
Chapter 32

WKB quantization

The wave function for a particle of energyE moving in a constant potentialV
is

ψ = Ae
i
~

pq (32.1)

with a constant amplitudeA, and constant wavelengthλ = 2π/k, k = p/~,
andp = ±

√
2m(E − V) is the momentum. Here we generalize this solution

to the case where the potential varies slowly over many wavelengths. This
semiclassical (or WKB) approximate solution of the Schrödinger equation fails at
classical turning points, configuration space points wherethe particle momentum
vanishes. In such neighborhoods, where the semiclassical approximation fails,
one needs to solve locally the exact quantum problem, in order to compute con-
nection coefficients which patch up semiclassical segments into an approximate
global wave function.

Two lessons follow. First, semiclassical methods can be very powerful - classi-
cal mechanics computations yield surprisingly accurate estimates of quantal spec-
tra, without solving the Schrödinger equation. Second, semiclassical quantization
does depend on a purely wave-mechanical phenomena, the coherent addition of
phases accrued by all fixed energy phase space trajectories that connect pairs of
coordinate points, and the topological phase loss at every turning point, a topolog-
ical property of the classical flow that plays no role in classical mechanics.

32.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

−
~

2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) , (32.2)
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Figure 32.1: A 1-dimensional potential, location of
the two turning points at fixed energyE.

with potential V(q) growing sufficiently fast asq → ±∞ so that the classical
particle motion is confined for anyE. Define the local momentump(q) and the
local wavenumberk(q) by

p(q) = ±
√

2m(E − V(q)), p(q) = ~k(q) . (32.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (32.4)

sugests that the wave function be written asψ = Ae
i
~
S, A andS real functions of

q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S′)2 = p2 + ~2
A′′

A
(32.5)

S′′A+ 2S′A′ =
1
A

d
dq

(S′A2) = 0 . (32.6)

The Wentzel-Kramers-Brillouin(WKB) or semiclassicalapproximation consists
of dropping the~2 term in (32.5). Recalling thatp = ~k, this amounts to assuming
thatk2 ≫ A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical,~≪ 1 approximation to quantum mechanics.

Setting~ = 0 and integrating (32.5) we obtain the phase increment of a wave
function initially atq, at energyE

S(q, q′,E) =
∫ q

q′
dq′′p(q′′) . (32.7)

This integral over a particle trajectory of constant energy, called theaction, will
play a key role in all that follows. The integration of (32.6)is even easier

A(q) =
C

|p(q)| 12
, C = |p(q′)|

1
2ψ(q′) , (32.8)
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where the integration constantC is fixed by the value of the wave function at the
initial point q′. TheWKB(or semiclassical) ansatzwave function is given by

ψsc(q, q
′,E) =

C

|p(q)| 12
e

i
~
S(q,q′,E) . (32.9)

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′,E)→ (q).

The WKB ansatz generalizes the free motion wave function (32.1), with the
probability density|A(q)|2 for finding a particle atq now inversely proportional
to the velocity at that point, and the phase1

~
q p replaced by1

~

∫
dq p(q), the in-

tegrated action along the trajectory. This is fine, except atany turning pointq0,
figure 32.1, where all energy is potential, and

p(q)→ 0 as q→ q0 , (32.10)

so that the assumption thatk2 ≫ A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does the job.
In theq coordinate, the turning points are defined by the zero kinetic energy con-
dition (see figure 32.1), and the motion appears singular. This is not so in the full
phase space: the trajectory in a smooth confining 1-dimensional potential is al-
ways a smooth loop (see figure 32.2), with the “special” role of the turning points
qL, qR seen to be an artifact of a particular choice of the (q, p) coordinate frame.
Maslov proceeds from the initial point (q′, p′) to a point (qA, pA) preceding the
turning point in theψ(q) representation, then switch to the momentum represen-
tation

ψ̃(p) =
1
√

2π~

∫
dq e−

i
~
qpψ(q) , (32.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1
√

2π~

∫
dp e

i
~
qp ψ̃(p) , (32.12)

and so on.

The only rub is that one usually cannot evaluate these transforms exactly. But,
as the WKB wave function (32.9) is approximate anyway, it suffices to estimate
these transforms to the leading order in~ accuracy. This is accomplished by the
method of stationary phase.

WKB - 4nov2010 ChaosBook.org version14, Dec 31 2012

CHAPTER 32. WKB QUANTIZATION 628

Figure 32.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential.

