
Appendix E

Counting itineraries

E.1 Counting curvatures

One consequence of the finiteness of topological polynomials is that the con-
tributions to curvatures at every order are even in number, half with posi-
tive and half with negative sign. For instance, for completebinary labeling

(20.7),

c4 = −t0001 − t0011 − t0111 − t0t01t1
+ t0t001 + t0t011 + t001t1 + t011t1 . (E.1)

We see that 23 terms contribute toc4, and exactly half of them appear with a
negative sign - hence if all binary strings are admissible, this term vanishes in the
counting expression. exercise E.2

Such counting rules arise from the identity
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Substitutingtp = znp and using (15.18) we obtain for unrestricted symbol dynam-
ics with N letters
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The zn coefficient in the above expansion is the number of terms contributing to
cn curvature, so we find that for a complete symbolic dynamics ofN symbols and
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n > 1, the number of terms contributing tocn is (N − 1)Nk−1 (of which half carry
a minus sign). exercise E.4

We find that for complete symbolic dynamics ofN symbols andn > 1, the
number of terms contributing tocn is (N − 1)Nn−1. So, superficially, not much
is gained by going from periodic orbits trace sums which getNn contributions of
n to the curvature expansions withNn(1 − 1/N). However, the point is not the
number of the terms, but the cancelations between them.

Exercises

E.1. Lefschetz zeta function. Elucidate the relation
betveen the topological zeta function and the Lefschetz
zeta function.

E.2. Counting the 3-disk pinball counterterms. Verify
that the number of terms in the 3-disk pinball curvature
expansion (20.34) is given by
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+ . . . .(E.3)

This means that, for example,c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(20.35).

E.3. Cycle expansion denominators∗∗. Prove that the
denominator ofck is indeedDk, as asserted (D.14).

E.4. Counting subsets of cycles. The techniques de-
veloped above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynami-
cal system with a complete binary tree, a repeller map
(11.4) with two straight branches, which we label 0 and
1. Every cycle weight for such map factorizes, with a
factor t0 for each 0, and factort1 for each 1 in its sym-
bol string. The transition matrix traces (15.7) collapse
to tr(T k) = (t0 + t1)k, and 1/ζ is simply
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Substituting into the identity
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Hence forn ≥ 2 the number of terms in the expansion
?! with k 0’s andn − k 1’s in their symbol sequences is
2
(

n−2
k−1

)

. This is the degeneracy of distinct cycle eigenval-
ues in fig.?!; for systems with non-uniform hyperbolicity
this degeneracy is lifted (see fig. ?!).

In order to count the number of prime cycles in each
such subset we denote withMn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number
of primen-cycles whose labels containk zeros, use bi-
nomial string counting and Möbius inversion and obtain

M1,0 = M1,1 = 1

nMn,k =

∑

m
∣

∣

∣

n
k

µ(m)

(

n/m
k/m

)

, n ≥ 2 , k = 1, . .

where the sum is over allm which divide bothn andk.
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