Chapter 33

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian, Ara-
bic, Chaldee, Syrian and sundry Indian dialects. At age
seventeen he began to think about optics, and worked out
his great principle of “Characteristic Function.”

— Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanovic)

MICLASSICAL APPROXIMATIONS tO quantum mechanics are valid in the regime
Swhere the de Broglie wavelength ~ 7/p of a particle with momentum

p is much shorter than the length scales across which the titenthe
system changes significantly. In the short wavelength a@piation the particle
is a point-like object bouncingfbpotential walls, the same way it does in the
classical mechanics. The novelty of quantum mechaniceistirference of the
point-like particle with other versions of itself travediralong diterent classical
trajectories, a feat impossible in classical mechanice Short wavelength — orremark 33.1
semiclassical — formalism is developed by formally takihg timit 7z — 0 in
guantum mechanics in such a way that quantum quantities geeboclassical
counterparts.

33.1 Hamilton-Jacobi theory

We saw in chapter 32 that for a 1-dof particle moving in a sjowdrying poten-
tial, it makes sense to generalize the free particle wavetifum (32.1) to a wave
function

¥(a.1) = Ag,y)eRen, (33.1)
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with slowly varying (real) amplitudé(q, t) and rapidly varying (real) pha$¥q, t).
its phase and magnitude. The time evolution of the phasetenohagnitude ofy exercise 32.1
follows from the Schrodinger equation (31.1)

8 W e
(lh& + ?n{i—qz - V(q)) ¥(g,t) =0. (33.2)

AssumeA # 0, and separate out the real and the imaginary parts. We get tw
equations: The real part governs the time evolution of tresph

2 2 2
R 1 (R hel1d
—+—|= V() - ——=—A= .
a " 2m(aq) VO - naet =" (33.3)
and the imaginary part the time evolution of the amplitude exercise 33.6

exercise 33.7

OMOR 1R _
ot _Zaq. aq 2m Ao = (334)

exercise 33.8

In this way a linear PDE for a complex wave function is corseéiinto a set of
coupled non-linear PDE's for real-valued functidR&ndA. The coupling term
in (33.3) is, however, of order? and thus small in the semiclassical limit- 0.

Now we generalize th&\entzel-Kramers-Brillouin (WKB) ansatz for 1-dof
dynamics to the Van Vlecknsatz in arbitrary dimension: we assume the mag-
nitude A(g, t) varies slowly compared to the phaRég,t)/%, so we drop théi-
dependent term. In this approximation the phB$g t) and the corresponding
“momentum fleld" (q,t) can be determined from the amplitude independent
equation

oR oR
E+H(q,6—q) -0, (33.5)

In classical mechanics this equation is known asHlaenilton-Jacobi equation.
We will refer to this step (as well as all leading order7irapproximations to
follow) as thesemiclassical approximation to wave mechanics, and from now on
work only within this approximation.

33.1.1 Hamilton’s equations

We now solve the nonlinear partialfférential equation (33.5) in a way the 17
year old Hamilton might have solved it. The main step is tlep $¢ading from
the nonlinear PDE (33.9) to Hamilton’s ODEs (33.10). If ydxeady understand
the Hamilton-Jacobi theory, you can safely skip this sectio
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R(@.H) R(@.0)

Figure 33.1: (a) A phaseR(qg,t) plotted as a
function of the positiorg for two infinitesimally
close times. (b) The phad®(q,t) transported by

a swarm of “particles”; The Hamilton’s equations d, Gg+dq q Sa.py J
(33.10) construcR(q, t) by transportingyy — q(t) slope  © ° t

; q'(@;p)
and the slope oR(qp, to), that ispg — p(t). Py

fast track:
W sect. 33.1.3, p. 640

The wave equation (31.1) describes how the wave funatia@volves with
time, and if you think ofy as an (infinite dimensional) vector, positigrplays a
role of an index. In one spatial dimension the phBg#otted as a function of the
positionq for two different times looks something like figure 33.1 (a): The phase
R(q, tp) deforms smoothly with time into the phaB¥g,t) at timet. Hamilton's
idea was to let a swarm of particles transgernd its slope)R/dq atq at initial
timet = tp to a correspondindr(q, t) and its slope at timg figure 33.1 (b). For
notational convenience, define

_OR
pi = pi(a. 1) = i=12....D. (33.6)

We saw earlier that (33.3) reduces in the semiclassicabappation to the Hamilton-
Jacobi equation (33.5). To make life simple, we shall assthmaughout this
chapter that the Hamilton’s functidr(q, p) does not depend explicitly on tine
i.e., the energy is conserved.

To start with, we also assume that the functifu, t) is smooth and well
defined for every at the initial timet. This is true for sfficiently short times;
as we will see laterR develops folds and becomes multi-valued: asogresses.
Consider now the variation of the functid®(q,t) with respect to independent
infinitesimal variations of the time and space coordindtenddq, figure 33.1 (a)

AR . OR
dR = Edu %dq. (33.7)

Dividing through bydt and substituting (33.5) we obtain the total derivative of
R(q, t) with respect to timelong the as yet arbitrary direction g, that is,

drR, . )
G @an=-H@p+q-p. (33.8)
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Note that the “momentump = dR/dq is a well defined function ofj andt.
In order to integrateR(q, t) with the help of (33.8) we also need to know how
p = dR/dq changes along. 'Varying p with respect to independent infinitesimal
variationsdt anddq and substituting the Hamilton-Jacobi equation (33.5)dgel

dt+ﬁ—pdq.

