Appendix A

A brief history of chaos

L aws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol'd’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads's Law: Everything of importance has
been said before by someone who did not discover
it.

—Sir Michael V. Berry

Writing a history of anything is a reckless undertaking, exsally a history of
something that has preoccupied at one time or other anyusetionker from
ancient Sumer to today’s Hong Kong. A mathematician, to sakexample, might
see it this way: “History of dynamical systems.” Nevertlsslehere comes yet
another very imperfect attempt.

A.1 Chaosisborn

I'll maybe discuss more about its history when | learn
more about it.

—Maciej Zworski
(R. Mainieri and P. Cvitanovit)
RYING TO PREDICT the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was imaottfor deter-

mining the longitude of ships while traversing open seas.
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Kepler's Rudolphine tables had been a great improvement réwious ta-
bles, and Kepler was justly proud of his achievements. Heeanirothe introduc-
tion to the announcement of Kepler's third ladarmonice MundiLinz, 1619) in
a style that would not fly with the contemporaPhysical Review Lettemsditors:

What | prophesied two-and-twenty years ago, as soon as dwised
the five solids among the heavenly orbits—what | firmly bedlong before
| had seen Ptolemyldarmonics-what | had promised my friends in the title
of this book, which I named before | was sure of my discovetyatgixteen
years ago, | urged as the thing to be sought-that for whicingfTycho
Brahé, for which | settled in Prague, for which | have deddtee best part
of my life to astronomical contemplations, at length | haveught to light,
and recognized its truth beyond my most sanguine expenatiti is not
eighteen months since | got the first glimpse of light, thremths since
the dawn, very few days since the unveiled sun, most adneir@bbaze
upon, burst upon me. Nothing holds me; | will indulge my sdcdhery; |
will triumph over mankind by the honest confession that Iéatolen the
golden vases of the Egyptians to build up a tabernacle for oy fér away
from the confines of Egypt. If you forgive me, | rejoice; if yave angry, |
can bear it; the die is cast, the book is written, to be redteeiow or in
posterity, | care not which; it may well wait a century for ader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood stile Slewton.
The formalism that we use today was developed by Euler andabgg. By the
end of the 1800’s the three problems that would lead to themaif chaotic
dynamics were already known: the three-body problem, thedic hypothesis,
and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive thgdliorbits of Kepler
and set an example of how equations of motion could be solyadtbgrating.
But the motion of the Moon is not well approximated by an slipvith the Earth
at a focus; at least thdfects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already podseEselo that one has
to consider the motion of three bodies: the Moon, the Earit,the Sun. When
the planets are replaced by point particles of arbitrarysessthe problem to be
solved is known as the three-body problem. The three-bodpl@m was also
a model to another concern in astronomy. In the Newtonianeiefdthe solar
system it is possible for one of the planets to go from antaliprbit around the
Sun to an orbit that escaped its dominion or that plunged righ it. Knowing

if any of the planets would do so became the problem of thelisyadif the solar
system. A planet would not meet this terrible end if solartesysconsisted of
two celestial bodies, but whether such fate could befalhim three-body case
remained unclear.

After many failed attempts to solve the three-body problaatural philoso-
phers started to suspect that it was impossible to integfréie usual technique for

appendHist - 19aug2008 ChaosBook.org version14, Dec 31 2012



APPENDIX A. A BRIEF HISTORY OF CHAOS 769

integrating problems was to find the conserved quantitisantities that do not
change with time and allow one to relate the momenta andiposiat diferent

times. The first sign on the impossibility of integrating ttheee-body problem
came from a result of Burns that showed that there were ncecesd quantities
that were polynomial in the momenta and positions. Burnsultedid not pre-

clude the possibility of more complicated conserved qtiasti This problem was
settled by Poincaré and Sundman in two vetffjadent ways.

In an attempt to promote the journAkta MathematicaMittag-Leffler got
the permission of the King Oscar Il of Sweden and Norway taldisth a mathe-
matical competition. Several questions were posed (aifindioe king would have
preferred only one), and the prize of 2500 kroner would gbédatest submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract eadr atttording
to Newton’s laws, under the assumption that no two points esf#fide, try
to find a representation of the coordinates of each point aariassin a
variable that is some known function of time and for all of whwalues the
series converges uniformly.

This problem, whose solution would considerably extend under-
standing of the solar system, ...

Poincaré’s submission won the prize. He showed that ceedeguantities that
were analytic in the momenta and positions could not exigt. sfow that he
introduced methods that were very geometrical in spiri& ithportance of state
space flow, the role of periodic orbits and their cross sastidthe homoclinic
points.

