lems. Smale’s result catalyzed their thoughts and initiated a chain of developments
that persisted into the 1970’s.

Smale collected his results and their development in the 1967 review article on
dynamical systems, entitled “Differentiable dynamical systems.” There are manychapter 12

great ideas in this paper: the global foliation of invariantsets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The emphasis of the paper is on the global properties of the dynamical system, on
how to understand the topology of the orbits. Smale’s account takes you from a
local differential equation (in the form of vector fields) to the globaltopological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have spo-
ken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of the shift transformation.Kolmogorov went
far beyond and suggested a definition of the metric entropy ofan area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken by
his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these
papers showed that one could define the notion of topologicalentropy and use it
as an invariant to classify continuous maps. In 1967 Anosov and Sinai applied
the notion of entropy to the study of dynamical systems. It was in the context

appendHist - 19aug2008 ChaosBook.org version14, Dec 31 2012



APPENDIX A. A BRIEF HISTORY OF CHAOS 773

of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems andstatistical me-
chanics; this has been a very fruitful relationship. It addsmeasure notions to the
topological framework laid down in Smale’s paper. Markov partitions divide the
state space of the dynamical system into nice little boxes that map into each other.
Each box is labeled by a code and the dynamics on the state space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas, although
there was presumably some flow of information back and forth before these pa-
pers got published. Bowen also introduced the important concept of shadowing of
chaotic orbits. We do not know whether at this point the relations with statistical
mechanics were clear to everyone. They became explicit in the work of Ruelle.
Ruelle understood that the topology of the orbits could be specified by a symbolic
code, and that one could associate an ‘energy’ to each orbit.The energies could
be formally combined in a ‘partition function’ to generate the invariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statisti-
cal mechanics approach to chaotic systems, research turnedto studying particular
cases. The simplest case to consider is 1-dimensional maps.The topology of the
orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein, and
Stein. The more general 1-dimensional case was worked out in1976 by Milnor
and Thurston in a widely circulated preprint, whose extended version eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universal-
ity in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the studyof 1-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum intro-
duced many new ideas into the field: the use of the renormalization group which
lead him to introduce functional equations in the study of dynamical systems, the
scaling function which completed the link between dynamical systems and statis-
tical mechanics, and the presentation functions which describe the dynamics of
scaling functions.

The work in more than one dimension progressed very slowly and is still far
from completed. The first result in trying to understand the topology of the or-
bits in two dimensions (the equivalent of Metropolis, Stein, and Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 1975 Thurston was giv-
ing lectures “On the geometry and dynamics of diffeomorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not beenapplied in physics,
but much of the classification that Thurston developed can beobtained from the
notion of a ‘pruning front’ formulated independently by Cvitanović.

Once one develops an understanding of the topology of the orbits of a dynam-
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ical system, one needs to be able to compute its properties. Ruelle had already
generalized the zeta function introduced by Artin and Mazurso that it could be
used to compute the average value of observables. The difficulty with Ruelle’s
zeta function is that it does not converge very well. Starting out from Smale’s
observation that a chaotic dynamical system is dense with a set of periodic orbits,
Cvitanović used these orbits as a skeleton on which to evaluate the averages of
observables, and organized such calculations in terms of rapidly converging cy-
cle expansions. This convergence is attained by using the shorter orbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it will help get a sense of
perspective on the field. It is not a fad and it will not die anytime soon.

A.2.1 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, after being asked to define applied

mathematics

The history of the periodic orbit theory is rich and curious,and the recent
advances are to equal degree inspired by a century of separate development of
three disparate subjects; 1.classical chaotic dynamics, initiated by Poincaré
and put on its modern footing by Smale [1.27], Ruelle [1.32],and many oth-
ers; 2. quantum theoryinitiated by Bohr, with the modern ‘chaotic’ formulation
by Gutzwiller [21.13, A.32]; and 3. analyticnumber theoryinitiated by Riemann
and formulated as a spectral problem by Selberg [A.35, A.36]. Following totally
different lines of reasoning and driven by very different motivations, the three sep-
arate roads all arrive at formally nearly identicaltrace formulas, zeta functionsand
spectral determinants.