R _ &R " R dH Hop
q

a0~ s o™= "% g

Note thatH(q, p) depends om also throughp(g, t) = dR/dq, hence thé’a—g term
in the above equation. Dividing again throughdiywe get the time derivative of
0R/dq, that is,

L GH (. H\dp
p(q,q,t)+£—(q ap)aq. (33.9)

Time variation ofp depends not only on the yet unknogyrbut also on the second
derivatives oR with respect ta with yet unknown time dependence. However, if
we choose ¢ (which was arbitrary, so far) such that the right hand sidaefbove
equation vanishes, we can calculate the funcR(m t) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary fiérential equations

. _oH@p . _ dH@p
A== P="%q (33.10)

with initial conditions

,_OR
q(to) =4, p(to) = p’ = ﬁ(q ,to). (33.11)

section 7.1

We recognize (33.10) as Hamilton's equations of motion asical mechanics.
The miracle happens in the step leading from (33.5) to (33i9)ou missed it,

you have missed the point. Hamilton derived his equatiomsecoplating optics
- it took him three more years to realize that all of Newtonilymamics can be
profitably recast in this form.

g is no longer an independent function, and the pliR{set) can now be com-
puted by integrating equation (33.8) along the trajectq(t).(p(t))

R(a.1)
R(9.t;q', to)

R, to) + R(g, t; ', to)
t
fto dr [4(7) - p(x) — H(@(@), p)] - (33.12)

with the initial conditions (33.11). In this way the Hamittdacobipartial differ-
ential equation (33.3) is solved by integrating a setrofinary differential equa-
tions, Hamilton’s equations. In order to determiR(, t) for arbitraryg andt we
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have to find &y’ such that the trajectory starting iy (p’ = dqR(d, to)) reaches
g in time t and then comput® along this trajectory, see figure 33.1(b). The
integrand of (33.12) is known as thegrangian,

L@at=q-p-H@p1). (33.13)

A variational principle lurks here, but we shall not make iméwess about it as yet.

Throughout this chapter we assume that the energy is catseand that the
only time dependence &f(q, p) is through §(7), p(7)), so the value oR(q, t; ¢, to)
does not depend dp, but only on the elapsed tinte- ty. To simplify notation we
will setty = 0 and write

R(@,q’.t) = R(g,t; ¢, 0).

The initial momentum of the particle must coincide with thiial momentum of
the trajectory connecting’ andg:

lZ} lZ}
' = —R(d’,0) = ——R /. 1). 33.14
P = g R0 = ~5-RGd.D (33.14)
exercise 33.5
The functionR(q, ¢, t) is known asHamilton’s principal function. exercise 33.9
To summarize: Hamilton’s achievement was to trade in the iti@mJacobi
partial differential equation (33.5) describing the evolution of a wiawat for a
finite number ofordinary differential equations of motion, with the initial phase
R(q, 0) incremented by the integral (33.12) evaluated along tias@ space trajec-
tory (q(7). p(7)).

33.1.2 Action

Before proceeding, we note in passing a few facts about Hamain dynamics
that will be needed for the construction of semiclassicadarfunctions. If the
energy is conserved, thﬁH(q, p)dr integral in (33.12) is simplyEt. The first
term, or theaction

t q
S(@.q.E) = fo dr ) - p(e) = fq dq- p (33.15)

is integrated along a trajectory froghto g with a fixed energyE. By (33.12) the
action is a Legendre transform of Hamilton’s principal ftioc

S(a.9,E) =R(q.d.1) + Et. (33.16)
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The time of flightt along the trajectory connectirgg — q with fixed energyE is
given by

0 , B
a—ES(q, q,E)=t. (33.17)

The way to think about the formula (33.16) for action is ttne time of flight is a
function of the energy, = t(q, ', E). The left hand side is explicitly a function of
E; the right hand side is an implicit function & through energy dependence of
the flight timet.

Going in the opposite direction, the energy of a trajectBry= E(q,q',t)
connectingg — g with a given time of flightt is given by the derivative of
Hamilton’s principal function

a /
FR@q.0=-E (33.18)

and the second variations BfandS are related in the standard way of Legendre
transforms:

& &
ﬁR(q,q ,t)@s(q,q JE)=-1. (33.19)

A geometric visualization of what the phase evolution lotiks is very helpful

in understanding the origin of topological indices to beddticed in what fol-

lows. Given an initial phas®&(q, t), the gradieniyR defines aD-dimensional section 33.1.4
Lagrangian manifold (g, p = d4R(g)) in the full 2d dimensional phase space

(g, p). The defining property of this manifold is that any contitalet loop y in

it has zero action,

Ozsgdmp,
Y

a fact that follows from the definition gf as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property amg@Lagrangian man-
ifold into a Lagrangian manifold at a later timee.

Returning back to the main line of our argument: so far we fttermined
the wave function phadg(q, t). Next we show that the velocity field given by the
Hamilton’s equations together with the continuity equatitetermines the ampli-
tude of the wave function.

