ChaosBook.org chapter local stability

June 3, 2014 version 14.5.6,

flows transport neighborhoods

so far
trajectory of a single initial point
next
transport a neighborhood

matrix of velocity gradients

flow transports displacement $x(t)+\delta x(t)$ along trajectory $x(t)$ an infinitesimal neighborhood evolves by

$$
\dot{x}_{i}+\dot{\delta} \dot{x}_{i}=v_{i}(x+\delta x) \approx v_{i}(x)+\sum_{j} \frac{\partial v_{i}}{\partial x_{j}} \delta x_{j}
$$

together with equations of motion this yields:
equations of variations

$$
\dot{x}_{i}=v_{i}(x), \quad \dot{\delta} x_{i}=\sum_{j} A_{i j}(x) \delta x_{j}
$$

stability matrix

$$
A_{i j}(x)=\frac{\partial v_{i}(x)}{\partial x_{j}}
$$

is the instantaneous rate of shearing of $x(t)$ neighborhood

Jacobian matrix

infinitesimal neighborhood after a finite time:

$$
f_{i}^{t}\left(x_{0}+\delta x\right)=f_{i}^{t}\left(x_{0}\right)+\sum_{j} \frac{\partial f_{i}^{t}\left(x_{0}\right)}{\partial x_{0 j}} \delta x_{j}+\cdots
$$

linearized neighborhood is transported by
Jacobian matrix

$$
\delta x(t)=J^{t}\left(x_{0}\right) \delta x(0), \quad J_{i j}^{t}\left(x_{0}\right)=\frac{\partial x_{i}(t)}{\partial x_{j}(0)}
$$

stability of trajectories

exponential of a constant matrix

$$
e^{t A}=\lim _{m \rightarrow \infty}\left(\mathbf{1}+\frac{t}{m} A\right)^{m}
$$

tax-accountant's discrete step definition of an exponential local rate of neighborhood distortion $A(x)$ depends on $x(t)$

$$
\begin{aligned}
J^{t}= & \lim _{m \rightarrow \infty} \prod_{n=m}^{1}\left(1+\delta t A\left(x_{n}\right)\right) \\
= & \lim _{m \rightarrow \infty} e^{\delta t A\left(x_{n}\right)} e^{\delta t A\left(x_{m-1}\right)} \cdots e^{\delta t A\left(x_{2}\right)} e^{\delta t A\left(x_{1}\right)} \\
& \quad \delta t=\left(t-t_{0}\right) / m, \quad x_{n}=x\left(t_{0}+n \delta t\right)
\end{aligned}
$$

take the $\delta t \rightarrow 0$ limit:

Jacobian matrix is the integral of stability matrix

finite time Jacobian matrix

$$
J_{i j}^{t}\left(x_{0}\right)=\left[\mathbf{T} e^{\int_{0}^{t} d \tau A(x(\tau))}\right]_{i j},
$$

where \mathbf{T} stands for time-ordered integration

Jacobian matrices are multiplicative along the flow,

$$
J^{t+t^{\prime}}(x)=J^{t^{\prime}}\left(x^{\prime}\right) J^{t}(x), \quad \text { where } x^{\prime}=f^{t}(x)
$$

stability multiplier, exponent

$\Lambda_{k}=k$ th stability multiplier, finite time Jacobian matrix M^{t} $\lambda_{k}=k$ th stability exponent

$$
\Lambda_{k}=e^{t \lambda^{(k)}}=e^{t\left(\mu^{(k)}+i \omega^{(k)}\right)}, \quad \Lambda_{k}=\Lambda_{k}\left(x_{0}, t\right), \lambda_{k}=\lambda_{k}\left(x_{0}, t\right)
$$

Jacobian matrix transports local coordinate frames

computation of Jacobian matrix

d^{2} matrix elements of Jacobian matrix satisfy

$$
\frac{d}{d t} J^{t}\left(x_{0}\right)=A(x) J^{t}\left(x_{0}\right), \quad \text { initial condition } J^{0}\left(x_{0}\right)=\mathbf{1}
$$

evaluation requires minimal additional programming effort extend the d-dimensional integration routine, integrate concurrently with $f^{t}(x)$ the d^{2} elements of $J^{t}\left(x_{0}\right)$
will work for short finite times, but for exponentially unstable flows one quickly runs into numerical over- and/or underflow problems...

Jacobian matrix

Jacobian matrix maps a spherical neighborhood of x_{0} into an ellipsoidal neighborhood time t later

Neighbors separate along unstable directions, approach each other along stable directions, creep along the marginal directions

stability of equilibria

stability matrix $A=A\left(x_{q}\right)$ evaluated at an equilibrium point x_{q} is constant

$$
\begin{gathered}
f^{t}(x)=x_{q}+e^{A t}\left(x-x_{q}\right)+\cdots, \\
J^{t}\left(x_{q}\right)=e^{A t} \quad A=A\left(x_{q}\right)
\end{gathered}
$$

for a constant A the Jacobian matrix

$$
x(t)=e^{t A} x(0)
$$

is the solution of the linear equation

$$
\dot{x}=A x
$$

so study linear flows first:

linear flows

stability multipliers, diagonal case:
if $A=$ diagonal matrix A_{D} with eigenvalues $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$

$$
J^{t}=e^{t A_{D}}=\left(\begin{array}{ccc}
e^{t \lambda_{1}} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & e^{t \lambda_{d}}
\end{array}\right)
$$