That these topics should be related is far from obvious. Connection between
dynamics and number theory arises from Selberg’s observation that description of
geodesic motion and wave mechanics on spaces of constant negative curvature is
essentially a number-theoretic problem.A posteriori, one can say that zeta func-
tions arise in both classical and quantum mechanics becausein both the dynamical
evolution can be described by the action of linear evolution(or transfer) operators
on infinite-dimensional vector spaces. The spectra of theseoperators are given
by the zeros of appropriate determinants. One way to evaluate determinants is tosection 19.1

expand them in terms of traces,log det= tr log, and in this way the spectrum of
an evolution operator becomes related to its traces, i.e., periodic orbits. A per-
haps deeper way of restating this is to observe that the traceformulas perform the
same service in all of the above problems; they relate the spectrum of lengths (lo-
cal dynamics) to the spectrum of eigenvalues (global averages), and for nonlinear
geometries they play a role analogous to that the Fourier transform plays for the
circle. exercise 4.1

In Gutzwiller’s words:
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“The classical periodic orbits are a crucial stepping stonein the under-
standing of quantum mechanics, in particular when then classical system is
chaotic. This situation is very satisfying when one thinks of Poincaré who
emphasized the importance of periodic orbits in classical mechanics, but
could not have had any idea of what they could mean for quantummechan-
ics. The set of energy levels and the set of periodic orbits are complementary
to each other since they are essentially related through a Fourier transform.
Such a relation had been found earlier by the mathematiciansin the study
of the Laplacian operator on Riemannian surfaces with constant negative
curvature. This led to Selberg’s trace formula in 1956 whichhas exactly the
same form, but happens to be exact. The mathematical proof, however, is
based on the high degree of symmetry of these surfaces which can be com-
pared to the sphere, although the negative curvature allowsfor many more
different shapes.”

A.2.2 Dynamicist’s vision of turbulence

The key theoretical concepts that form the basis of dynamical theories of turbu-
lence are rooted in the work of Poincaré, Hopf, Smale, Ruelle and Gutzwiller. In
his 1889 analysis of the three-body problem [1.22] Poincar´e introduced the ge-
ometric approach to dynamical systems and methods that lie at the core of the
theory developed here: qualitative topology of state spaceflows, Poincaré sec-
tions, the key roles played by equilibria, periodic orbits,heteroclinic connections,
and their stable/unstable manifolds. Poincaré’s work and parallel work by Lya-
punov’s school in Russia was followed up by steady development of dynamical
systems theory through the 20th century.

In a seminal 1948 paper [A.11], Hopf visualized the functionspace of allow-
able Navier-Stokes velocity fields as an infinite-dimensional state space, parame-
terized by viscosity, boundary conditions and external forces, with instantaneous
state of a flow represented by a point in this state space. Laminar flows corre-
spond to equilibrium points, globally stable for sufficiently large viscosity. As the
viscosity decreases (as the Reynolds number increases), ‘turbulent’ states set in,
represented by chaotic state space trajectories.

Hopf’s observation that viscosity causes a contraction of state space volumes
under the action of dynamics led to his key conjecture: that long-term, typically
observed solutions of the Navier-Stokes equations lie on finite-dimensional man-
ifolds embedded in the infinite-dimensional state space of allowed states. Hopf’s
manifold, known today as the ‘inertial manifold,’ is well-studied in the mathe-
matics of spatio-temporal PDEs. Its finite dimensionality for non-vanishing ‘vis-
cosity’ parameter has been rigorously established in certain settings by Foias and
collaborators [A.43].

Hopf noted “[t]he great mathematical difficulties of these important problems
are well known and at present the way to a successful attack onthem seems hope-
lessly barred. There is no doubt, however, that many characteristic features of
the hydrodynamical phase flow occur in a much larger class of similar problems
governed by non-linear space-time systems. In order to gaininsight into the na-
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ture of hydrodynamical phase flows we are, at present, forcedto find and to treat
simplified examples within that class.”

Hopf’s call for geometric state space analysis of simplifiedmodels first came
to fulfillment with the influential Lorenz’s truncation [2.9] of the Rayleigh-Bénard
convection state space (see example 2.2), and was brought a bit closer to true
hydrodynamics with the Cornell group’s POD models of boundary-layer turbu-
lence [A.19, A.12]. Further significant progress has provedpossible for sys-
tems such as the 1-spatial dimension Kuramoto-Sivashinskyflow [A.13, A.14], a
paradigmatic model of turbulent dynamics, and one of the most extensively stud-
ied spatially extended dynamical systems.