The interesting thing about Poincaré’s work was that itrditisolve the prob-
lem posed. He did not find a function that would give the camatéis as a function
of time for all times. He did not show that it was impossiblder, but rather that
it could not be done with the Bernoulli technique of findingomserved quantity
and trying to integrate. Integration would seem unlikelgnir Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-b8medish mathe-
matician Sundman. Sundman showed that to integrate the-bugy problem
one had to confront the two-body collisions. He did that bimg them go away
through a trick known as regularization of the collision rifield. The trick is not
to expand the coordinates as a function of tiimbut rather as a function offt.
To solve the problem for all times he used a conformal map angtrip. This
allowed Sundman to obtain a series expansion for the ccatelinvalid for all
times, solving the problem that was proposed by Weirstratise King Oscar II's
competition.

The Sundman’s series are not used today to compute thettndgscof any
three-body system. That is more simply accomplished by migalenethods or
through series that, although divergent, produce betteenical results. The con-
formal map and the collision regularization mean that theeseare &ectively in
the variable 1- e k. Quite rapidly this gets exponentially close to one, the ra-
dius of convergence of the series. Many terms, more ternmsghg one has ever
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wanted to compute, are needed to achieve numerical com@rg&hough Sund-
man’s work deserves better credit than it gets, it did nat liyp to Weirstrass’s
expectations, and the series solution did not “considgraxtend our understand-
ing of the solar system.” The work that followed from Poirécdid.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development abtah dynamics

was the ergodic hypothesis of Boltzmann. Maxwell and Bo#tmumhad combined
the mechanics of Newton with notions of probability in ortieicreate statistical
mechanics, deriving thermodynamics from the equationsexfhanics. To eval-
uate the heat capacity of even a simple system, Boltzmanrnchathke a great
simplifying assumption of ergodicity: that the dynamicgdtem would visit every
part of the phase space allowed by conservation laws ecofédlg. This hypoth-

esis was extended to other averages used in statisticalameshand was called
the ergodic hypothesis. It was reformulated by Poincaréatothat a trajectory
comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be veffiadlilt. By the end
of twentieth century it has only been shown true for a feweyst and wrong
for quite a few others. Early on, as a mathematical necegbigyproof of the
hypothesis was broken down into two parts. First one woutstinat the me-
chanical system was ergodic (it would go near any point) had bne would show
that it would go near each point equally often and regulaolyhait the computed
averages made mathematical sense. Koopman took the fpsinspeoving the
ergodic hypothesis when he realized that it was possibleftormulate it using
the recently developed methods of Hilbert spaces. This wamportant step that
showed that it was possible to take a finite-dimensionalineat problem and
reformulate it as a infinite-dimensional linear problem.isTéioes not make the
problem easier, but it does allow one to use féedént set of mathematical tools
on the problem. Shortly after Koopman started lecturing ismiethod, von Neu-
mann proved a version of the ergodic hypothesis, givinggitstiatus of a theorem.
He proved that if the mechanical system was ergodic, thendimputed averages
would make sense. Soon afterwards Birflublished a much stronger version
of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the developimeinthe theory of
chaotic dynamical systems was the work on the nonlineallases. The prob-
lem is to construct mechanical models that would aid our tstdeding of phys-
ical systems. Lord Rayleigh came to the problem throughriterest in under-
standing how musical instruments generate sound. In theafioximation one
can construct a model of a musical instrument as a lineallatsci But real in-
struments do not produce a simple tone forever as the linegllator does, so
Lord Rayleigh modified this simple model by adding frictiomdamore realistic
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models for the spring. By a clever use of negative frictioncheated two basic
models for the musical instruments. These models have rhared pure tone
and decay with time when not stroked. In his botike Theory of SounHord
Rayleigh introduced a series of methods that would proveegeneral, such as
the notion of a limit cycle, a periodic motion a system goesegardless of the
initial conditions.

A.1.4 Chaosgrowsup

(R. Mainieri)

The theorems of von Neumann and Birlghon the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developdd/mdirections. One
direction took an abstract approach and considered dy@systems as trans-
formations of measurable spaces into themselves. Couldassify these trans-
formations in a meaningful way? This lead Kolmogorov to thieaduction of the
concept of entropy for dynamical systems. With entropy agrehical invariant
it became possible to classify a set of abstract dynamicesys known as the
Bernoulli systems. The other line that developed from tigedic hypothesis was
in trying to find mechanical systems that are ergodic. An @igsystem could
not have stable orbits, as these would break ergodicity. nNSi888 Hadamard
published a paper with a playful title of ‘... billiards ".where he showed that
the motion of balls on surfaces of constant negative curgatieverywhere un-
stable. This dynamical system was to prove very useful amd# taken up by
Birkhoff. Morse in 1923 showed that it was possible to enumerate thies af
a ball on a surface of constant negative curvature. He dglldhiintroducing a
symbolic code to each orbit and showed that the number oflpessodes grew
exponentially with the length of the code. With contribatsoby Artin, Hedlund,
and H. Hopf it was eventually proven that the motion of a balbsurface of con-
stant negative curvature was ergodic. The importance sfrdsult escaped most
physicists, one exception being Krylov, who understood ¢&physical billiard
was a dynamical system on a surface of negative curvaturgyithuthe curvature
concentrated along the lines of collision. Sinai, who wasftrst to show that a
physical billiard can be ergodic, knew Krylov's work well.

