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ChaosBook.org/overheads/spatiotemporal
→ Chaotic field theory slides
→ QM3 video channel

"QM3 Quantum Matter meets Maths"
Lisbon

December 6, 2021

https://ChaosBook.org/overheads/spatiotemporal
https://educast.fccn.pt/vod/channels/1x4mvd1fjn
https://qm3.tecnico.ulisboa.pt/seminars?id=6461




Q. what is a chaotic field theory?

A. it is a field theory
field configuration Φ probability

p(Φ) =
1
Z

e−S[Φ] , Z = Z [0]

partition function = sum over configurations

Z [M] =

∫
[dφ] e−S[Φ]+Φ·M , [dφ] =

L∏
z

dφz√
2π

example : Euclidean φ4 theory action

S[Φ] =

∫
dxd

{
1
2

d∑
i=1

(∂µφ(x))2 +
µ2

2
φ(x)2 +

g
4!
φ(x)4

}



Q. why a "chaotic" field theory?

turbulence !



a motivation : need a theory of large turbulent domains

pipe flow close to onset of turbulence 1

we have a detailed theory of small turbulent fluid cells

can we can we construct the infinite pipe by coupling small
turbulent cells ?

what would that theory look like ?

1M. Avila and B. Hof, Phys. Rev. E 87 (2013)



the goal

build
a chaotic field theory

from
the simplest chaotic blocks

using
time invariance
space invariance

of the defining partial differential equations



Dreams of Grand Schemes : solve



QFT path integrals : semi-classical WKB quantization

a local unstable
extremum

a fractal set of saddles



Q. what is a chaotic field theory?

A. say it three times
coin flip

serves here as an introduction to the
spatiotemporal cata

which is the simplest example of
spatiotemporally chaotic field theoryb

aP. Cvitanović and H. Liang, Spatiotemporal cat: A chaotic field theory, In preparation, 2021.
bM. N. Gudorf et al., Spatiotemporal tiling of the Kuramoto-Sivashinsky flow, In preparation, 2021.



take-home :

harmonic field theory

tight-binding model
(Helmholtz)

chaotic field theory

Euclidean Klein-Gordon
(damped Poisson)



take-home :

harmonic field theory

oscillatory eigenmodes

chaotic field theory

hyperbolic instabilities



the very short answer : POT

if you win : I teach you how

(for details, see ChaosBook.org)

http://ChaosBook.org


Mephistopheles knocks at Faust’s door and
says, “Du mußt es dreimal sagen!"
. “You have to say it three times"

— Johann Wolfgang von Goethe
. Faust I - Studierzimmer 2. Teil

1 what this is about
2 coin toss
3 temporal cat
4 spatiotemporal cat
5 bye bye, dynamics

http://ChaosBook.org/overheads/spatiotemporal/why.pdf
http://ChaosBook.org/overheads/spatiotemporal/Bernoulli.pdf
http://ChaosBook.org/overheads/spatiotemporal/templatt.pdf
http://ChaosBook.org/overheads/spatiotemporal/catlatt.pdf
http://ChaosBook.org/overheads/spatiotemporal/timeDead.pdf


(1) coin toss, if you are stuck in XVIII century

time-evolution formulation



fair coin toss

Bernoulli map

φt+1 =

{
2φt
2φt (mod 1)

⇒ fixed point 0, 2-cycle 01, · · ·

a coin toss
the essence of deterministic chaos

https://www.random.org/coins/?num=2&cur=40-antique.aurelian


what is (mod 1) ?

map with integer-valued ‘stretching’ parameter s ≥ 2 :

xt+1 = s xt

(mod 1) : subtract the integer part mt = bsxtc
so fractional part φt+1 stays in the unit interval [0,1)

φt+1 = sφt −mt , φt ∈Mmt

mt takes values in the s-letter alphabet

m ∈ A = {0,1,2, · · · , s − 1}



a fair dice throw

slope 6 Bernoulli map

φt+1 = 6φt −mt , φt ∈Mmt

6-letter alphabet
mt ∈ A = {0,1,2, · · · ,5}

6 subintervals {M0,M1, · · · ,M5}



what is chaos ?

a fair dice throw

6 subintervals {Mmt}, 62 subintervals {Mm1m2}, · · ·

each subinterval contains a
periodic point, labeled by
M = m1m2 · · ·mn

Nn = 6n − 1 unstable orbits

definition : chaos is

positive Lyapunov (ln s) - positive entropy ( 1
n ln Nn)



definition : chaos is

positive Lyapunov (ln s) - positive entropy ( 1
n ln Nn)

Lyapunov : how fast is local escape?
entropy : how many ways of getting back?