Today, as we hope to have convinced the reader, with modern computation and
experimental insights, the way to a successful attack on thefull Navier-Stokes
problem is no longer “hopelessly barred.” We address the challenge in a way
Hopf could not divine, employing methodology developed only within the past
two decades, explained in depth in this book. Hopf presciently noted that “the ge-
ometrical picture of the phase flow is, however, not the most important problem of
the theory of turbulence. Of greater importance is the determination of the proba-
bility distributions associated with the phase flow”. Hopf’s call for understanding
of probability distributions under phase flow has indeed proven to be a key chal-
lenge, the one in which dynamical systems theory has made thegreatest progress
in the last half century, namely, the Sinai-Ruelle-Bowen ergodic theory of ‘nat-
ural’ or SRB measures for far-from-equilibrium systems [1.27, 1.28, 1.29, 1.32].

The story so far goes like this: in 1960 Edward A. Spiegel was Robert Kraich-
nan’s research associate. Kraichnan told him: “Flow follows a regular solution for
a while, then another one, then switches to another one; that’s turbulence.” It was
not too clear, but Kraichnan’s vision of turbulence moved Ed. In 1962 Spiegel and
Derek Moore investigated a set of 3rd order convection equations which seemed
to follow one periodic solution, then another, and continued going from periodic
solution to periodic solution. Ed told Derek: “This is turbulence!” and Derek said
“This is wonderful!” and was moved. He went to give a lecture at Caltech some-
time in 1964 and came back angry as hell. They pilloried him there: “Why is this
turbulence?” they kept asking and he could not answer, so he expunged the word
‘turbulence’ from their 1966 article[A.15] on periodic solutions. In 1970 Spiegel
met Kraichnan and told him: “This vision of turbulence of yours has been very
useful to me.” Kraichnan said: “That wasn’t my vision, that was Hopf’s vision.”
What Hopfactuallysaid and where he said it remains deeply obscure to this very
day. There are papers that lump him together with Landau, as the ‘Landau-Hopf’s
incorrect theory of turbulence,’ but he did not seem to propose incommensurate
frequencies as building blocks of turbulence, which is whatLandau’s guess was.

Starting with the introduction of ‘cycle expansions’ [20.1] in 1988, the classi-
cal, mathematically rigorous SRB, and the closely related semiclassical Gutzwiller
theory, were refashioned into effective tools for computing long time averages
of quantities measured in chaotic dynamics. The idea that chaotic dynamics is
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built upon unstable periodic orbits first arose in Ruelle’s work on hyperbolic sys-
tems, with ergodic averages associated with natural invariant measures expressed
as weighted summations of the corresponding averages aboutthe infinite set of
unstable periodic orbits embedded in the underlying chaotic set. For a long time
the convergence of such sums bedeviled the practitioners, until the periodic orbit
theory was recast in terms of highly convergentcycle expansions[20.2] for which
relatively few short periodic orbits led to highly accuratetransport rates for clas-
sical systems, and quantal spectra for quantum systems. Theidea, in nutshell, is
that long orbits are shadowed by shorter orbits, and thenth term in a cycle expan-
sion is the difference between the shorter cycles estimate of the periodn-cycles’
contribution from the exactn-cycles sum. For hyperbolic, everywhere unstable
flows, this difference falls of exponentially or super-exponentially. Implementing
the cycle expansions theory, the group of Wintgen soon obtained a surprisingly
accurate helium spectrum [A.20] from a small set of shortestcycles, 50 years af-
ter failure of the old quantum theory to do so, and 20 years after Gutzwiller first
introduced his quantization of chaotic systems.

