C.1.2 Computation of the inverse

The Newton-Raphson method for finding n-cycles of d-dimensional mappings using the multi-shooting method reduces to the following equation

$$
\left(\begin{array}{cccc}
\mathbf{1} & & & -D f\left(x_{n}\right) \tag{C.1}\\
-D f\left(x_{1}\right) & \mathbf{1} & & \\
& \cdots & \mathbf{1} & \\
& & -D f\left(x_{n-1}\right) & \mathbf{1}
\end{array}\right)\left(\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\cdots \\
\delta_{n}
\end{array}\right)=-\left(\begin{array}{c}
F_{1} \\
F_{2} \\
\cdots \\
F_{n}
\end{array}\right)
$$

where $D f(x)$ is the $[d \times d]$ Jacobian matrix of the map evaluated at the point x, and $\delta_{m}=x_{m}^{\prime}-x_{m}$ and $F_{m}=x_{m}-f\left(x_{m-1}\right)$ are d-dimensional vectors. By some starightforward algebra, the vectors δ_{m} are expressed as functions of the vectors F_{m} :

$$
\begin{equation*}
\delta_{m}=-\sum_{k=1}^{m} \beta_{k, m-1} F_{k}-\beta_{1, m-1}\left(\mathbf{1}-\beta_{1, n}\right)^{-1}\left(\sum_{k=1}^{n} \beta_{k, n} F_{k}\right), \tag{C.2}
\end{equation*}
$$

for $m=1, \ldots, n$, where $\beta_{k, m}=D f\left(x_{m}\right) D f\left(x_{m-1}\right) \cdots D f\left(x_{k}\right)$ for $k<m$ and $\beta_{k, m}=\mathbf{1}$ for $k \geq m$. Therefore, finding n-cycles by a Newton-Raphson method with multiple shooting requires the inversing of a $[d \times d]$ matrix $\mathbf{1}-D f\left(x_{n}\right) D f\left(x_{n-1}\right) \cdots D f\left(x_{1}\right)$

C. 2 Hybrid Newton-Raphson / relaxation method

Consider a d-dimensional map $x^{\prime}=f(x)$ with an unstable fixed point x_{*}. The transformed map is the following one:

$$
x^{\prime}=g(x)=x+\gamma C(f(x)-x),
$$

where $\gamma>0$ and C is a $d \times d$ invertible constant matrix. We note that x_{*} is also a fixed point of g. Consider the stability matrix at the fixed point x_{*}

$$
A_{g}=\left.\frac{d g}{d x}\right|_{x=x_{n}}=1+\gamma C\left(A_{f}-1\right)
$$

The matrix C is constructed such that the eigenvalues of A_{g} are of modulus less than one. Assume that A_{f} is diagonalizable: In the basis of diagonalization, the matrix writes

$$
\tilde{A_{g}}=1+\gamma \tilde{C}\left(\tilde{A_{f}}-1\right)
$$

Figure C.1: Illustration of the optimal Poincaré sec tion. The original section $y=0$ yields a large distance $x-f(x)$ for the Newton iteration. A much better choic is $y=0.7$.

where $\tilde{A_{f}}$ is diagonal with elements μ_{i}. We restrict the set of matrices \tilde{C} to diagonal matrices with $\tilde{C}_{i i}=\epsilon_{i}$ where $\epsilon_{i}= \pm 1$. Thus $\tilde{A_{g}}$ is diagonal with eigenvalues $\gamma_{i}=1+\gamma \epsilon_{i}\left(\mu_{i}-1\right)$. The choice of γ and ϵ_{i} is such that $\left|\gamma_{i}\right|<1$. It is easy to see that if $\operatorname{Re}\left(\mu_{i}\right)<1$ one has to choose $\epsilon_{i}=1$, and if $\operatorname{Re}\left(\mu_{i}\right)>1, \epsilon_{i}=-1$. If λ is chosen such that

$$
0<\gamma<\min _{i=1, \ldots, d} \frac{2\left|\operatorname{Re}\left(\mu_{i}\right)-1\right|}{\left|\mu_{i}-1\right|^{2}},
$$

all the eigenvalues of A_{g} have modulus less that one. The contraction rate at the fixed point for the map g is then $\max _{i}\left|1+\gamma \epsilon_{i}\left(\mu_{i}-1\right)\right|$. If $\operatorname{Re}\left(\mu_{i}\right)=1$, it is not possible to stabilize x_{*} by the set of matrices γC.
From the construction of C, we see that 2^{d} choices of matrices are possible. For example, for 2-dimensional systems, these matrices are

$$
C \in\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} .
$$

For 2-dimensional dissipative maps, the eigenvalues satisfy $\operatorname{Re}\left(\mu_{1}\right) \operatorname{Re}\left(\mu_{2}\right) \leq \operatorname{det} D f<$ 1. The case $\left(\operatorname{Re}\left(\mu_{1}\right)>1, \operatorname{Re}\left(\mu_{2}\right)>1\right)$ which is stabilized by $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ has to be discarded. The minimal set is reduced to three matrices.

C.2.1 Newton method with optimal section

(F. Christiansen)

In some systems it might be hard to find a good starting guess for a fixed point. This can happen, for example, if the topology and/or the symbolic dynamics of the flow is not well understood. By changing the Poincaré section one might get a better initial guess in the sense that x and $f(x)$ are closer together. We illustrate this in figure C.1. The figure shows a Poincaré section, $y=0$, an initial guess x, the corresponding $f(x)$ and pieces of the trajectory near these two points.

If Newton iteration does not converge for the initial guess x we might have to work very hard to find a better guess, particularly if this is in a high-dimensional system (high-dimensional in this context might mean a Hamiltonian system with 3 or more degrees of freedom). Clearly, we could easily obtain a much better guess
by simply shifting the Poincaré section to $y=0.7$ where the distance $x-f(x)$ would be much smaller. Naturally, one cannot so easily determine by inspection the best section for a higher dimensional system. Rather, the way to proceed is as follows: We want to have a minimal distance between our initial guess x and its image $f(x)$. We therefore integrate the flow looking for a minimum in the distance $d(t)=\left|f^{t}(x)-x\right| . d(t)$ is now a minimum with respect to variations in $f^{t}(x)$, but not necessarily with respect to x. We therefore integrate x either forward or backward in time. Doing this minimizes d with respect to x, but now it is no longer minimal with respect to $f^{t}(x)$. We therefore repeat the steps, alternating between correcting x and $f^{t}(x)$. In most cases this process converges quite rapidly. The result is a trajectory for which the vector $(f(x)-x)$ connecting the two end points is perpendicular to the flow at both points. We can now define a Poincaré section as the hyper-plane that goes through x and is normal to the flow at x, $\left(x^{\prime}-x\right) \cdot v(x)=0$.

The image $f(x)$ lies in the section. This section is optimal in the sense that a close return on the section is a local minimum of the distance between x and $f^{t}(x)$. More important, the part of the stability matrix that describes linearization perpendicular to the flow is exactly the stability of the flow in the section when $f(x)$ is close to x. With this method, the Poincaré section changes with each Newton iteration. Should we later want to put the fixed point on a specific Poincaré section, it will only be a matter of moving along the trajectory.