⇒ ergodicity

the precise sense in which dice throw
is an example of deterministic chaos

https://www.random.org/dice/


(2) field theorist’s chaos

lattice formulation



lattice Bernoulli

recast the time-evolution Bernoulli map

φt+1 = sφt −mt

as 1-step difference equation on the temporal lattice

−φt+1 + sφt = mt , φt ∈ [0,1)

field φt , source mt
on each site t of a 1-dimensional lattice t ∈ Z

write an n-sites lattice segment as
the field configuration and the symbol block

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

‘M’ for ‘marching orders’ : come here, then go there, · · ·



scalar field theory on 1-dimensional lattice

write a periodic field over n-sites Bravais cell as
the field configuration and the symbol block (sources)

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

ϕt

‘M’ for ‘marching orders’ : come here, then go there, · · ·



think globally, act locally

Bernoulli condition at every lattice site t , local in time

−φt+1 + sφt = mt

is enforced by the global equation

(−r + s 1) Φ = M ,

[n×n] shift matrix

r jk = δj+1,k , r =


0 1

0 1
. . .
0 1

1 0


compares the neighbors



think globally, act locally

solving the lattice Bernoulli system

JΦ = M ,

[n×n] Hill matrix J = −r + s 1 ,

is a search for zeros of the function

F [Φ] = JΦ−M = 0

the entire global lattice state ΦM is now

a single fixed point (φ1, φ2, · · · , φn)

in the n-dimensional unit hyper-cube Φ ∈ [0,1)n



Hill-Poincaré

orbit stability



orbit Jacobian matrix

solving a nonlinear

F [Φ] = 0 fixed point condition

with Newton method requires evaluation of the [n×n]

orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

what does this global orbit Jacobian matrix do?

1 fundamental fact !
2 global stability of lattice state Φ, perturbed everywhere



(1)

fundamental fact



(1) fundamental fact

to satisfy the fixed point condition

JΦ−M = 0

the orbit Jacobian matrix J
1 stretches the unit hyper-cube Φ ∈ [0,1)n into the

n-dimensional fundamental parallelepiped
2 maps each periodic point ΦM ⇒ integer lattice Zn point
3 then translate by integers M ⇒ into the origin

hence Nn = total ] solutions = ] integer lattice points within
the fundamental parallelepiped

the fundamental fact2 : Hill determinant counts solutions

Nn = DetJ

] integer points in fundamental parallelepiped = its volume
2M. Baake et al., J. Phys. A 30, 3029–3056 (1997).

https://doi.org/10.1088/0305-4470/30/9/016


example : fundamental parallelepiped for n = 2

orbit Jacobian matrix for s = 2 ;
unit square basis vectors ; their images :

J =

(
2 −1
−1 2

)
; ΦB =

(
1
0

)
→ ΦB′ = J ΦB =

(
2
−1

)
· · · ,

Bernoulli periodic points of period 2

N2 = 3

fixed point Φ00
2-cycle Φ01, Φ10

square [0BCD]⇒ J ⇒ fundamental parallelepiped [0B′C′D′]



fundamental fact for any n

an n = 3 example
J [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube Φ ∈ [0,1)3

n > 3 cannot visualize

a periodic point⇒ integer lattice point : • on a face, • in the interior



(2)

orbit stability



(2) orbit stability vs. temporal stability

orbit Jacobian matrix

Jij = δF [Φ]i
δφj

stability under global perturbation of the whole orbit
for n large, a huge [dn×dn] matrix

temporal Jacobian matrix
J propagates initial perturbation n time steps

small [d×d ] matrix

J and J are related by3

Hill’s 1886 remarkable formula

|DetJM| = |det (1− JM)|

J is huge, even∞-dimensional matrix
J is tiny, few degrees of freedom matrix

3G. W. Hill, Acta Math. 8, 1–36 (1886).