32.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of inte-
grals of the type

I =
∫

dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (32.13)

wheres is a real parameter, andΦ(x) is a real-valued function. In our applications
s= 1/~ will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” everywhere
except at theextremal pointsΦ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called themethod of stationary phase. Consider
first the case of a 1-dimensional integral, and expandΦ(x0 + δx) aroundx0 to
second order inδx,

I =
∫

dx A(x) eis(Φ(x0)+ 1
2Φ
′′(x0)δx2+...) . (32.14)

Assume (for time being) thatΦ′′(x0) , 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =
±1. If in the neighborhood ofx0 the amplitudeA(x) varies slowly over many
oscillations of the exponential function, we may retain theleading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0) eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0)2

. (32.15)

The one integral that we know how to integrate is the Gaussianintegral
∫

dx e−
x2
2b =√

2πb For for pure imaginaryb = i a one gets instead theFresnel integral formula
exercise 32.1

1
√

2π

∫ ∞

−∞
dx e−

x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (32.16)
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we obtain

I ≈ A(x0)
∣∣∣∣∣

2π
sΦ′′(x0)

∣∣∣∣∣
1/2

eisΦ(x0)±i π4 , (32.17)

where± corresponds to the positive/negative sign ofsΦ′′(x0).

32.3 WKB quantization

We can now evaluate the Fourier transforms (32.11), (32.12)to the same order in
~ as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C
√

2π~

∫
dq

|p(q)| 12
e

i
~
(S(q)−qp)

≈
C
√

2π~

e
i
~
(S(q∗)−q∗p)

|p(q∗)| 12

∫
dq e

i
2~S

′′(q∗)(q−q∗)2
, (32.18)

whereq∗ is given implicitly by the stationary phase condition

0 = S′(q∗) − p = p(q∗) − p

and the sign ofS′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(32.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
~
[S(q∗)−q∗p]+ iπ

4 sgn[S′′(q∗)] . (32.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurs -p(q∗) is
finite, and so is the accelerationp′(q∗). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as the Legendre transform

S̃(p) = S(q(p)) − q(p)p

which can be used to expresses everything in terms of thep variable,

q∗ = q(p),
d
dq

q = 1 =
dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (32.20)

As the classical trajectory crossesqL, the weight in (32.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV′(q) , (32.21)
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Figure 32.3: Sp(E), the action of a periodic orbitp at
energyE, equals the area in the phase space traced out
by the 1-dof trajectory.

is finite, andS′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant, includ-
ing (qA, pA). Hence, the phase loss in (32.19) is−π4. To go back from thep to
theq representation, just turn figure 32.2 quarter-turn anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
~
(S̃(p∗)+qp∗)− iπ

4

|q∗(p∗)| 12
ψ̃sc(p

∗) =
C

|p(q)| 12
e

i
~
S(q)− iπ

2 . (32.22)

The extra|p′(q∗)|1/2 weight in (32.19) is cancelled by the|q′(p∗)|1/2 term, by the
Legendre relation (32.20).

The message is that going through a smooth potential turningpoint the WKB
wave function phase slips by−π2. This is equally true for the right and the left
turning points, as can be seen by rotating figure 32.2 by 180o, and flipping co-
ordinates (q, p) → (−q,−p). While a turning point is not an invariant concept
(for a sufficiently short trajectory segment, it can be undone by a 45o turn), for a
complete period (q, p) = (q′, p′) the total phase slip is always−2 · π/2, as a loop
always hasm= 2 turning points.

TheWKB quantization conditionfollows by demanding that the wave function
computed after a complete period be single-valued. With thenormalization (32.8),
we obtain

ψ(q′) = ψ(q) =
∣∣∣∣∣
p(q′)
p(q)

∣∣∣∣∣
1
2

ei( 1
~

∮
p(q)dq−π)ψ(q′) .

The prefactor is 1 by the periodic orbit conditionq = q′, so the phase must be a
multiple of 2π,

1
~

∮
p(q)dq= 2π

(
n+

m
4

)
, (32.23)

wherem is the number of turning points along the trajectory - for this 1-dof prob-
lem,m= 2.

The action integral in (32.23) is the area (see figure 32.3) enclosed by the
classical phase space loop of figure 32.2, and the quantization condition says that
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eigen-energies correspond to loops whose action is an integer multiple of the unit
quantum of action, Planck’s constant~. The extra topological phase, which, al-
though it had been discovered many times in centuries past, had to wait for its
most recent quantum chaotic (re)birth until the 1970’s. Despite its derivation in a
noninvariant coordinate frame, the final result involves only canonically invariant
classical quantities, the periodic orbit actionS, and the topological indexm.

32.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 32.2 is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = ~ω(n+ 1/2) (32.24)

turns out to be theexactharmonic oscillator spectrum. The stationary phase condi-
tion (32.18) keepsV(q) accurate to orderq2, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problems the WKB spectrum
turns out to be very accurate all the way down to the ground state. Surprisingly
accurate, if one interprets dropping the~2 term in (32.5) as a short wavelength
approximation.

