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the big picture

Local v.s. global way of thinking

key idea (1): replace local time average over an ergodic trajectory by a

global average over all periodic orbits

any dynamical average can be extracted from an evolution operator’s

leading eigenvalue

key idea (2): as long cycles are shadowed by short ones, short cycles

give exponentially accurate dynamical averages
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Dynamical averaging



why?

Detailed prediction impossible in chaotic dynamics

Any initial condition will fill whole state space after finite Lyapunov time

Hence we cannot follow them for a long time

Examples of averages:

� transport coefficients: escape rates, mean drifts, diffusion rates

� entropies

� power spectra

� Lyapunov exponents
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observable

observable: function a(x) that associates to each point in state space a

number, a vector or a tensor

observables report on a property of the dynamical system
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integrated observable

integrated observable:

A(x0, t) =

∫ t

0

dτ a(x(τ)), x(t) = f t(x0) (1)

if dynamics is given by an iterated mapping the integrated observable

after n iterations is given by:

A(x0, n) =
n−1∑
k=0

a(xk), xk = f k(x0) (2)
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periodic orbits

Define

Ap =

{
apTp =

∫ Tp

0
dτ a(x(τ)) for a flow

apnp =
∑np

i=1 a(xi ) for a map
(3)

Ap is an integral / sum of the observable along a single traversal of the

prime cycle p

a(x0) is a wild function of x0 e.g. for a hyperbolic system it takes a

different value on (almost) every periodic orbit
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exponential generating functions

consider the spatial average〈
eβ·A

〉
=

1

|M|

∫
M

dx eβ·A(x,t) (4)

where in this context β is an auxiliary variable of no physical significance.

exercise:

How can we recover the desired space average ⟨A⟩ from
〈
eβ·A

〉
?
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exercise

⟨A⟩ = ∂

∂β

〈
eβ·A

〉∣∣∣∣
β=0
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characteristic function with time

as t → ∞ we expect: 〈
eβA

〉
→ (const)ets(β)

the rate of growth characteristic function is given by

s(β) = lim
t→∞

1

t
ln
〈
eβA

〉
(5)

exercise: How can we calculate ⟨a⟩?
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calculating moments

We can use derivatives of s(β) to calculate the expectation value of the

observable, its variance, and higher moments of the integrated observable

for example,
∂s

∂β

∣∣∣∣
β=0

= lim
t→∞

1

t
⟨A⟩ = ⟨a⟩ (6)
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Pseudo-cycles and shadowing



pseudo-cycles

dynamical zeta function expanded:

1/ζ =
∏
p

(1− tp) = 1−
∑′

{p1p2...pk}

(−1)k+1tp1tp2 . . . tpk (7)

tπ = (−1)k+1tp1tp2 . . . tpk is a product of the prime cycle weights tp

pseudo-cycle label

π = p1 + p2 + · · ·+ pk (8)

series (7) compactly written

1/ζ = 1−
∑′

π

tπ . (9)

products tπ are weights of pseudo-cycles,

sequences of shorter cycles that shadow a cycle with the symbol sequence

p1p2 . . . pk along the segments p1, p2, . . . , pk
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pseudo-cycle weight

pseudo-cycle weight =
∏
(weights of prime cycles) comprising it,

tπ = (−1)k+1 1

|Λπ|
eβAπ−sTπ znπ , (10)

pseudo-cycle integrated observable Aπ, period Tπ, stability Λπ:

Λπ = Λp1Λp2 · · ·Λpk , Tπ = Tp1 + . . .+ Tpk

Aπ = Ap1 + . . .+ Apk , nπ = np1 + . . .+ npk , (11)
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cycle expansion

complete binary symbolic dynamics Euler product (7)

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011) (12)

× (1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)

× (1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .

the first few terms of the expansion (9) ordered by increasing total

pseudo-cycle length:

1/ζ = 1− t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+ t0+1 + t0+01 + t01+1 + t0+001 + t0+011 + t001+1 + t011+1

− t0+01+1 − . . . (13)
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cycle expansion

regroup the terms into the

� fundamental contributions tf

� curvature corrections

split into prime cycles p of period np=n grouped together with

pseudo-cycle shadows

1/ζ = 1− t0 − t1 − [(t01 − t0+1)]− [(t001 − t0+01) + (t011 − t01+1)]

−[(t0001 − t0+001) + (t0111 − t011+1)

+(t0011 − t001+1 − t0+011 + t0+01+1)]− . . .

= 1−
∑
f

tf −
∑
n

ĉn . (14)
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curvature corrections

- t0
- t1
- t10 + t1t0
- t100 + t10+0
- t101 + t10+1
- t1000 + t100+0
- t1001 + t100+1 + t110+0 - t1+10+0
- t1011 + t101+1
- t10000 + t1000+0
- t10001 + t1001+0 + t1000+1 - t0+100+1
- t10010 + t100+10
- t10101 + t101+10
- t10011 + t1011+0 + t1001+1 - t0+101+1
- t10111 + t1011+1
- t100000 + t10000+0
- t100001 + t10001+0 + t10000+1 - t0+1000+1
- t100010 + t10010+0 + t1000+10 - t0+100+10
- t100011 + t10011+0 + t10001+1 - t0+1001+1
- t100101 - t100110 + t10010+1 + t10110+0