https://doi.org/10.1007/bf02417081


field theorist’s chaos

definition : chaos is
expanding Hill determinants DetJ
exponential ] field configurations Nn

the precise sense in which
a (discretized) field theory is deterministically chaotic

note : there is no ‘time’ in this definition



periodic orbit theory



volume of a periodic orbit

Ozorio de Almeida and Hannay4 1984 :
] of periodic points is related to a Jacobian matrix by

principle of uniformity
“periodic points of an ergodic system, counted with their natural
weighting, are uniformly dense in phase space”

where

‘natural weight’ of periodic orbit M

1
|det (1− JM)|

4A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

https://doi.org/10.1088/0305-4470/17/18/013


periodic orbits partition lattice states into neighborhoods

how come Hill determinant DetJ counts periodic points ?

‘principle of uniformity’ is in5

periodic orbit theory
known as the flow conservation sum rule :∑

M

1
|det (1− JM)|

=
∑

M

1
|DetJM|

= 1

sum over periodic points ΦM of period n

state space is divided into
neighborhoods of periodic points of period n

5P. Cvitanović, “Why cycle?”, in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst.,
Copenhagen, 2020).

http://chaosbook.org/chapters/ChaosBook.pdf#section.27.4
http://ChaosBook.org/paper.shtml#getused


periodic orbit counting

how come a DetJ counts periodic points ?

flow conservation sum rule :∑
ΦM∈Fixf n

1
|DetJM|

= 1

Bernoulli system ‘natural weighting’ is simple :

the determinant DetJM = DetJ the same for all periodic points,
whose number thus verifies the fundamental fact

Nn = |DetJ |

the number of Bernoulli periodic lattice states
Nn = |DetJ | = sn − 1 for any n



remember the fundamental fact?

period 2 example

fixed point Φ00
2-cycle Φ01, Φ10

J [unit hyper-cube] = [fundamental parallelepiped]

look at preimages of the fundamental parallelepiped :



example : lattice states of period 2

unit hypercube, partitioned

fixed point Φ00
2-cycle Φ01, Φ10

flow conservation sum rule
1

|DetJ00|
+

1
|DetJ01|

+
1

|DetJ10|
= 1

sum over periodic points ΦM of period n = 2

state space is divided into
neighborhoods of periodic points of period n

http://chaosbook.org/chapters/ChaosBook.pdf#section.27.4


tessellate the state space by recurrent flows



zeta function



periodic orbit theory : counting lattice states

topological zeta function

1/ζtop(z) = exp

− ∞∑
n=1

zn

n
Nn


1 weight 1/n as by (cyclic) translation invariance, n lattice

states are equivalent
2 zeta function counts orbits, one per each set of equivalent

lattice states



Bernoulli topological zeta function

counts orbits, one per each set of lattice states Nn = sn − 1

1/ζtop(z) = exp

− ∞∑
n=1

zn

n
Nn

 =
1− sz
1− z

numerator (1− sz) says that Bernoulli orbits are built from
s fundamental primitive lattice states,

the fixed points {φ0, φ1, · · · , φs−1}

every other lattice state is built from their concatenations and
repeats.

solved!
this is ‘periodic orbit theory’
And if you don’t know, now you know

https://www.youtube.com/watch?v=_JZom_gVfuw


summary : think globally, act locally

the problem of enumerating and determining all lattice states
stripped to its essentials :

1 each solution is a zero of the global fixed point condition

F [Φ] = 0

2 global stability : the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

3 fundamental fact : the number of period-n orbits

Nn = |DetJ |

4 zeta function 1/ζtop(z) : all predictions of the theory



next : a kicked rotor

Du mußt es dreimal sagen!
— Mephistopheles

1 what this is about
2 coin toss
3 kicked rotor
4 spatiotemporal cat
5 bye bye, dynamics

http://ChaosBook.org/overheads/spatiotemporal/why.pdf
http://ChaosBook.org/overheads/spatiotemporal/Bernoulli.pdf
http://ChaosBook.org/overheads/spatiotemporal/templatt.pdf
http://ChaosBook.org/overheads/spatiotemporal/catlatt.pdf
http://ChaosBook.org/overheads/spatiotemporal/timeDead.pdf


coin toss ? that’s not physics !