32.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by aπ/2 for each turning point.
Thisπ/2 came from a

√
i in the Fresnel integral (32.16), one such factor for every

time we switched representation from the configuration space to the momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (32.14) fails wheneverΦ′′(x) = 0, or, in
our the WKB ansatz (32.18), whenever the momentump′(q) = S′′(q) vanishes.
In that case we have to go beyond the quadratic approximation(32.15) to the first
nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) , 0, then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞
dx eisΦ′′′(x0)

(x−x0)3

6 . (32.25)
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Figure 32.4: Airy function Ai(q).

Airy functions can be represented by integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (32.26)

With a bit of Fresnel/Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the WKB quantization
condition given in standard quantum mechanics textbooks rely on expanding the
potential close to the turning point

V(q) = V(q0) + (q− q0)V′(q0) + · · · ,

solving the Airy equation (withV′(q0)→ zafter appropriate rescalings),

ψ′′ = zψ , (32.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of theWKB connection formulas. That requires
staring at Airy functions (see (32.4)) and learning about their asymptotics - a chal-
lenge that we will have to eventually overcome, in order to incorporate diffraction
phenomena into semiclassical quantization.

The physical origin of the topological phase is illustratedby the shape of the
Airy function, figure 32.4. For a potential with a finite slopeV′(q) the wave func-
tion penetrates into the forbidden region, and accommodates a bit more of a sta-
tionary wavelength then what one would expect from the classical trajectory alone.
For infinite walls (i.e., billiards) a different argument applies: the wave function
must vanish at the wall, and the phase slip due to a specular reflection is−π, rather
than−π/2.

Résum é

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the classical trajectory. While in theq-representation the WKB
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ansatz at a turning point is singular, along thep direction the classical trajectory in
the same neighborhood is smooth, as for any smooth bound potential the classical
motion is topologically a circle around the origin in the (q, p) space. The simplest
way to deal with such singularities is as follows; follow theclassical trajectory in
q-space until the WKB approximation fails close to the turning point; then insert∫

dp|p〉〈p| and follow the classical trajectory in thep-space until you encounter
the nextp-space turning point; go back to theq-space representation, an so on.
Each matching involves a Fresnel integral, yielding an extrae−iπ/4 phase shift, for
a total ofe−iπ phase shift for a full period of a semiclassical particle moving in a
soft potential. The condition that the wave-function be single-valued then leads to
the 1-dimensional WKB quantization, and its lucky cousin, the Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around the turning pointa, V(q) =
V(a)+(q−a)V′(a)+· · ·, and solve the quantum mechanical constant linear potential
V(q) = qF problem exactly, in terms of an Airy function. An approximate wave
function is then patched together from an Airy function at each turning point, and
the WKB ansatz wave-function segments in-between via the WKB connection
formulas. The single-valuedness condition again yields the 1-dimensional WKB
quantization. This a bit more work than tracking the classical trajectory in the full
phase space, but it gives us a better feeling for shapes of quantum eigenfunctions,
and exemplifies the general strategy for dealing with other singularities, such as
wedges, bifurcation points, creeping and tunneling: patchtogether the WKB seg-
ments by means of exact QM solutions to local approximationsto singular points.

Commentary

Remark 32.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso thatD in (33.36) has no zero eigen-
values. The zero eigenvalue case would require going beyondthe Gaussian saddle-point
approximation, which typically leads to approximations ofthe integrals in terms of Airy
functions [32.9]. exercise 32.4

Remark 32.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condi-
tion was the key result of the old quantum theory, in which theelectron trajectories were
purely classical. They were lucky - the symmetries of the Kepler problem work out in
such a way that the total topological indexm = 4 amount effectively to numbering the
energy levels starting withn = 1. They were unlucky - because the hydrogenm = 4
masked the topological index, they could never get the helium spectrum right - the semi-
classical calculation had to wait for until 1980, when Leopold and Percival [A.5] added
the topological indices.
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Exercises

32.1. WKB ansatz. Try to show that no other
ansatz other than (33.1) gives a meaningful definition of
the momentum in the~→ 0 limit.

32.2. Fresnel integral. Derive the Fresnel integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2ei π4
a
|a| .

32.3. Sterling formula for n!. Compute an approximate
value ofn! for largen using the stationary phase approx-
imation. Hint:n! =

∫ ∞
0

dt tne−t.

32.4. Airy function for large arguments. Impor-
tant contributions as stationary phase points may arise

from extremal points where the first non-zero term in a
Taylor expansion of the phase is of third or higher order.
Such situations occur, for example, at bifurcation points
or in diffraction effects, (such as waves near sharp cor-
ners, waves creeping around obstacles, etc.). In such
calculations, one meets Airy functions integrals of the
form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (32.28)

Calculate the Airy functionAi(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value ofx the
stationary phase approximation breaks down.
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