The work of Lord Rayleigh also received vigorous developmérprompted
many experiments and some theoretical development by vapalieDuting, and
Hayashi. They found other systems in which the nonlineaitlatar played a role
and classified the possible motions of these systems. Thige®ness of experi-
ments, and the possibility of analysis was too much of tetiqutdor Mary Lucy
Cartwright and J.E. Littlewood [A.18], who set out to protiat many of the struc-
tures conjectured by the experimentalists and theorgitoaicists did indeed fol-
low from the equations of motion. Birklficthad found a ‘remarkable curve’ in a
two dimensional map; it appeared to be noffatentiable and it would be nice
to see if a smooth flow could generate such a curve. The worladir@ight and
Littlewood lead to the work of Levinson, which in turn proeid the basis for the
horseshoe construction of S. Smale. chapter 12
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In Russia, Lyapunov paralleled the methods of Poincaré initidted the
strong Russian dynamical systems school. Andronov caonedith the study of
nonlinear oscillators and in 1937 introduced together Wwitimtryagin the notion
of coarse systems. They were formalizing the understangiémgered from the
study of nonlinear oscillators, the understanding thatyrarthe details on how
these oscillators work do noffact the overall picture of the state space: there will
still be limit cycles if one changes the dissipation or sgrfiorce function by a lit-
tle bit. And changing the system a little bit has the greabatkge of eliminating
exceptional cases in the mathematical analysis. Coargensysvere the concept
that caught Smale’s attention and enticed him to study dycsraystems.

A.2 Chaoswith us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where hé¢ Araol'd,
Anosov, Sinai, and Novikov. He lectured there, and spentt afldime with
Anosov. He suggested a series of conjectures, most of whieisév proved
within a year. It was Anosov who showed that there are dynalnsigstems for
which all points (as opposed to a non—wandering set) admihyiperbolic struc-
ture, and it was in honor of this result that Smale named thgstems Axiom-A.
In Kiev Smale found a receptive audience that had been tigrddoout these prob-
lems. Smale’s result catalyzed their thoughts and indiatehain of developments
that persisted into the 1970’s.

Smale collected his results and their development in th& t®@ew article on
dynamical systems, entitled “Berentiable dynamical systems.” There are mathapter 12
great ideas in this paper: the global foliation of invariagets of the map into
disjoint stable and unstable parts; the existence of a slooseand enumeration
and ordering of all its orbits; the use of zeta functions tmgtdynamical systems.

The emphasis of the paper is on the global properties of thardical system, on
how to understand the topology of the orbits. Smale’s acctakes you from a
local differential equation (in the form of vector fields) to the glotmdological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little enoonfusing. The
general character of entropy was understood by Weiner, e&imed to have spo-
ken to Shannon. In 1948 Shannon published his results onmiatmon theory,
where he discusses the entropy of the shift transformatiolmogorov went
far beyond and suggested a definition of the metric entro@nadrea preserving
transformation in order to classify Bernoulli shifts. Theggestion was taken by
his student Sinai and the results published in 1959. In 1960liR connected
these results to measure-theoretical notions of entrowe next step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim Addrew; these
papers showed that one could define the notion of topologitibpy and use it
as an invariant to classify continuous maps. In 1967 Anosal Sinai applied
the notion of entropy to the study of dynamical systems. I$ wathe context
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of studying the entropy associated to a dynamical systeSimai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems statistical me-
chanics; this has been a very fruitful relationship. It addsasure notions to the
topological framework laid down in Smale’s paper. Markovtpians divide the
state space of the dynamical system into nice little boxafsrttap into each other.
Each box is labeled by a code and the dynamics on the state spgus the codes
around, inducing a symbolic dynamics. From the number oebaxeeded to
cover all the space, Sinai was able to define the notion obpytof a dynamical
system. In 1970 Bowen came up independently with the sanas,iddthough
there was presumably some flow of information back and foefiore these pa-
pers got published. Bowen also introduced the importanteoinof shadowing of
chaotic orbits. We do not know whether at this point the retet with statistical
mechanics were clear to everyone. They became expliciteamibrk of Ruelle.
Ruelle understood that the topology of the orbits could leeified by a symbolic
code, and that one could associate an ‘energy’ to each drbé.energies could
be formally combined in a ‘partition function’ to generatestinvariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundhstiof the statisti-
cal mechanics approach to chaotic systems, research tirseatlying particular
cases. The simplest case to consider is 1-dimensional mapstopology of the
orbits for parabola-like maps was worked out in 1973 by Melis, Stein, and
Stein. The more general 1-dimensional case was worked difi16 by Milnor
and Thurston in a widely circulated preprint, whose exteingdersion eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, ateinSnspired
Feigenbaum to study simple maps. This lead him to the disg@mi¢he universal-
ity in quadratic maps and the application of ideas from ftblglery to dynamical
systems. Feigenbaum’s work was the culmination in the stddydimensional
systems; a complete analysis of a nontrivial transitiorhtos. Feigenbaum intro-
duced many new ideas into the field: the use of the renorntigiizgroup which
lead him to introduce functional equations in the study ofaiyical systems, the
scaling function which completed the link between dynairggatems and statis-
tical mechanics, and the presentation functions whichridesthe dynamics of
scaling functions.