Field Theory should be Hamiltonian and energy conserving
Quantum Mechanics requires it

because that is physics !

need a system as simple as the Bernoulli, but mechanical

so, we move on from running in circles,
to a mechanical rotor to kick.



(1) the traditional cat

time-evolution formulation



example of a “small domain” dynamics : a single kicked rotor

an electron circling an atom, subject to
a discrete time sequence of angle-dependent kicks F (xt )

Taylor, Chirikov and Greene standard map

xt+1 − xt = pt+1 mod 1
pt+1 − pt = F (xt )

→ chaos in Hamiltonian systems



the simplest example : a cat map evolving in time

force F (x) = Kx linear in the displacement x , K ∈ Z

xt+1 = xt + pt+1 mod 1
pt+1 = pt + Kxt mod 1

Continuous Automorphism of the Torus, or

time-evolution cat map
a linear, area preserving map of a 2-torus onto itself[

φt
φt+1

]
= J

[
φt−1
φt

]
−
[

0
mt

]
, J =

[
0 1
−1 s

]
for integer ‘stretching’ s = tr J > 2 the map is
beloved by ergodicists :
hyperbolic⇒ perfect chaotic Hamiltonian dynamical system



a cat is literally Hooke’s wild, ‘anti-harmonic’ sister

for s < 2 Hooke rules
local restoring oscillations
around the sleepy z-z-z-zzz resting state

for s > 2 cats rule
exponential runaway
wrapped global around a phase space torus

cat is to chaos what harmonic oscillator is to order

there is no more fundamental example of chaos in mechanics



(2) spatiotemporal cat

lattice formulation



cat map in lattice formulation
replace momentum by velocity

pt+1 = (φt+1 − φt )/∆t

obtain [
φt
φt+1

]
=

[
0 1
−1 s

] [
φt−1
φt

]
−
[

0
mt

]
temporal lattice formulation is pretty6 :

2-step difference equation

−φt+1 + s φt − φt−1 = mt

integer mt ensures that
φt lands in the unit interval

mt ∈ A , A = {finite alphabet}
6I. Percival and F. Vivaldi, Physica D 27, 373–386 (1987).

https://doi.org/10.1016/0167-2789(87)90037-6


think globally, act locally

spatiotemporal cat at every instant t , local in time

−φt+1 + s φt − φt−1 = mt

is enforced by the global equation

J Φ = M ,

where



orbit Jacobian matrix

J Φ−M = 0

with
Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

a lattice state, and a symbol block

and [n×n] orbit Jacobian matrix J is

−r + s 11− r−1 =


s −1 −1
−1 s −1

−1
. . .
s −1

−1 −1 s





think globally, act locally

solving the spatiotemporal cat equation

JΦ = M ,

with the [n×n] matrix J = −r + s 11− r−1

can be viewed as a search for zeros of the function

F [Φ] = JΦ−M = 0

where the entire global lattice state ΦM is

a single fixed point ΦM = (φ1, φ2, · · · , φn)

in the n-dimensional unit hyper-cube Φ ∈ [0,1)n



fundamental fact in action

temporal cat fundamental parallelepiped for period 2
square [0BCD]⇒ J = fundamental parallelepiped [0B′C′D′]

N2 = |DetJ | = 5

fundamental parallelepiped
= 5 unit area quadrilaterals

a periodic point per each unit volume



spatiotemporal cat zeta function

is the generating function that counts orbits

substituting the Hill determinant count of periodic lattice states

Nn = DetJ

into the topological zeta function

1/ζtop(z) = exp

(
−
∑
n=1

zn

n
Nn

)

leads to the elegant explicit formula7

1/ζtop(z) =
1− sz + z2

1− 2z + z2

solved!
7S. Isola, Europhys. Lett. 11, 517–522 (1990).

https://doi.org/10.1209/0295-5075/11/6/006


what continuum theory is temporal cat discretization of?

have

2-step difference equation

−φt+1 + s φt − φt−1 = mt

discrete lattice

Laplacian in 1 dimension

φt+1 − 2φt + φt−1 = �φt

so temporal cat is an (anti)oscillator chain, known as

d = 1 Klein-Gordon (or damped Poisson) equation (!)