33.1.3 Density evolution

To obtain the full solution of the Schrodinger equation.{31we also have to
integrate (33.4).

p(a.t) = A2 = y'y
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plays the role of a density. To the leding orderzinthe gradient oR may be
interpreted as the semiclassical momentum density

D@ = inalh R
¥(a.1) (—Iha—q)tﬂ(q,t) = IhA(’?q g

Evaluated along the trajectory(f), p(t)), the amplitude equation (33.4) is equiv-
alent to the continuity equation (16.35) after multiplyi(88.4) by 2, that is

op 9,
i a—qi(pv,) =0. (33.20)

Here,v; = ¢ = pi/mdenotes a velocity field, which is in turn determined by the
gradient ofR(q, t), or theLagrangian manifold (q(t), p(t) = d4R(a. 1)),

10
= =2 R@g.1).
V= hag (9. t)

As we already know how to solve the Hamilton-Jacobi equaf@$h5), we can
also solve for the density evolution as follows:

The densityp(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectorigg§ are solutions
of Hamilton’s equations with initial conditions given bg(0) = o', p(0) = p’ =
IR, 0))-

If we take a small configuration space voludfg around some poirgat time
t, then the number of particles in itigq, t)d®dg. They started initially in a small
volumedPq’ around the point of the configuration space. For the moment, we
assume that there is only one solution, the case of seveta pdl be considered
below. The number of particles at timén the volume is the same as the number
of particles in the initial volume dt= 0,

p(a(). tyd®a = p(a. 0)dq .

see figure 33.2. The ratio of the initial and the final volumes loe expressed as

p(d.0). (33.21)

e
(0. = [det o

section 16.2

As we know how to compute trajectorieg(t), p(t)), we know how to compute
this Jacobian and, by (33.21), the dengigg(t), t) at timet.
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by
Figure 33.2: Density evolution of an initial surface
(d, p' = 94R(q, 0) into (q(t), p(t)) surface timet later,
sketched in 1 dimension. While the number of trajec
tories and the phase space Liouville volume are co
served, the density of trajectories projected ondhe
coordinate varies; trajectories which startectli at =y
time zero end up in the intervet.

33.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassicavevfunction at
time t. Consider first the case when our initial wave function carwbéen in

terms of single-valued functiom&q’, 0) andR(q’, 0). For suficiently short times,
R(g,t) will remain a single-valued function af, and everyd®q configuration
space volume element keeps its orientation. The evolvee feaction is in the
semiclassical approximation then given by

Ag, t)eRe/ = /detfz_‘g A(q, 0)e R O+R@ D)/
= Jdetd gragon w(q',0).
aq ’

As the time progresses the Lagrangian manii@|R(q,t) can develop folds, so
for longer times the value of the phaBéy, t) is not necessarily unique; in gen-
eral more than one trajectory will connect poiateindqg’ with different phases
R(q, ¢', t) accumulated along these paths, see figure 33.3.

Use(a 1)

We thus expect in general a collection offdrent trajectories frong’ to q
which we will index by j, with different phase incremeng(q,q'.t). The hy-
pothetical particles of the density flow at a given configoratspace point can
move with diferent momentg = d4R;(q,t). This is not an ambiguity, since in
the full (g, p) phase space each particle follows its own trajectory witiigue
momentum.

Whenever the Lagrangian manifold develops a fold, the tien$ithe phase
space trajectories in the fold projected on the configunatimordinates diverges.
As illustrated in figure 33.3, when the Lagrangian manifolvelops a fold at
g = qi; the volume elemenrddq; in the neighborhood of the folding point is pro-
portional to \/d_q' instead ofdq’. The Jacobiadq'/dq diverges like 1+/g; — q(t)
when computed along the trajectory going trough the folghomt atqg;. After
the folding the orientation of the intervaly has changed when being mapped
into dop; in addition the functiorR, as well as its derivative which defines the
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Figure 33.3: Folding of the Lagrangian surface
(9. 9qR(a. 1)

Lagrangian manifold, becomes multi-valued. Distinctechpries starting from
different initial pointsy’ can now reach the same final poipt (That is, the point
g may have more than one pre-image.) The projection of a sifofdeor of an

envelope of a family of phase space trajectories, is calleglgic; this expres-
sion comes from the Greek word for “capable of burning,” érgkhe luminous
patterns that one observes swirling across the bottom ofrarsimg pool.

The folding also changes the orientation of the pieces of #fggangian man-
ifold (q, 9qR(a, t)) with respect to the initial manifold, so the eigenvaluéshe
Jacobian determinant change sign at each fold crossing.awkeep track of the
signs by writing the Jacobian determinant as

detc?_q/‘ — e iTmj(a.q'.t)

detai‘ R

wherem;(g, ', t) counts the number of sign changes of the Jacobian detenmina
on the way frong’ to g along the trajectory indexed with see figure 33.3. We
shall refer to the integem;(q.q',t) as thetopological of the trajectory. So in
general the semiclassical approximation to the wave fands thus a sum over
possible trajectories that start at any infiaand end img in time t

’ 9 ["2 GRitaaiimmy @072,
uxla) = [ 3 |derZd| enatomimadazy g o) (322
j ]

each contribution weighted by corresponding density, @hasrement and the
topological index.