The work in more than one dimension progressed very slowdlyisustill far
from completed. The first result in trying to understand theotogy of the or-
bits in two dimensions (the equivalent of Metropolis, Steind Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 19&6r$ton was giv-
ing lectures “On the geometry and dynamics dfebmorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not bBppled in physics,
but much of the classification that Thurston developed caolb@ined from the
notion of a ‘pruning front’ formulated independently by @Gnovic.

Once one develops an understanding of the topology of thsata dynam-
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ical system, one needs to be able to compute its propertiasliechad already
generalized the zeta function introduced by Artin and Maauthat it could be
used to compute the average value of observables. Theutty with Ruelle’s
zeta function is that it does not converge very well. Stgrimit from Smale’s
observation that a chaotic dynamical system is dense wigh af periodic orbits,
Cvitanovi¢ used these orbits as a skeleton on which to atalthe averages of
observables, and organized such calculations in termspadlyaconverging cy-
cle expansions. This convergence is attained by using trestorbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it willhgét a sense of
perspective on the field. It is not a fad and it will not die amg soon.

A.2.1 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

— Joe Keller, after being asked to define applied
mathematics

The history of the periodic orbit theory is rich and curioasd the recent
advances are to equal degree inspired by a century of sepdeatlopment of
three disparate subjects; Iclassical chaotic dynamigsnitiated by Poincaré
and put on its modern footing by Smale [1.27], Ruelle [1.3%]d many oth-
ers; 2. quantum theorynitiated by Bohr, with the modern ‘chaotic’ formulation
by Gutzwiller [21.13, A.32]; and 3. analyticumber theorynitiated by Riemann
and formulated as a spectral problem by Selberg [A.35, A.B6llowing totally
different lines of reasoning and driven by verffelient motivations, the three sep-
arate roads all arrive at formally nearly identit@ce formulaszeta functiongnd
spectral determinants

That these topics should be related is far from obvious. €ciion between
dynamics and number theory arises from Selberg’s observdtat description of
geodesic motion and wave mechanics on spaces of constativeegurvature is
essentially a number-theoretic probleAposteriorj one can say that zeta func-
tions arise in both classical and quantum mechanics beaabséh the dynamical
evolution can be described by the action of linear evolutartransfer) operators
on infinite-dimensional vector spaces. The spectra of theseators are given
by the zeros of appropriate determinants. One way to ewallgterminants is tosection 19.1
expand them in terms of tracdeg det= tr log, and in this way the spectrum of
an evolution operator becomes related to its traces, iegiogic orbits. A per-
haps deeper way of restating this is to observe that the toacrilas perform the
same service in all of the above problems; they relate thetispe of lengths (lo-
cal dynamics) to the spectrum of eigenvalues (global aesjagnd for nonlinear
geometries they play a role analogous to that the Fouriesfioam plays for the
circle. exercise 4.1

In Gutzwiller's words:
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“The classical periodic orbits are a crucial stepping stort@ée under-
standing of quantum mechanics, in particular when thersidaksystem is
chaotic. This situation is very satisfying when one think®oincaré who
emphasized the importance of periodic orbits in classicathmanics, but
could not have had any idea of what they could mean for quantechan-
ics. The set of energy levels and the set of periodic orb&samplementary
to each other since they are essentially related througluadfdaransform.
Such a relation had been found earlier by the mathematiaiatie study
of the Laplacian operator on Riemannian surfaces with emstegative
curvature. This led to Selberg’s trace formula in 1956 wiiak exactly the
same form, but happens to be exact. The mathematical proakver, is
based on the high degree of symmetry of these surfaces waichecom-
pared to the sphere, although the negative curvature aflewsany more
different shapes.”

A.2.2 Dynamicist’svision of turbulence

The key theoretical concepts that form the basis of dyndnthesries of turbu-
lence are rooted in the work of Poincaré, Hopf, Smale, Ruslid Gutzwiller. In

his 1889 analysis of the three-body problem [1.22] Poiadaifoduced the ge-
ometric approach to dynamical systems and methods that tieeacore of the
theory developed here: qualitative topology of state spkves, Poincaré sec-
tions, the key roles played by equilibria, periodic orbiteteroclinic connections,
and their stableinstable manifolds. Poincaré’s work and parallel work lya-L
punov’s school in Russia was followed up by steady developroedynamical

systems theory through the 20th century.