(−� + µ2)φt = mt , µ2 = s − 2

did you know that a cat map can be so cool?



that’s it! for spacetime of any dimension

lattice Klein-Gordon equation

(−� + µ2)φt = mt
solved completely and analytically!



summary : think globally, act locally

the problem of determining all global solutions stripped to its
bare essentials :

1 each solution a zero of the global fixed point condition

F [Φ] = 0

2 compute the orbit Jacobian matrix

Jij =
δF [Φ]i
δφj

3 fundamental fact Nn = |DetJ | = period-n states

4 ⇒ zeta function 1/ζtop(z)



chaotic field theory



Euclidean lattice field theory

scalar field φ(x)

evaluated on lattice points

φz = φ(x)
x = a z = lattice point
z ∈ Zd

a periodic point per each unit cell

8

8G. Münster and M. Walzl, Lattice gauge theory - A short primer, 2000.



example : discretization of a 1d field

scalar field φ(x) evaluated on lattice points

periodic field φ(t)
is a function of
continuous coordinate t

corresponding discretized
period-5 lattice state
Φ = φ0φ1φ2φ3φ4,

Horizontal: t coordinate, lattice sites marked by
dots, labelled by t ∈ Z

the value of the discretized field φt ∈ R is plotted as
a bar centred at lattice site t



Bravais cell lattice tiling

write a periodic field over n-sites Bravais cell as
the lattice state and the symbol block (sources)

Φ = (φt+1, · · · , φt+n) , M = (mt+1, · · · ,mt+n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

ϕt

‘M’ for ‘marching orders’ : come here, then go there, · · ·



field theory is defined by its action

field theory
field configuration Φ occurs with probability

p(Φ) =
1
Z

e−S[Φ] , Z = Z [0]

partition function = sum over all configurations

Z [M] =

∫
[dφ] e−S[Φ]+Φ·M , [dφ] =

L∏
z

dφz√
2π

‘source’ M



example : Euclidean φ4 theory

continuum action

S =

∫
dxd

{
1
2

d∑
i=1

(∂µφ(x))2 +
µ2

2
φ(x)2 +

g
4!
φ(x)4

}

lattice action

S[Φ] =
∑
z,z′

1
2

{
φz

(
−� + µ2

)
zz′
φz′

}
+
∑

z

g
4!
φ4

z .

in ‘lattice units’ : a = 1



QFT path integrals : semi-classical WKB quantization

WKB backbone
classical field theory
extremal condition→ eqs

δS[Φ]

δφz
= mz

classical solution Φ
satisfies the extremal
condition on every lattice
site

a fractal set of saddles



think globally, act locally

for each symbol array M, a periodic lattice state ΦM



orbit Jacobian (Hill, Hessian, ...) matrix

each lattice state has its own

J [Φ] =



s0 −1 0 0 · · · 0 0 −1
−1 s1 −1 0 · · · 0 0 0
0 −1 s2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 sn−2 −1
−1 0 0 0 · · · 0 −1 sn−1


,

stretching factor st = V ′′[φt ] is
function of the site field φt for the given lattice state Φ

1 can compute Hill determinant DetJ
2 Hill-Lindstedt-Poincaré :

all calculations should be done on reciprocal lattice
3 toolbox : discrete Fourier transforms, irreps of Dn



popular 1d lattice field theories
spatiotemporal lattice field theory

−φt+1 + V ′[φt ]− φt−1 = mt

spatiotemporal Bernoulli

−φt+1 + s φt = mt

spatiotemporal cat

−φt+1 + s φt − φt−1 = mt

spatiotemporal Hénon

−φt+1 + aφ2
t − φt−1 = mt

spatiotemporal φ4 theory

−φt+1 +
g
3!
φ3

t − φt−1 = mt



in crystallography symmetries rule

There are only two 1-dimensional space groups G:
p1 infinite cyclic group C∞ of all lattice translations,

C∞ = {· · · , r−2, r−1,1, r1, r2, r3, · · · }

p1m infinite dihedral group D∞ of all translations and
reflections9,

D∞ = {· · · , r−2, σ−2, r−1, σ−1,1, σ, r1, σ1, r2, σ2, · · · }

9Y.-O. Kim et al., Pacific J. Math. 209, 289–301 (2003).

https://en.wikipedia.org/wiki/Line_group
https://doi.org/10.2140/pjm.2003.209.289