+ t10+1001 + t100+101 - t0+10+101 - t1+10+100
- t101110 + t10110+1 + t1011+10 - t1+101+10
- t100111 + t10011+1 + t10111+0 - t0+1011+1
- t101111 + t10111+1
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Evaluation of traces and spectral

determinants



exact cycle weight

weight of prime cycle p repeated r times is

tp(z , β, r) =
erβAp z r np∣∣det (1−M r

p

)∣∣ (discrete time) (15)

tp(s, β, r) =
er(βAp−sTp)∣∣det (1−M r

p

)∣∣ (continuous time) (16)
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trace formula, determinant, expanded

trace formula

tr
zL

1− zL

∣∣∣∣
N

=
N∑

n=1

Cnz
n , Cn = trLn (17)

spectral determinant

det (1− zL)|N = 1−
N∑

n=1

Qnz
n , Qn = nth cumulant , (18)

truncated to prime cycles p and their repeats r such that npr ≤ N
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convergence of cycle expansions

3-disk repeller escape rates computed from N-truncated cycle expansions

� spectral determinant

� dynamical zeta functions

spectral determinant det(s −A) convergence is super-exponential

N . det(s −A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049
4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
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3-disk spectral determinant vs 1/ζ(s)

complex s plane contour plots of the logarithm of

(left) |1/ζ(s)|
(right) |det (s −A)|
eigenvalues of the evolution operator L are the centers of elliptic

neighborhoods

spectral determinant is entire and reveals further families of zeros
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Cycle formulas for dynamical

averages



eigenvalue conditions

eigenvalue conditions for

dynamical zeta function (9)

spectral determinant (18)

0 = 1−
∑′

π

tπ , tπ = tπ(β, s(β)) (19)

0 = 1−
∞∑
n=1

Qn , Qn = Qn(β, s(β)) , (20)

are implicit equations for an eigenvalue s = s(β) of form

0 = F (β, s(β))
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eigenvalue condition → expectation value

eigenvalue condition is satisfied on the curve F = 0 on the (β, s) plane

expectation value of the observable is given by the slope of the curve
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eigenvalue condition → expectation value

the cycle averaging formulas for the slope and curvature of s(β) are

obtained as in (6), by taking derivatives of the eigenvalue condition

the chain rule for the first derivative yields

0 =
d

dβ
F (β, s(β))

=
∂F

∂β
+

ds

dβ

∂F

∂s

∣∣∣∣
s=s(β)

=⇒ ds

dβ
= −∂F

∂β

/ ∂F

∂s
, (21)

and for the second derivative of F (β, s(β)) = 0

d2s

dβ2
= −

[
∂2F

∂β2
+ 2

ds

dβ

∂2F

∂β∂s
+

(
ds

dβ

)2
∂2F

∂s2

] / ∂F

∂s
. (22)
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cycle averaging formulas

denote expectations for eigenvalue condition F = 0 by

⟨A⟩F = − ∂F

∂β

∣∣∣∣
β,s=s(β)

, ⟨T⟩F =
∂F

∂s

∣∣∣∣
β,s=s(β)

,

⟨A2⟩F = − ∂2F

∂β2

∣∣∣∣
β,s=s(β)

, ⟨TA⟩F =
∂2F

∂s∂β

∣∣∣∣
β,s=s(β)

(23)

cycle averaging formulas for

expectation of the observable, its variance:

⟨a⟩ =
⟨A⟩F
⟨T⟩F

(24)

∆ =
1

⟨T⟩F
⟨(A− T ⟨a⟩)2⟩F , (25)
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example : dynamical zeta function cycle averaging formulas

for the dynamical zeta function we obtain

⟨A⟩ζ := − ∂

∂β

1

ζ
=

∑′
Aπtπ (26)

⟨T⟩ζ :=
∂

∂s

1

ζ
=

∑′
Tπtπ , ⟨n⟩ζ := −z

∂

∂z

1

ζ
=

∑′
nπtπ ,

⟨A⟩F evaluated on pseudo-cycles (11), with pseudo-cycle weights

tπ = tπ(z , β, s(β)) evaluated at the eigenvalue s(β)

⟨A⟩ζ =
∑′

π

(−1)k+1Ap1 + Ap2 · · ·+ Apk

|Λp1 · · ·Λpk |
(27)

⟨T⟩ζ is of the same form
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example: cycle expansion for the mean cycle period

for complete binary symbolic dynamics

the mean cycle period is given by

⟨T⟩ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
(28)

+

(
T001

|Λ001|
− T01 + T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
− T01 + T1

|Λ01Λ1|

)
+ . . .

note: the cycle expansions for averages are grouped into the same

shadowing combinations as the dynamical zeta function cycle expansion

(14), with nearby pseudo-cycles nearly canceling each other
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Lyapunov exponents



formula for Lyapunov exponent

Construction of the evolution operator for the evaluation of the Lyapunov

spectra for a d-dimensional flow: we need an extension of the evolution

equations to a flow in the tangent space

All that remains is to determine the value of the Lyapunov exponent

λ = ⟨ln |f ′(x)|⟩ = ∂s(β)

∂β

∣∣∣∣
β=0

= s ′(0) (29)

How?
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example : cycle expansion formula for Lyapunov exponents

we have related the Lyapunov exponent for a 1-dimensional map to the

leading eigenvalue of an evolution operator

now the cycle averaging formula (27) yields an exact explict expression

for the Lyapunov exponent in terms of prime cycles:

λ =
1

⟨n⟩ζ

∑′
(−1)k+1 log |Λp1 |+ · · ·+ log |Λpk |

|Λp1 · · ·Λpk |
(30)
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big picture recap

Since detailed prediction is impossible in chaotic dynamics, averages are

useful to describe the system.

The key idea is to express expectation values of observables as derivatives

of evolution operators leading eigenvalue

Dynamical averages can thus be extracted from the eigenvalues of

appropriately constructed evolution operators
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Questions?
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