In a seminal 1948 paper [A.11], Hopf visualized the functpace of allow-
able Navier-Stokes velocity fields as an infinite-dimenalatate space, parame-
terized by viscosity, boundary conditions and externatdsy with instantaneous
state of a flow represented by a point in this state space. ranfliows corre-
spond to equilibrium points, globally stable forfsciently large viscosity. As the
viscosity decreases (as the Reynolds number increasad)ulgnt’ states set in,
represented by chaotic state space trajectories.

Hopf’s observation that viscosity causes a contractiortaitEsspace volumes
under the action of dynamics led to his key conjecture: thiagjiterm, typically
observed solutions of the Navier-Stokes equations lie orefdimensional man-
ifolds embedded in the infinite-dimensional state spacdloivad states. Hopf’s
manifold, known today as the ‘inertial manifold, is welluglied in the mathe-
matics of spatio-temporal PDEs. Its finite dimensionaldy fion-vanishing ‘vis-
cosity’ parameter has been rigorously established inicestgtings by Foias and
collaborators [A.43].

Hopf noted “[t]he great mathematicalfficulties of these important problems
are well known and at present the way to a successful attattkeom seems hope-
lessly barred. There is no doubt, however, that many chenstit features of
the hydrodynamical phase flow occur in a much larger clas@ifas problems
governed by non-linear space-time systems. In order toigaight into the na-
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ture of hydrodynamical phase flows we are, at present, fawéidd and to treat
simplified examples within that class.”

Hopf’s call for geometric state space analysis of simplifieodels first came
to fulfillment with the influential Lorenz’s truncation [2.8f the Rayleigh-Bénard
convection state space (see example 2.2), and was broughtlader to true
hydrodynamics with the Cornell group’s POD models of boupdayer turbu-
lence [A.19, A.12]. Further significant progress has propedsible for sys-
tems such as the 1-spatial dimension Kuramoto-Sivashifiely[A.13, A.14], a
paradigmatic model of turbulent dynamics, and one of thet mxdgnsively stud-
ied spatially extended dynamical systems.

Today, as we hope to have convinced the reader, with modenpuwiation and
experimental insights, the way to a successful attack orfuthdéNavier-Stokes
problem is no longer “hopelessly barred.” We address thdesige in a way
Hopf could not divine, employing methodology developedyowithin the past
two decades, explained in depth in this book. Hopf presigiemited that “the ge-
ometrical picture of the phase flow is, however, not the nragirtant problem of
the theory of turbulence. Of greater importance is the datetion of the proba-
bility distributions associated with the phase flow”. Hgptall for understanding
of probability distributions under phase flow has indeed/proto be a key chal-
lenge, the one in which dynamical systems theory has madgdlagest progress
in the last half century, namely, the Sinai-Ruelle-Bowegoéic theory of ‘nat-
ural’ or SRB measures for far-from-equilibrium system£¥1.1.28, 1.29, 1.32].

The story so far goes like this: in 1960 Edward A. Spiegel waldrt Kraich-
nan’s research associate. Kraichnan told him: “Flow fol@wegular solution for
a while, then another one, then switches to another onés thdbulence.” It was
not too clear, but Kraichnan'’s vision of turbulence moved EEdL962 Spiegel and
Derek Moore investigated a set of 3rd order convection égustwhich seemed
to follow one periodic solution, then another, and contthgeing from periodic
solution to periodic solution. Ed told Derek: “This is tutbnoce!” and Derek said
“This is wonderful!” and was moved. He went to give a lectur€altech some-
time in 1964 and came back angry as hell. They pilloried hiengh“Why is this
turbulence?” they kept asking and he could not answer, sapnged the word
‘turbulence’ from their 1966 article[A.15] on periodic stibns. In 1970 Spiegel
met Kraichnan and told him: “This vision of turbulence of ysinas been very
useful to me.” Kraichnan said: “That wasn’t my vision, theaswHopf’s vision.”
What Hopfactually said and where he said it remains deeply obscure to this very
day. There are papers that lump him together with Landaeas andau-Hopf's
incorrect theory of turbulence,” but he did not seem to pegpmcommensurate
frequencies as building blocks of turbulence, which is wtatdau’s guess was.

Starting with the introduction of ‘cycle expansions’ [2Pid 1988, the classi-
cal, mathematically rigorous SRB, and the closely relagsdislassical Gutzwiller
theory, were refashioned intdfective tools for computing long time averages
of quantities measured in chaotic dynamics. The idea thabtchdynamics is
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built upon unstable periodic orbits first arose in Ruellekvon hyperbolic sys-
tems, with ergodic averages associated with natural mwarmeasures expressed
as weighted summations of the corresponding averages #iminfinite set of
unstable periodic orbits embedded in the underlying chamt. For a long time
the convergence of such sums bedeviled the practitioneti the periodic orbit
theory was recast in terms of highly convergeytle expansiong0.2] for which
relatively few short periodic orbits led to highly accuratansport rates for clas-
sical systems, and quantal spectra for quantum systemsid@&agin nutshell, is
that long orbits are shadowed by shorter orbits, andhthéerm in a cycle expan-
sion is the diterence between the shorter cycles estimate of the paraydles’
contribution from the exaat-cycles sum. For hyperbolic, everywhere unstable
flows, this diference falls of exponentially or super-exponentially. lenpenting
the cycle expansions theory, the group of Wintgen soon iodta surprisingly
accurate helium spectrum [A.20] from a small set of shortgskes, 50 years af-
ter failure of the old quantum theory to do so, and 20 yeaer &utzwiller first
introduced his quantization of chaotic systems.