In 1996 Christiansenet al. [A.44] proposed (in what is now the gold stan-
dard for an exemplaryChaosBook.org project) that the periodic orbit theory
be applied to infinite-dimensional flows, such as the Navier-Stokes, using the
Kuramoto-Sivashinsky model as a laboratory for exploring the dynamics close
to the onset of spatiotemporal chaos. The main conceptual advance in this ini-
tial foray was the demonstration that the high-dimensional(16-64 mode Galërkin
truncations) dynamics of this dissipative flow can be reduced to an approximately
1-dimensional Poincaré return maps→ f (s), by choosing the unstable manifold
of the shortest periodic orbit as the intrinsic curvilinearcoordinate from which to
measure near recurrences. For the first time for any nonlinear PDE, some 1,000
unstable periodic orbits were determined numerically.

What was novel about this work? First, dynamics on a strange attractor em-
bedded in a high-dimensional space was reduced to anintrinsic nearly 1-dimensional
dynamics, an approximate 1-dimensional map from the segment of the unstable
manifold bracketed by the primary turning points onto itself. Second, the solu-
tions found provided both aqualitative description, and highly accuratequanti-
tative predictionsfor the given PDE with the given boundary conditions and the
given system parameter values.

The 1996 project went as far as one could with methods and computation re-
sources available, until 2002, when new variational methods were introduced [29.15,
A.45, 26.12]. Considerably more unstable, higher-dimensional regimes have be-
come accessible [26.14], and the full Navier-Stokes analysis of wall-bounded
flows has become feasible [A.46].
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A.2.3 Gruppenpest

How many Tylenols should I take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Waleffe, forced to read a version of chap-
ter 9.

If you are not fan of chapter 9 “World in a mirror,” and its elaborations, you
are not alone. Or, at least, you were not alone in 1930s. That is when the arti-
cles by two young mathematical physicists, Eugene Wigner and Johann von Neu-
mann [A.27], and Wigner’s 1931 Gruppentheorie [A.28] startedDie Gruppenpest
that plagues us to this very day.

According to John Baez [A.29], the American physicist John Slater, inventor
of the ‘Slater determinant,’ is famous for having dismissedgroups as unnecessary
to physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl entered the picture
with their ‘Gruppenpest:’ the pest of the group theory [actually, the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppenpest’ wrote papers
which were incomprehensible to those like me who had not studied group the-
ory... The practical consequences appeared to be negligible, but everyone felt that
to be in the mainstream one had to learn about it. I had what I can only describe
as a feeling of outrage at the turn which the subject had taken... it was obvious
that a great many other physicists we are disgusted as I had been with the group-
theoretical approach to the problem. As I heard later, therewere remarks made
such as ‘Slater has slain the ’Gruppenpest”. I believe that no other piece of work
I have done was so universally popular.”

A. John Coleman writes inGroups and Physics - Dogmatic Opinions of a Se-
nior Citizen [A.30]: “The mathematical elegance and profundity of Weyl’s book
[Theory of Groups and QM] was somewhat traumatic for the English-speaking
physics community. In the preface of the second edition in 1930, after a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group pest’ is gradually being
cut out of quantum physics. This is certainly not true in so far as the rotation and
Lorentz groups are concerned; ....” In the autobiography ofJ. C. Slater, published
in 1975, the famous MIT physicist described the “feeling of outrage” he and other
physicists felt at the incursion of group theory into physics at the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published theirhighly influential
treatise on the “Theory of Atomic Spectra”, Slater was widely heralded as hav-
ing “slain the Gruppenpest”. Pages 10 and 11 of Condon and Shortley’s treatise
are fascinating reading in this context. They devote three paragraphs to the role
of group theory in their book. First they say, “We manage to get along without
it.” This is followed by a lovely anecdote. In 1928 Dirac gavea seminar, at the
end of which Weyl protested that Dirac had said he would make no use of group
theory but that in fact most of his arguments were applications of group theory.
Dirac replied, “I said that I would obtain the results without previous knowledge
of group theory!” Mackey, in the article referred to previously, argues that what
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Slater and Condon and Shortley did was to rename the generators of the Lie al-
gebra of SO(3) as “angular momenta” and create the feeling that what they were
doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people youwere working
with in Berlin, was there much interest in group theory at this time?” WIGNER:
“No. On the opposite. Schrödinger coined the expression, ‘Gruppenpest’ must
be abolished.” “It is interesting, and representative of the relations between math-
ematics and physics, that Wigner’s paper was originally submitted to a Springer
physics journal. It was rejected, and Wigner was seeking a physics journal that
might take it when von Neumann told him not to worry, he would get it into the
Annals of Mathematics. Wigner was happy to accept his offer [A.31].”