$\Lambda_{k}=k$ th stability multiplier of the finite time Jacobian matrix J^{t} $\lambda_{k}=k$ th stability exponent

$$
\Lambda_{k}=e^{t \lambda^{(k)}}=e^{t\left(\mu^{(k)}+i \omega^{(k)}\right)}
$$

complex stability multipliers

diagonal example:
Jacobian matrix J

$$
\binom{x_{1}(t)}{x_{2}(t)}=e^{t \mu}\left(\begin{array}{cc}
e^{i t \omega} & 0 \\
0 & e^{-i t \omega}
\end{array}\right)\binom{x_{1}(0)}{x_{2}(0)}
$$

exponent $\mu>0$: trajectory $x(t)$ spirals out exponent $\mu<0$: it spirals in
frequency ω : rate of rotation

two-dimensional flows

streamlines for typical 2-dimensional flows:
saddle (hyperbolic)
in-node (attracting)
center (elliptic)
in-spiral

example : stability of Lorenz flow equilibria

Lorenz flow is organized by its 3 unstable equilibria

- hyperbolically unstable origin $E Q_{0}$ equilibrium
- unstable pair $E Q_{1}$ and $E Q_{1}$ with complex spiral-out stability exponents

example : stability of hyperbolic equilibrium $E Q_{0}$

flow near the $E Q_{0}$:

unstable eigenvector $\mathbf{e}^{(1)}$, stable eigenvectors $\mathbf{e}^{(2)}, \mathbf{e}^{(3)}$
note the strong $\lambda^{(1)}$ expansion: the $E Q_{0}$ equilibrium is unreachable, and the repelling $E Q_{1} \rightarrow E Q_{0}$ heteroclinic connection never observed in simulations

complex stability multipliers

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

eigenvalues λ_{1}, λ_{2} of A

$$
\lambda_{1,2}=\frac{1}{2}\left(\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}\right)
$$

can form a complex conjugate pair

$$
\lambda_{1}=\mu+i \omega, \quad \lambda_{2}=\lambda_{1}^{*}=\mu-i \omega
$$

example : stability of Lorenz equilibrium $E Q_{1}$

unstable eigenplane spanned by
 $\operatorname{Re} \mathbf{e}^{(1)}$ and $\operatorname{Im} \mathbf{e}^{(1)}$,
 stable eigenvector $\mathbf{e}^{(3)}$

$\operatorname{Im} e^{(1)}$

example : Rössler flow equilibria

two equilibrium points

$$
\begin{aligned}
& \left(x^{-}, y^{-}, z^{-}\right) \\
& \left(x^{+}, y^{+}, z^{+}\right)
\end{aligned}
$$

stable manifold of "+" equilibrium point $=$ attraction basin boundary:
right of the "+" equilibrium trajectories escape,
left of the "+" spiral toward the "-" equilibrium point \rightarrow seem to wander chaotically for all times

stability of Rössler flow equilibria

linearized stability exponents

$$
\left.\begin{array}{lr}
\left(\lambda_{1}^{-}, \mu_{2}^{-} \pm i \omega_{2}^{-}\right)=(-5.686, & 0.0970 \pm i 0.9951) \\
\left(\lambda_{1}^{+}, \mu_{2}^{+} \pm i \omega_{2}^{+}\right)= & (0.1929,
\end{array} \quad-4.596 \times 10^{-6} \pm i 5.428\right)
$$

$\mu_{2}^{-} \pm i \omega_{2}^{-}$eigenvectors span a plane this plane rotates with angular period

$$
T_{-} \approx\left|2 \pi / \omega_{2}^{-}\right|=6.313
$$

a trajectory that starts near the "-" equilibrium point spirals away per one rotation with multiplier

$$
\Lambda_{\text {radial }} \approx \exp \left(\lambda_{2}^{-} T_{-}\right)=1.84
$$

each Poincaré section return, contracted into the stable manifold by amazing factor of $\Lambda_{1} \approx \exp \left(\lambda_{1}^{-} T_{-}\right)=10^{-15.6}(!)$
start with a 1 mm interval pointing in the contracting Λ_{1} eigendirection

After one Poincaré return the interval is of order of 10^{-4} fermi

Rössler Poincaré return map is in practice 1 - dimensional

Résumé

a neighborhood of $x(t)$ is determined by the flow linearized around $x(t)$. Nearby points aligned along the stable (contracting) directions remain in the neighborhood of the trajectory $x(t)=f^{t}\left(x_{0}\right)$;
the ones to keep an eye on are the points which leave the neighborhood along the unstable directions. The repercussion are far-reaching:
as long as the number of unstable directions is finite, the same theory applies to finite-dimensional ODEs, phase-space volume preserving Hamiltonian flows, and dissipative, volume contracting infinite-dimensional PDEs

Clink foritex