In 1996 Christiansemt al. [A.44] proposed (in what is now the gold stan-
dard for an exemplarghaosBook.org project) that the periodic orbit theory
be applied to infinite-dimensional flows, such as the NaSimikes, using the
Kuramoto-Sivashinsky model as a laboratory for exploring dynamics close
to the onset of spatiotemporal chaos. The main conceptwalnad in this ini-
tial foray was the demonstration that the high-dimensi¢b&!64 mode Galérkin
truncations) dynamics of this dissipative flow can be reduoean approximately
1-dimensional Poincaré return map- f(s), by choosing the unstable manifold
of the shortest periodic orbit as the intrinsic curvilineaordinate from which to
measure near recurrences. For the first time for any nomliaB&, some 1,000
unstable periodic orbits were determined numerically.

What was novel about this work? First, dynamics on a stratigector em-
bedded in a high-dimensional space was reduced ittt@nsic nearly 1-dimensional
dynamics, an approximate 1-dimensional map from the segofehe unstable
manifold bracketed by the primary turning points onto ftséecond, the solu-
tions found provided both qualitative descriptionand highly accuratguanti-
tative predictiondor the given PDE with the given boundary conditions and the
given system parameter values.

The 1996 project went as far as one could with methods and at@tign re-
sources available, until 2002, when new variational metheere introduced [29.15,
A.45, 26.12]. Considerably more unstable, higher-dinmamali regimes have be-
come accessible [26.14], and the full Navier-Stokes arslgt wall-bounded
flows has become feasible [A.46].
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A.2.3 Gruppenpest

How many Tylenols should | take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Walé&e, forced to read a version of chap-
ter 9.

If you are not fan of chapter 9 “World in a mirror,” and its etabtions, you
are not alone. Or, at least, you were not alone in 1930s. Fhahén the arti-
cles by two young mathematical physicists, Eugene WigndiJahann von Neu-
mann [A.27], and Wigner’s 1931 Gruppentheorie [A.28] stdidie Gruppenpest
that plagues us to this very day.

According to John Baez [A.29], the American physicist Jolate3, inventor
of the ‘Slater determinant,’ is famous for having dismisgeolps as unnecessary
to physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl ed the picture
with their ‘Gruppenpest:’ the pest of the group theory [ady the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppest’ wrote papers
which were incomprehensible to those like me who had notietiudroup the-
ory... The practical consequences appeared to be neglidpbt everyone felt that
to be in the mainstream one had to learn about it. | had what body describe
as a feeling of outrage at the turn which the subject had takahwas obvious
that a great many other physicists we are disgusted as | leadvbieh the group-
theoretical approach to the problem. As | heard later, thexee remarks made
such as ‘Slater has slain the 'Gruppenpest”. | believe thaither piece of work
| have done was so universally popular.”

A. John Coleman writes isroups and Physics - Dogmatic Opinions of a Se-
nior Citizen [A.30]: “The mathematical elegance and profundity of Weyl's book
[Theory of Groups and QM] was somewhat traumatic for the Bhegpeaking
physics community. In the preface of the second edition B0l @fter a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group’pssiradually being
cut out of quantum physics. This is certainly not true in scafathe rotation and
Lorentz groups are concerned; ...." In the autobiography. &f. Slater, published
in 1975, the famous MIT physicist described the “feeling ofrage” he and other
physicists felt at the incursion of group theory into phgsat the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published thigily influential
treatise on the “Theory of Atomic Spectra”, Slater was widetralded as hav-
ing “slain the Gruppenpest”. Pages 10 and 11 of Condon andI&yis treatise
are fascinating reading in this context. They devote thamagraphs to the role
of group theory in their book. First they say, “We manage tbaleng without
it.” This is followed by a lovely anecdote. In 1928 Dirac gaveseminar, at the
end of which Weyl protested that Dirac had said he would makase of group
theory but that in fact most of his arguments were applicatiof group theory.
Dirac replied, “I said that | would obtain the results witlhquevious knowledge
of group theory!” Mackey, in the article referred to previty) argues that what
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Slater and Condon and Shortley did was to rename the gereitthe Lie al-
gebra of SO(3) as “angular momenta” and create the feeliaigvthat they were
doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people yauere working
with in Berlin, was there much interest in group theory as tifine?” WIGNER:
“No. On the opposite. Schrodinger coined the expressiGnppenpest’ must
be abolished.” “It is interesting, and representative efritlations between math-
ematics and physics, that Wigner's paper was originallynsttbd to a Springer
physics journal. It was rejected, and Wigner was seekingyaiph journal that
might take it when von Neumann told him not to worry, he woudd igj into the
Annals of Mathematics. Wigner was happy to accept fisrgA.31].”