4 kinds of Bravais lattice states

(n) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

ϕt

(o)

(ee) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

ϕt

(eo) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

ϕt

(n) no reflection symmetry: H5 invariant period-5 lattice state
(o) odd period, symmetric: an H9,8 invariant period-9
(ee) even period, even symmetric: H10,0 invariant period-10
(eo) even period, odd symmetric: H10,9 invariant period-10



group actions

group multiplication gigj

rj σj
ri ri+j σj−i
σi σi+j rj−i

either adds up translations,
or shifts and then reverses their direction



D∞ orbit of a generic lattice state

(1)

(r1)

(r2)

(r3)

(r4)

(σ)

(σ1)

(σ2)

(σ3)

(σ4)

lattice state Φ = φ0φ1φ2φ3φ4, no reflection symmetry
D∞-orbit is isomorphic to D5 : 10 distinct lattice states



zeta functions unlike 1980’s

periodic orbit theory : counting lattice states10

Lind zeta function

ζLind (t) = exp

(∑
H

NH

|G/H|
t |G/H|

)
sum is over all subgroups H of space group G
NH is the number of fixed points of H
|G/H| is the number of states in H orbit

1 Lind zeta function counts group orbits, one per each set of
equivalent lattice states

10D. A. Lind, “A zeta function for Z d -actions”, in Ergodic Theory of Z d Actions, edited by M. Pollicott and
K. Schmidt (Cambridge Univ. Press, 1996), pp. 433–450.

https://doi.org/10.1017/CBO9780511662812.019


zeta functions unlike 1980’s

periodic orbit theory :
counting lattice states for reflection-symmetric systems11,12

Kim-Lee-Park zeta function

ζσ(t) =
√
ζtop(t2) eh(t),

where ζtop is the Artin-Mazur zeta function, and the counts of
the 3 kinds of symmetric orbits are

h(t) =
∞∑

m=1

{
N2m−1,0 t2m−1 +

(
N2m,0 + N2m,1

) t2m

2

}

11M. Artin and B. Mazur, Ann. Math. 81, 82–99 (1965).
12Y.-O. Kim et al., Pacific J. Math. 209, 289–301 (2003).

http://www.jstor.org/stable/1970384
https://doi.org/10.2140/pjm.2003.209.289


1 coin toss
2 kicked rotor
3 spatiotemporal cat
4 bye bye, dynamics



insight 1 : how is turbulence described?

not by the evolution of an initial state
exponentially unstable system have finite (Lyapunov) time and
space prediction horizons

but

by enumeration of admissible field configurations
and their natural weights



insight 2 : description of turbulence by d-tori

1 time, 0 space dimensions
a phase space point is periodic if its orbit returns to itself after a
finite time T; such orbit tiles the time axis by infinitely many
repeats

1 time, d-1 space dimensions
a phase space point is spatiotemporally periodic if it belongs to
an invariant d-torus R,
i.e., a block MR that tiles the lattice state M,
with period `j in j th lattice direction



insight 3 : can compute ‘all’ solutions

Bernoulliland - rough initial guesses converge

no exponential instabilities

reciprocal lattice



what we still do not understand today

1 solved so far only 1-dimensional spatiotemporal lattice,
point group D1

2 should all time-reversal symmetric systems be analyzed
this way ?

3 should all dynamical systems should be solved on
reciprocal lattice ?

4 for 2-dimensional spatiotemporal chaotic field theory,
still have to do this for square lattice point group D4

5 then, solve the problem of turbulence
(Navier-Stokes, Yang-Mills, general relativity)



Verbrechen des Jahrhunderts : das Ende der Zeit

die Zeit ist tot
also, an die Arbeit!



bye bye, dynamics

1 goal : describe states of turbulence in infinite
spatiatemporal domains

2 theory : classify, enuremate all spatiotemporal tilings
3 example : spatiotemporal cat, the simplest model of

“turbulence”

there is no more time

there is only enumeration of
admissible spacetime field configurations



crime of the century : this the end of time

time is dead
now, get to work



take-home :

traditional field theory

Helmholtz

chaotic field theory

damped Poisson, Yukawa


	a coin toss
	a kicked rotor
	time reversal
	bye bye, dynamics