That the correct topological index is obtained by simplyrding the number
of eigenvalue sign changes and taking the square root ishvius - the careful
argument requires that quantum wave functions evaluategsthe folds remain
single valued.
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33.2 Semiclassical propagator

We saw in chapter 31 that the evolution of an initial wave fiorcy(qg, 0) is com-
pletely determined by the propagator (31.10). K&, ', 1) itself satisfies the
Schrodinger equation (31.12), we can treat it as a wavetitmparameterized
by the configuration poirg’. In order to obtain a semiclassical approximation to
the propagator we follow now the ideas developed in the lestian. There is,
however, one small complication: the initial condition (B3) demands that the
propagator at = O is ad-function atq = ¢, that is, the amplitude is infinite at
g and the phase is not well defined. Our hypothetical cloud digbes is thus
initially localized atq = ¢ with any initial velocity. This is in contrast to the situ-
ation in the previous section where we assumed that thelgsrait a given poing
have well defined velocity (or a discrete set of velocitigsgg byd = dpH(q, p).
We will now derive at a semiclassical expressionKdg, d', t) by considering the
propagator for short times first, and extrapolating fronrette arbitrary times.

33.2.1 Short time propagator

For infinitesimally short timegt away from the singular poirtt= 0 we assume
that it is again possible to write the propagator in terms wofedl defined phase
and amplitude, that is

K(q, q,ot) = A(q, g, 5t)er Rad-8)
As all particles start a = ¢, R(q, ¢, 6t) will be of the form (33.12), that is
R@. q', 6t) = past — H(g, p)st., (33.23)

with g ~ (Q—q’)/ét. For Hamiltonians of the form (31.2) we hage="p/m, which
leads to

o Ma-q)
R(q,q’, 6t) = o V(g)st.

HereV can be evaluated any place along the trajectory fgamq’, for example

at the midway poin¥/((q+q')/2). Inserting this into our ansatz for the propagator

we obtain
Kee(Q, 0. 8t) ~ A(q. ¢ ot)er (Fr(a-a -V (33.24)
For infinitesimal times we can neglect the tekfg)st, so Kg(q, ¢, 6t) is ad-

dimensional Gaussian with widid"? = izist/m. This Gaussian is a finite width
approximation to the Dirac delta function

o 1 _2/202
62 = (IT'TO 2m_ze (33.25)
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if A= (m/27ifist)P/2, with A(q, o, 6t) fixed by the Dirac delta function normal-

ization condition. The correctly normalized propagatarifdinitesimal timesst exercise 33.1

is therefore

D/2 )2 .
Ke(0. ', 6t) = (%) eﬁ(_ﬂng? V(@) . (33.26)

The short time dynamics of the Lagrangian manifaddgR) which corresponds
to the quantum propagator can now be deduced from (33.28)pbtains

OR_~ m ,
6_q =p= ﬁ(q -q),

i.e., is the particles start for short times on a Lagrangianifold which is a plane

in phase space, see figure 33.4. Note, thatfor> 0, this plane is given by
the conditiong = ¢, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles starjat g but with different
velocities fort = 0. The initial surfaced’, p’ = d4R(¢/, 0)) is mapped into the
surface ((t), p(t)) some time later. The slope of the Lagrangian plane for a short
finite time is given as

api R o m

=- =-—1= .
oq; ~ dgdg  og; ot "

The prefactorif/st)®/2 in (33.26) can therefore be interpreted as the determinant
of the Jacobian of the transformation from final positionrdaeatesq to initial
momentum coordinateg, that is

' L o0\ gm0
K(a. o', 6t) = (@in)p (det% graaonn, (33.27)

where

oo’ 2 ,
| PREq.0 328)
oq; ta 99;0q

The subscript - -|; o indicates that the partial derivatives are to be evaluatiéal w
t,q fixed.

The propagator in (33.27) has been obtained for short tirftés, however,
already more or less in its final form. We only have to evolve shwort time
approximation of the propagator according to (33.22)

09 Y2 R (o 0tV himm (@ at
Ks(:(q”,q’at/ + (50 — Z ldet%‘ e'Rj(q JQ.t')/h=izm;(q”,q.t )/ZK(q’ q;’(st) )
i J
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Figure 33.4: Evolution of the semiclassical propaga: A :‘t‘°
tor. The configuration which corresponds to the initie H
conditions of the propagator is a Lagrangian manifol

q = ¢, that is, a plane parallel to thieaxis. The hy-
pothetical particles are thus initially all placedgabut

take on all possible momenf&. The Jacobian matrix

C (33.29) relates an initial volume element in momer___
tum spacedp’ to a final configuration space volume

dag.

and we included here already the possibility that the phaserbes multi-valued,
that is, that there is more than one path frghto g”. The topological indexn; =
m;(q”.q’,t) is the number of singularities in the Jacobian along thiedtary j
from g to q”’. We can writeKg(q”, ', t + 6t) in closed form using the fact that
R(”,q,t) + R(a,d,6t) = R(”,q,t" + 6t) and the multiplicativity of Jacobian
determinants, that is

det 2 et P _ger P (33.29)
aq” |y 9 Iy st 0" gy 4ot
The final form of the semiclassical ®an Vleck propagator, is thus
;o 1 f’P"l/z iRj(aq( ) /h—imy /2
Ke(a, 1) = Z,: EDRE ’det % d ) (33.30)

This Van Vleck propagator is the essential ingredient ofstmiclassical quanti-
zation to follow.

The apparent simplicity of the semiclassical propagatadeiseptive. The
wave function is not evolved simply by multiplying by a coraphumber of mag-
nitude /detdp’/dq and phasdr(q, ¢, t); the more dificult task in general is to
find the trajectories connectirgg andq in a given timet.