A.3 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais,Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the Niels
Bohr Institute beaming with the unparalleled glee of a boy who has just committed
a major mischief. The starting words of the manuscript he hasjust penned are

The failure of the Copenhagen School to obtain a reasonable .. .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals and
holed out jeans, the German flavor of a 90’s left winger and a mountain climber,
working around the clock with his students Gregor and Klaus to complete the
work that Bohr himself would have loved to see done back in 1916: a ‘planetary’
calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to the oldquantum the-
ory, but to something else. The old quantum theory was no theory at all; it was a
set of rules bringing some order to a set of phenomena which defied logic of clas-
sical theory. The electrons were supposed to describe planetary orbits around the
nucleus; their wave aspects were yet to be discovered. The foundations seemed
obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio was
correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.
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Since the late 1890’s it had been known that the helium spectrum consists of
the orthohelium and parahelium lines. In 1915 Bohr suggested that the two kinds
of helium lines might be associated with two distinct shapesof orbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to work on the problem, and
wrote to Rutherford: “I have used all my spare time in the lastmonths to make
a serious attempt to solve the problem of ordinary helium spectrum . . . I think
really that at last I have a clue to the problem.” To other colleagues he wrote that
“the theory was worked out in the fall of 1916” and of having obtained a “partial
agreement with the measurements.” Nevertheless, the Bohr-Sommerfeld theory,
while by and large successful for hydrogen, was a disaster for neutral helium.
Heroic efforts of the young generation, including Kramers and Heisenberg, were
of no avail.

For a while Heisenberg thought that he had the ionization potential for helium,
which he had obtained by a simple perturbative scheme. He wrote enthusiastic
letters to Sommerfeld and was drawn into a collaboration with Max Born to com-
pute the spectrum of helium using Born’s systematic perturbative scheme. In first
approximation, they reproduced the earlier calculations.The next level of correc-
tions turned out to be larger than the computed effect. The concluding paragraph
of Max Born’s classic “Vorlesungen über Atommechanik” from 1925 sums it up
in a somber tone:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where
the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum the-
ory was dead. In 1926 he gave the first quantitative explanation of the helium
spectrum. He used wave mechanics, electron spin and the Pauli exclusion prin-
ciple, none of which belonged to the old quantum theory, and planetary orbits of
electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasnot the fault
of the old quantum mechanics, but rather it reflected their lack of understanding of
the subtleties of classical mechanics. Today we know what they missed in 1913-
24: the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [A.5] added the topological in-
dices in 1980, and in 1991 Wintgen and collaborators [A.8, A.9] understood the
role of periodic orbits. Dieter had good reasons to gloat; while the rest of us
were preparing to sharpen our pencils and supercomputers inorder to approach
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the dreaded 3-body problem, they just went ahead and did it. What it took–and
much else–is described in this book.

One is also free to ponder what quantum theory would look liketoday if all this
was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle about
helium and cycle expansions to–inter alia–Hans Bethe, who loved it so much that
after the talk he pulled Predrag aside and they trotted over to Hans’ secret place:
the best lunch on campus (Business School). Predrag asked: “Would quantum
mechanics look different if in 1917 Bohr and Kramerset al. figured out how to
use the helium classical 3-body dynamics to quantize helium?”

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do thevoice over your-
self):

“It would not matter at all!”
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Commentary