A.3 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais,Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in hiiae at the Niels
Bohr Institute beaming with the unparalleled glee of a bopWwhs just committed
a major mischief. The starting words of the manuscript hgustpenned are

The failure of the Copenhagen School to obtain a reasonable .

34 years old at the time, Dieter was a gtykind of guy, always in sandals and
holed out jeans, the German flavor of a 90’s left winger and anten climber,
working around the clock with his students Gregor and Klausdmplete the
work that Bohr himself would have loved to see done back ir61@l'planetary’
calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to thegalhtum the-
ory, but to something else. The old quantum theory was nayregall; it was a
set of rules bringing some order to a set of phenomena whitbddegic of clas-
sical theory. The electrons were supposed to describetplgnerbits around the
nucleus; their wave aspects were yet to be discovered. Tumalédions seemed
obscure, but Bohr's answer for the once-ionized helium tdrbgen ratio was
correct to five significant figures and hard to ignore. The aldrqum theory
marched on, until by 1924 it reached an impasse: the heliwentspn and the
Zeeman #ect were its death knell.
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Since the late 1890'’s it had been known that the helium gpectonsists of
the orthohelium and parahelium lines. In 1915 Bohr suggettat the two kinds
of helium lines might be associated with two distinct shagfesbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to workherproblem, and
wrote to Rutherford: “I have used all my spare time in the fashths to make
a serious attempt to solve the problem of ordinary heliunctspm .. .| think
really that at last | have a clue to the problem.” To otherezgiues he wrote that
“the theory was worked out in the fall of 1916” and of havingahed a “partial
agreement with the measurements.” Nevertheless, the Bammerfeld theory,
while by and large successful for hydrogen, was a disastendatral helium.
Heroic dforts of the young generation, including Kramers and Heisembwere
of no avail.

For a while Heisenberg thought that he had the ionizatioami@l for helium,
which he had obtained by a simple perturbative scheme. Heverathusiastic
letters to Sommerfeld and was drawn into a collaboratioin Wiax Born to com-
pute the spectrum of helium using Born’'s systematic pedtive scheme. In first
approximation, they reproduced the earlier calculatidree next level of correc-
tions turned out to be larger than the computé&dat. The concluding paragraph
of Max Born’s classic “Vorlesungen Uiber Atommechanik’frd 925 sums it up
in a somber tone:

(...) the systematic application of the principles of theugum theory

(...) gives results in agreement with experiment only irsthoases where
the motion of a single electron is considered; it fails evethie treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not yeadinsistent.
(...) A complete systematic transformation of the cladsiwachanics into
a discontinuous mechanics is the goal towards which thetgoatheory
strives.

That year Heisenberg ffared a bout of hay fever, and the old quantum the-
ory was dead. In 1926 he gave the first quantitative explamaif the helium
spectrum. He used wave mechanics, electron spin and theeRalusion prin-
ciple, none of which belonged to the old quantum theory, dadgtary orbits of
electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasthe fault
of the old quantum mechanics, but rather it reflected thek ¢d understanding of
the subtleties of classical mechanics. Today we know wlest thissed in 1913-
24 the role of conjugate points (topological indices) glafassical trajectories
was not accounted for, and they had no idea of the importahperimdic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods efdid quantum
mechanics has been fixed. Leopold and Percival [A.5] addedojtological in-
dices in 1980, and in 1991 Wintgen and collaborators [A.8] Ainderstood the
role of periodic orbits. Dieter had good reasons to gloatjlevtine rest of us
were preparing to sharpen our pencils and supercomputensiar to approach
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the dreaded 3-body problem, they just went ahead and did fitat\l¥ took—and
much else—is described in this book.

Oneis also free to ponder what quantum theory would looktbkiay if all this
was worked out in 1917. In 1994 Predrag Cvitanovi¢ gavelaiteSeattle about
helium and cycle expansions to—inter alia—Hans Bethe, whad it so much that
after the talk he pulled Predrag aside and they trotted @velans’ secret place:
the best lunch on campus (Business School). Predrag askéolild quantum
mechanics look dierent if in 1917 Bohr and Kramegt al. figured out how to
use the helium classical 3-body dynamics to quantize héfium

Bethe was very annoyed. He responded with an exasperatied indBethe
Deutschinglish (if you have ever talked to him, you can doubiee over your-
self):

“It would not matter at all!”
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Commentary