In addition, we have to treat the approximate propagator3(B3with some
care. Unlike the full quantum propagator, which satisfies ghoup property
(31.11) exactly, the semiclassical propagator perfornss dhly approximately,
that is

Kee(@, 0, 1 + 1) = f dg” Kee(a. 97, 12)Kse(q”. 0, 1) . (33.31)

The connection can be made explicit by the stationary phgs®zimation, sect. 32.2.
Approximating the integral in (33.31) by integrating onlyeo regions near points
g” at which the phase is stationary, leads to the stationargepbandition

dR(g.9",t2) N OR(@".q,tr) _ 0

7 - (33.32)
ﬁqi ﬁqi
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Classical trajectories contribute whenever the final mdoerfor a path frong’

to g” and the initial momentum for a path frog¥ to ¢ coincide. Unlike the
classical evolution of sect. 17.2, the semiclassical éimius not an evolution by
linear operator multiplication, but evolution supplenezhby a stationary phase
condition poyt = pin that matches up the classical momenta at each evolution
step.

33.2.2 Free particle propagator

To develop some intuition about the above formalism, cardide case of a free
particle. For a free particle the potential energy vanisties kinetic energy is
ng, and the Hamilton’s principal function (33.12) is

_ )2
R@.q.t) = W‘ (33.33)

The weight de%’; from (33.28) can be evaluated explicitly, and the Van Vleck
propagator is

/ m \b/? im(c—q)?/2ht
Ksc(q,q,t):(m) e , (33.34)

identical to the short time propagator (33.26), wittg) = 0. This case is rather
exceptional: for a free particle the semiclassical propageirns out to be the

exact quantum propagatdt(q,q’,t), as can be checked by substitution in the
Schrddinger equation (33.2). The Feynman path integraddtism uses this factremark 33.3
to construct an exact quantum propagator by integratindréeeparticle propaga-

tor (with V(q) treated as constant for short times) along all possibler(ecessar-

ily classical) paths frong’ to g. exercise 33.10
exercise 33.11
exercise 33.12

33.3 Semiclassical Green function

So far we have derived semiclassical formulas for the tinoduéion of wave func-
tions, that is, we obtained approximate solutions to the tilependent Schrodinger
equation (31.1). Even though we assumed in the calculattimeaindependent
Hamiltonian of the special form (31.2), the derivation wbldad to the same final
result (33.30) were one to consider more complicated oni@#pltime dependent
Hamiltonians. The propagator is thus important when we rtierésted in finite
time quantum mechanicalfects. For time-independent Hamiltonians, the time
dependence of the propagator as well as of wave functiorfsoisgver, essen-
tially given in terms of the energy eigen-spectrum of theteys as in (31.8). It
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is therefore advantageous to switch from a time representat an energy repre-
sentation, that is from the propagator (31.10) to the endegpendent Green func-
tion (31.14). A semiclassical approximation of the GreencfionGg(q, d', E) is
given by the Laplace transform (31.14) of the Van Vleck pgaiarK«(q, d', t):

1.
Gx(a.0.E) = o fo dt €5"K (0, ', 1) . (33.35)

The expression as it stands is not very useful; in order thuat@the integral, at
least to the leading order iy we need to turn to the method of stationary phase
again.

33.3.1 Stationary phase in higher dimensions
exercise 32.1

Generalizing the method of sect. 32.2dtdimensions, consider stationary phase
points fulfilling

d

d_xi(D(X) =0 Vvi=1,...d.

X=Xo

An expansion of the phase up to second order involves nowythengtric matrix
of second derivatives ab(x), that is

82

Dij =——0

IJ(XO) a%0X; (x)

X=Xo

After choosing a suitable coordinate system which diagpesD, we can ap-
proximate thed-dimensional integral byl 1-dimensional Fresnel integrals; the
stationary phase estimate of (32.13) is then

I~ Z (271/9)Y2 |detD(xo)|” Y2 A(xg) €50 00)-E M%) (33.36)
Xo

where the sum runs over all stationary phase poiptsf ®(x) andm(xp) counts

the number of negative eigenvaluesDyixo). exercise 28.2
exercise 33.2

The stationary phase approximation is all that is needethtosemiclassicalexercise 32.3
approximation, with the proviso th& in (33.36) has no zero eigenvalues.

33.3.2 Long trajectories

When evaluating the integral (33.35) approximately we haveistinguish be-
tween two types of contributions: those coming from statigrpoints of the phase
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and those coming from infinitesimally short times. The figgiet of contributions
can be obtained by the stationary phase approximation ahtenireated in this
section. The latter originate from the singular behavidhefpropagator far — 0
where the assumption that the amplitude changes slowly amdpo the phase
is not valid. The short time contributions therefore havéédreated separately,
which we will do in sect. 33.3.3.