Remark A.1 Notion of global foliations. For each paper cited in dynamical systems
literature, there are many results that went into its development. As an example, take the
notion of global foliations that we attribute to Smale. As far as we can trace the idea, it
goes back to René Thom; local foliations were already used by Hadamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom was explaining his notion of
transversality. One of Thom’s disciples introduced Smale to Brazilian mathematician
Peixoto. Peixoto (who had learned the results of the Andronov-Pontryagin school from
Lefschetz) was the closest Smale had ever come until then to the Andronov-Pontryagin
school. It was from Peixoto that Smale learned about structural stability, a notion that got
him enthusiastic about dynamical systems, as it blended well with his topological back-
ground. It was from discussions with Peixoto that Smale got the problems in dynamical
systems that lead him to his 1960 paper on Morse inequalities. The next year Smale pub-
lished his result on the hyperbolic structure of the non–wandering set. Smale was not the
first to consider a hyperbolic point, Poincaré had already done that; but Smale was the
first to introduce a global hyperbolic structure. By 1960 Smale was already lecturing on
the horseshoe as a structurally stable dynamical system with an infinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponents. A. Katok and J.-M. Strelcyn
carried out the program and developed a theory of general dynamical systems with sin-
gularities. They studied uniformly hyperbolic systems (asstrong as Anosov’s), but with
sets of singularities. Under iterations a dense set of points hits the singularities. Even
more important are the points that never hit the singularityset. In order to establish some
control over how they approach the set, one looks at trajectories that approach the set by
some givenǫn, or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust: look at the
discontinuity set, take anǫ neighborhood around it. Given that the Lebesgue measure is
ǫ
α and the stability grows not faster than (distance)n. A. Katok and J.-M. Strelcyn proved

that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities, and
tying together Lebesgue measure and discontinuities, and given that the stability grows
not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Lorenz, Lozi and Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all trouble isin differentials. For the
Hénon attractor, already the differentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can be obtained by excising the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow
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2. Anosov flow+ singularity set: For the Hamiltonian systems the general case is
studied by A. Katok and J.-M. Strelcyn, and the billiards case by Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Pesin.

3. Hénon case: The first proof was given by M. Benedicks and L.Carleson [A.22,
A.23, A.24]. A more readable proof is given in M. Benedicks and L.-S. Young [A.25].

(based on Ya.B. Pesin’s comments)

Remark A.3 Einstein did it? The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [A.26]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deemed sufficient to give him the
credit for being the pioneer of quantum chaos [A.32, A.33]. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais; neither had any recollection
of the 1917 article. However, Theo Geisel has unearthed a reference that shows that
in early 20s Born did have a study group meeting in his house that studied Poincaré’s
Méchanique Céleste [1.22]. In 1954 Fritz Reiche, who had previously followed Einstein
as professor of physics in Breslau (now Wroclaw, Poland), pointed out to J.B. Keller
that Keller’s geometrical semiclassical quantization wasanticipated by the long forgotten
paper by A. Einstein [A.26]. In this way an important paper written by the physicist who
at the time was the president of German Physical Society, andthe most famous scientist
of his time, came to be referred to for the first time by Keller [A.34], 41 years later. But
before Ian Percival included the topological phase, and Wintgen and students recycled the
Helium atom, knowing Méchanique Céleste was not enough tocomplete Bohr’s original
program.

Remark A.4 Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. Keating [A.37]. The idea is to
improve cycle expansions by imposing unitarity as a functional equation ansatz. The
cycle expansions that they use are the same as the original ones [20.2, 22.1] described
above, but the philosophy is quite different; the claim is that the optimal estimate for low
eigenvalues of classically chaotic quantum systems is obtained by taking the real part of
the cycle expansion of the semiclassical zeta function, cutoff at the appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahlqvistfind that their numerical
results support this claim; F. Christiansen and P. Cvitanović do not find any evidence in
their numerical results. The usual Riemann-Siegel formulas exploit the self-duality of the
Riemann and other zeta functions, but there is no evidence ofsuch symmetry for generic
Hamiltonian flows. Also from the point of hyperbolic dynamics discussed above, proposal
in its current form belongs to the category of crude cycle expansions; the cycles are cut
off by a single external criterion, such as the maximal cycle time, with no regard for the
topology and the curvature corrections. While the functional equation conjecture is not in
its final form yet, it is very intriguing and fruitful research inspiration.

The real life challenge are generic dynamical flows, which fitneither of extreme ide-
alized settings, Smale horseshoe on one end, and the Riemannzet function on the other.

Remark A.5 Sources. The tale of appendix A.3, aside from a few personal recollec-
tions, is in large part lifted from Abraham Pais’ accounts ofthe demise of the old quantum
theory [A.6, A.7], as well as Jammer’s account [A.2]. In August 1994 Dieter Wintgen
died in a climbing accident in the Swiss Alps.
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