Remark A.1 Notion of global foliations.  For each paper cited in dynamical systems
literature, there are many results that went into its dgymlent. As an example, take the
notion of global foliations that we attribute to Smale. As#&a we can trace the idea, it
goes back to René Thom; local foliations were already ugéthdlamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom wasaéxiplg his notion of
transversality. One of Thom'’s disciples introduced Smald@tazilian mathematician
Peixoto. Peixoto (who had learned the results of the AndrdPontryagin school from
Lefschetz) was the closest Smale had ever come until thdretdndronov-Pontryagin
school. It was from Peixoto that Smale learned about stratstability, a notion that got
him enthusiastic about dynamical systems, as it blendebwitdl his topological back-
ground. It was from discussions with Peixoto that Smale lgetdroblems in dynamical
systems that lead him to his 1960 paper on Morse inequalities next year Smale pub-
lished his result on the hyperbolic structure of the non-deaimg set. Smale was not the
first to consider a hyperbolic point, Poincaré had alreanlyedthat; but Smale was the
first to introduce a global hyperbolic structure. By 1960 &mweas already lecturing on
the horseshoe as a structurally stable dynamical systelmawiinfinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity.  In the mid 1970's A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponentKatok and J.-M. Strelcyn
carried out the program and developed a theory of generardigal systems with sin-
gularities. They studied uniformly hyperbolic systemsgaeng as Anosov’s), but with
sets of singularities. Under iterations a dense set of pdiit the singularities. Even
more important are the points that never hit the singulaety In order to establish some
control over how they approach the set, one looks at trajestthat approach the set by
some givere", or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the getmof billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was muclemobust: look at the
discontinuity set, take anneighborhood around it. Given that the Lebesgue measure is
€* and the stability grows not faster than (distaficé). Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Nwsvgroblem has no
invariant Lebesgue measure. Assuming uniform hypertgligiith singularities, and
tying together Lebesgue measure and discontinuities, &t ¢hat the stability grows
not faster than (distanck)Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Loreazahd Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all troubléniglifferentials. For the
Hénon attractor, already thefffirentials are nonhyperbolic. The points do not separate

uniformly, but the analogue of the singularity set can beiwigtd by excising the regions
that do not separate. Hence there are 3 levels of ergodieragst

1. Anosov flow
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2. Anosov flow+ singularity set: For the Hamiltonian systems the genersé ésa
studied by A. Katok and J.-M. Strelcyn, and the billiardsechg Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Resi

3. Hénon case: The first proof was given by M. Benedicks an@drleson [A.22,
A.23, A.24]. Amore readable proofis givenin M. Benedickd artS. Young [A.25].

(based on Ya.B. Pesin’'s comments)

Remark A.3 Einstein did it?  The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [A.26]. The total discuss®a one sentence remark.
Einstein being Einstein, this one sentence has been deeuffedest to give him the
credit for being the pioneer of quantum chaos [A.32, A.33¢ &8ked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Paish@&ehad any recollection
of the 1917 article. However, Theo Geisel has unearthedexarte that shows that
in early 20s Born did have a study group meeting in his houaedtudied Poincaré’s
Méchanique Céleste [1.22]. In 1954 Fritz Reiche, who hadipusly followed Einstein
as professor of physics in Breslau (now Wroclaw, Poland)nted out to J.B. Keller
that Keller's geometrical semiclassical quantization aasicipated by the long forgotten
paper by A. Einstein [A.26]. In this way an important papeitten by the physicist who
at the time was the president of German Physical Societytl@chost famous scientist
of his time, came to be referred to for the first time by Kellkr34], 41 years later. But
before lan Percival included the topological phase, andg®mand students recycled the
Helium atom, knowing Méchanique Céleste was not enougiotoplete Bohr’s original
program.

Remark A.4 Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. KepfA.37]. The idea is to
improve cycle expansions by imposing unitarity as a fumalcequation ansatz. The
cycle expansions that they use are the same as the origiral[@60.2, 22.1] described
above, but the philosophy is quitefidirent; the claim is that the optimal estimate for low
eigenvalues of classically chaotic quantum systems isruddeby taking the real part of
the cycle expansion of the semiclassical zeta functionoffuat the appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahldiistthat their numerical
results support this claim; F. Christiansen and P. Cviténdwe not find any evidence in
their numerical results. The usual Riemann-Siegel forsaialoit the self-duality of the
Riemann and other zeta functions, but there is no evidensadaf symmetry for generic
Hamiltonian flows. Also from the point of hyperbolic dynamitiscussed above, proposal
in its current form belongs to the category of crude cycleamsgions; the cycles are cut
off by a single external criterion, such as the maximal cycletimith no regard for the
topology and the curvature corrections. While the funal@guation conjecture is not in
its final form yet, it is very intriguing and fruitful resedrénspiration.

The real life challenge are generic dynamical flows, whichdither of extreme ide-
alized settings, Smale horseshoe on one end, and the Riezatfumction on the other.

Remark A.5 Sources. The tale of appendix A.3, aside from a few personal recollec-
tions, is in large part lifted from Abraham Pais’ accountthaf demise of the old quantum
theory [A.6, A.7], as well as Jammer’s account [A.2]. In Asgd994 Dieter Wintgen
died in a climbing accident in the Swiss Alps.
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