The stationary phase points of the integrand in (33.35) are given by the
condition

%R(q, q.t)+E=0. (33.37)

We recognize this condition as the solution of (33.18), tmet* = t*(q,q’, E) in
which a particle of energf starting out ing’ reachesy. Taking into account the
second derivative of the phase evaluated at the statiofeageppoint,

62

R(g.q.t) + Et = R(q, ¢, t*) + Et* + %(t - t*)2atz R(G g t5) +---

the stationary phase approximation of the integral comadimg to a classical
trajectory j in the Van Vleck propagator sum (33.30) yields

1/2

Gj(a.9".E) eiSi—Em (33.38)

25\ 1

wherem; = m;(q. g, E) now includes a possible additional phase arising from the
time stationary phase integration (32.16), &)d= Cj(q.q'.t"), Rj = Rj(a, ¢, t*)

are evaluated at the transit tirtie We re-express the phase in terms of the energy
dependent action (33.16)

1
" in(2ink)(@-1)/2

S(g,9,E) = R(g,q',t") + Et*, with t* =t"(q,q,E), (33.39)

the Legendre transform of Hamilton’s principal function.otl that the partial
derivative of the action (33.39) with respectdo

9S(a.9.E) _ 9R(q.4'.t) +(0R(q, q.1 +E) ot
a0 A ot aq;

is equal to

95(a.9,E) _ dR@.q.1")

s 33.40
2o o ( )
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due to the stationary phase condition (33.37), so the definif momentum as a
partial derivative with respect tg remains unaltered by the Legendre transform

from time to energy domain. exercise 33.13

Next we will simplify the amplitude term in (33.38) and reterit as an ex-
plicit function of the energy. Consider the 1)x(D + 1)] matrix

oS IS _ o
D(.q.E) = ( oo ) = [ o E ] . (33.41)
9E  5EZ aq IE

whereS = S(q,q', E) and we used (33.14-33.17) here to obtain the left hand side
of (33.41). The minus signs follow from the definition of (83), which implies
that thatS(q, d', E) = —S(q', g, E). Note thatD is nothing but the Jacobian matrix

of the coordinate transformation,E) — (p',t) for fixed . We can therefore
use the multiplication rules of determinants of Jacobiartgch are just ratios of
volume elements, to obtain

o[ HE) e (o A0 (@D
detd = (-1 1(d9ta(q, E))q, = (1P 1("“ 3@ 9 (@ E))q,

-1
(-1) (det aq . det %E),, detC .

We use here the notatiddet.)y ; for a Jacobian determinant with partial deriva-
tives evaluated at ¢ fixed, and likewise for other subscripts. Using the relation
(33.19) which relates the ter@% to 92R we can write the determinant & as

a product of the Van Vleck determinant (33.28) and the anmbditfactor arising
from the stationary phase approximation. The amplitude8$138) can thus be
interpreted as the determinant of a Jacobian of a coordiratsformation which
includes time and energy as independent coordinates. &hies the increase in
the dimensionality of the matril® relative to the Van Vleck determinant (33.28).

We can now write down the semiclassical approximation ofcthetribution
of the jth trajectory to the Green function (33.38) in explicitlyeegy dependent
form:

) , _ 1 /2 isi_izm,
G,(q,q,E)—W|detD,| eiSiTem (33.42)

However, this is still not the most convenient form of the &rdéunction.

The trajectory contributing t@;(q,q', E) is constrained to a given energy
E, and will therefore be on a phase space manifold of constaergg, that is
H(q, p) = E. Writing this condition as a partial fierential equation fo8(q, ', E),
that is

0S

H(q,%)=E,
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one obtains

d OHdp; . 8°S

——H(q, =0= —— = -

aq (@, p) ap; 0 q18Qj8qi

9 8°S

2 H{.p) =0= g, 33.43

5 M- P) 5o (33.43)

that is the sub-matri®?S/dqdq; has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate t,1e local coordinate system atither end of the
trajectory

(A1, 02, 935+ ++» Q) — (G A1, Ar2s -+ Gu(D-1))

so that one axis points along the trajectory and all othergparpendicular to it

(G, G2, Gs, -+ - Ga) — (§,0,0,---,0).

With such local coordinate systems at both ends, with thgitodinal coordinate
axis g pointing along the velocity vector of magnitudgthe stability matrix of
S(a,d’, E) has a column and a row of zeros as (33.43) takes form

o

4 ?S S i -
aqog;  9gidq

The initial and final velocities are non-vanishing exceptgoints|g| = 0. These

are the turning points (where all energy is potential), aechgsume that neithgr

norq’ is a turning point (in our application - periodic orbits - wencalways chose
g = ¢ not a turning point). In the local coordinate system with aneés along

the trajectory and all other perpendicular to it the deteant of (33.41) is of the
form

%S
0 0 FEO,
detd(q,q, E) = (-1)°*|det © agz—;‘ . (33.44)
aq,0E

The corner entries can be evaluated using (33.17)

ES) i) 1 %S 1

_—= _t - T _/ =.
oqioE  dq; 4 OEdq, o

As theq axis points along the velocity direction, velocitigsy’ are by construc-
tion almost always positive non-vanishing numbers. In iy the determinant
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of the [(D + 1)x(D + 1)] dimensional matrixD(q, q', E) can be reduced to the
determinant of a [p — 1)x(D — 1)] dimensionakransverse matrix D, (g, d', E)

detD(q, q, E)

1
—detD , /, E
W 1(a.9.E)

_9%S(a.9'.E)

33.45
R (33.49)

D.(a.9, E)ix

Putting everything together we obtain tfté trajectory contribution to the semi-

classical Green function exercise 33.15

1 1

ig _in
i(2rin)©-D72 |y |2 B2, (33.46)

Gj(a.q.E) =

j |2
|detDL| e

where the topological indem; = m;j(q, d', E) now counts the number of changes
of sign of detD’ along the trajectoryj which connectsy to q at energyE.

The endpoint velocitieg, ¢ also depend ong(q', E) and the trajectoryj.

33.3.3 Short trajectories

The stationary phase method cannot be used whensmall, both because we
cannot extend the integration in (32.16) too, and because the amplitude of
K(a, d',t) is divergent. In this case we have to evaluate the integvalving the
short time form of the exact quantum mechanical propag@®26)

m

1 D/2 i ma-q)?
(,E) = — L 5 ~V(QEE)
Go(a. ', E) ihfo dt(2 iht) ez . (33.47)

By introducing a dimensionless variahte= t y/2m(E — V(q))/mlq - ¢'|, the
integral can be rewritten as

Go(a,9', E) =

2.1
m V2m(E - V)) ? dr b So(aq E)r+1/7)
in?(27i)P/2\  nlg-q| o TP/ ’

whereSo(q,q', E) = vV2m(E - V)|g — /| is the short distance form of the action.
Using the integral representation of the Hankel functiofirsf kind

: oo
H;(Z):_;_refiwr/zj; edir+ D) -1,
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we can write the short distance form of the Green function as

im (VZWE=V)\ 7
Coa B ~ g (| Hi(So@d B, (3349

Hankel functions are stabdard, and their the short wavéieasymptotics is de-
scribed in standard reference books. The short distancenGuaction approxi-
mation is valid wher8o(q,q', E) < %.

Résumé

The aim of the semiclassical or short-wavelength methods &pproximate a
solution of the Schrddinger equation with a semiclassiaale function

Uso(a ) = ) Aj(g neRi@on,
i

accurate to the leading order fin Here the sum is over all classical trajectories
that connect the initial poirg’ to the final pointg in timet. “Semi-" refers to,
the quantum unit of phase in the exponent. The quantum meshanters only
through this atomic scale, in units of which the variatiortte# phase across the
classical potential is assumed to be large. “—classicédseo the rest - both the
amplitudesAj(q, t) and the phaseR;(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time eimiubperator is
given by thesemiclassical propagator

, 1 P2 i i
Ke(a q,1) = WZ’det 2 'j erRi=zm
i

where the topological index;(q, d', t) counts the number of the direction reversal
along thejth classical trajectory that connecfs— qin timet. Until very recently

it was not possible to resolve quantum evolution on quantore scales (such as
one revolution of electron around a nucleus) - physical megsents are almost
always done at time scales asymptotically large comparttetimtrinsic quantum
time scale. Formally this information is extracted by meafresLaplace transform
of the propagator which yields the energy dependemiclassical Green function

G(a.d.E) = Go(.q.E)+ Y Gi(a.q.E)
i
;|12
Gj(a.q.E) = % .l.,detaﬁ e Si—Em (33.49)
in(2rin) = |00 90
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whereGo(q, ', E) is the contribution of short trajectories wiy(q, q', E) < #,
while the sum is over the contributions of long trajectoi{3.46) going fromy’
to g with fixed energyE, with Sj(g.q', E) > 7.

Commentary

Remark 33.1 Limit2# — 0. The semiclassical limit7i — 0" discussed in sect. 33.1
is a shorthand notation for the limit in which typical qudies like the action®R or S

in semiclassical expressions for the propagator or therGieection become large com-
pared toi. In the world that we live in the quantity is a fixed physical constant whose
value [33.8] is 1054571596(82) 1G* Js.

Remark 33.2 Madelung’s fluid dynamics.  Already Schrodinger [33.3] noted that

p=p(t) = A =y"y

plays the role of a density, and that the gradienRahay be interpreted as a local semi-
classical momentum, as the momentum density is

] . 0A  OR
V@Y (IR0 Y = IhAT+p T
A very different interpretation of (33.3-33.4) has been given by Mauge[33.2], and
then built upon by Bohm [33.6] and others [33.3, 33.7]. Kegpthe7i dependent term
in (33.3), the ordinary dierential equations driving the flow (33.10) have to be attere
if the Hamiltonian can be written as kinetic plus potenteht VV(g) as in (31.2), thei?
term modifies thep equation of motion as

. i
=5 (V(a) + Q(@.1) , (33.50)

where, for the example at hand,

w1 92

Q(g.t) = ~2m b O P (33.51)

interpreted by Bohm [33.6] as the “quantum potential.” Madg observed that Hamil-
ton’s equation for the momentum (33.50) can be rewritten as

Vi 1ov 1
&‘F V'[i Visziffi(rij, (33.52)
ot aq mag Mo dq;
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. _ Wp &np « " _n — A2
wherecij = T sgaq 1S the “pressure” stress tensar, = pi/m, andp = A‘ as de-

fined [33.3] in sect. 33.1.3. We recall that the Euler}%m %a% is the ordinary deriva-

tive of Lagrangian mechanics, that§§. For comparison, the Euler equation for classical
hydrodynamics is

oV a _ 1oV 10 )
ﬁ+( %) i = mag npﬁqj(mwl),

wherepé;; is the pressure tensor.

The classical dynamics corresponding to quantum evolisigmus that of an “hypo-
thetical fluid” experiencing andp dependent stresses. The “hydrodynamic” interpreta-
tion of quantum mechanics has, however, not been very dituitfpractice.

Remark 33.3 Pathintegrals. The semiclassical propagator (33.30) can also be derived
from Feynman’s path integral formalism. Dirac was the fiostliscover that in the short-
time limit the quantum propagator (33.34) is exact. Feynmated in 1946 that one can
construct the exact propagator of the quantum Schrodeweation by formally summing
over all possible (and emphatically not classical) patbmfg’ to g .

Gutzwiller started from the path integral to rederive VaredK's semiclassical ex-
pression for the propagator; Van Vleck’s original derigatis very much in the spirit
of what has presented in this chapter. He did, however, nsider the possibility of
the formation of caustics or folds of Lagrangian manifolds éhus did not include the
topological phases in his semiclassical expression foptbpagator. Some 40 years later
Gutzwiller [34.4] added the topological indices when diemivthe semiclassical propaga-
tor from Feynman’s path integral by stationary phase caoomst

Remark 33.4 Applications of the semiclassical Green function. ~ The semiclassical
Green function is the starting point of the semiclassicaragimation in many applica-
tions. The generic semiclassical strategy is to expressipdlyquantities (for example
scattering amplitudes and cross section in scatteringyhescillator strength in spec-
troscopy, and conductance in mesoscopic physics) in tefritee@xact Green function
and then replace it with the semiclassical formula.

Remark 33.5 The quasiclassical approximation — The quasiclassical approximation
was introduced by Maslov [32.7]. The term ‘quasiclassiéaimore appropriate than
semiclassical since the Maslov type description leads to@gassical evolution operator
in a natural way. Following mostly ref. [32.8], we give a suamnof the quasiclassical
approximation, which was worked out by Maslov [32.7] in thism. One additional
advantage of this description is that the wave functionva®blong one single classical
trajectory and we do not have to compute sums over increagingpers of classical
trajectories as in computations involving Van Vleck form{84.27].

VanVleck - 8dec2010 ChaosBook.org version14, Dec 31 2012

EXERCISES

656

Exercises

33.1.

33.2.

33.3.

33.4.

33.5.

Dirac delta function, Gaussian representation.
Consider the Gaussian distribution function

1 _2/202
6+(2) = e .
@ oot

Show that ino- — 0 limit this is the Dirac delta function

f dxé(x) = 1if 0 € M, zero otherwise
M

33.6.

33.7.

Stationary phase approximation in higher dimensions.

All semiclassical approximations are based on saddle

point evaluations of integrals of type

I = f dPxA(X) PN/ (33.53)

for small values ofi. Obtain the stationary phase esti33.9.

mate
(2nin)P/2
| ~ A(Xn)éq)(x")/h
2.
whereD?d(x,) denotes the second derivative matrix.

Schrodinger equation in the Madelung form.  Ver-

ify the decomposition of Schrodinger equation into rezg.11.

and imaginary parts, egs. (33.3) and (33.4).
3

Transport equations. J Write the wave-
function in the asymptotic form

33.12.

P(@.1) = &RV N (1) A 1)

n=0

Derive the transport equations for thg by substituting 313

33.8.

VetD?d(x)’ 33.10.

this into the Schrodinger equation and then collecting

terms by orders ofi. Note that equation foA, only
requires knowledge ok,_; andR.

Easy examples of the Hamilton’s principal function. 33.14.

CalculateR(q, ¢, t) for

a) aD-dimensional free particle

b) a3-dimensional particle in constant magnetic field

c) a l1-dimensional harmonic oscillator. 33.15.

(continuation: exercise 33.13.)

exerVanVleck - 20jan2005

1-dimensional harmonic oscillator. Take a 1
dimensional harmonic oscillatdd(q) = %qu. Take
WKB wave function of formA(q. t) = a(t) andR(q,t) =
r(t) + b(t)g + c(t)g?, wherer(t), a(t), b(t) and c(t) ar
time dependent cdiécients. Derive ordinary dierer
tial equations by using (33.3) and (33.4) and solve t
(continuation: exercise 33.9.)

1-dimensional linear potential. Take a 1-dimensior
linear potentialJ(g) = —Fq. Take a WKB wave fun
tion of form A(g,t) = a(t) andR(q,t) = r(t) + b(t)q +
c(t)g?, wherer(t), a(t), b(t) andc(t) are time depende
codficients. Derive and solve the ordinaryffdrentic
equations from (33.3) and (33.4).

D-dimensional quadratic potentials. Generalize tt
above method to gener8@l-dimensional quadratic f
tentials.

Time evolution of R. (continuation of exe
cise 33.6) Calculate the time evolution Bfg, 0) =
a+ bq+ cof for a 1-dimensional harmonic oscillator
ing (33.12) and (33.14).

D-dimensional free particle propagator.  Verify the
results in sect. 33.2.2; show explicitly that (33.34)
semiclassical Van Vleck propagator i dimension
solves the Schrodinger’s equation.

Propagator, charged particle in constant magnet
field. Calculate the semiclassical propagator f
charged particle in constant magnetic field in 3 dir
sions. Verify that the semiclassical expression coin
with the exact solution.

1-dimensional harmonic oscillator propagato
Calculate the semiclassical propagator for @
dimensional harmonic oscillator and verify that |
identical to the exact quantum propagator.

Free particle action. Calculate the energy depent
action for a free particle, a charged particle in a con
magnetic field and for the harmonic oscillator.

3

Zero length orbits. J Derive the classic
trace (18.1) rigorously and either add the»> 0, zer
length contribution to the trace formula, or show th
vanishes. Send us a reprint@ifiys. Rev. Lett. with the
correct derivation.

Free particle semiclassical Green functions. Calcu
late the semiclassical Green functions for the syste
exercise 33.13.
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