ChaosBook.org chapter cycle stability

June 3, 2014 version 14.5.6,

a fixed point remains a fixed point for any choice of coordinates

a periodic orbit remains periodic in any representation of the dynamics

any continuous re-parametrization of a dynamical system preserves its topology and the topological relations between periodic orbits, such as their relative inter-windings and knots. So the mere existence of periodic orbits suffices to partially organize the spatial layout of a non-wandering set.

stability of periodic orbits are metric invariants

No less important: cycle stabilities are *metric* invariants: they determine the relative sizes of neighborhoods in a non-wandering set.

Note: Jacobian matrices multiply, so the Jacobian matrix for the rth repeat of a prime cycle p of period T is

$$J^{rT}(x) = J^{T}(f^{(r-1)T}(x)) \cdots J^{T}(f^{T}(x)) J^{T}(x) = J_{\rho}(x)^{r},$$

where $J_p(x) = J^T(x)$ is the Jacobian matrix for a single traversal of the prime cycle p $x \in \mathcal{M}_p$ is any point on the cycle $f^{rT}(x) = x$ as $f^t(x)$ returns to x every multiple of the period T.

it suffices to study the stability of prime cycles

stretch / shrink along a periodic orbit

For a prime cycle *p*, Floquet matrix J_p returns an infinitesimal neighborhood of $x_0 \in \mathcal{M}_p$ stretched and/or shrunk, with overlap ratio along the eigendirection $\mathbf{e}^{(i)}$ of $J_p(x)$ given by the Floquet multiplier $|\Lambda_{p,i}|$

these ratios are invariant under smooth nonlinear reparametrizations of state space coordinates intrinsic property of cycle p

Floquet eigenframe

the parallelepiped spanned by Floquet unit eigenvectors ('covariant vectors', 'covariant Lyapunov vectors') is transported along the orbit and deformed by Jacobian matrix

after one period T_{ρ} , the eigenframe maps into itself

Jacobian matrix is not self-adjoint eigenvectors are not orthogonal

Jacobian matrix transports velocity

two points along a periodic orbit p are mapped into themselves after one cycle period T,

hence a longitudinal displacement $\delta x = v(x_0)\delta t$ is mapped into itself by the cycle Jacobian matrix J_p .

Jacobian matrix transports velocity

 $J^t(x_0)$ transports the velocity vector

$$\mathbf{v}(\mathbf{x}(t)) = \mathbf{J}^t(\mathbf{x}_0) \, \mathbf{v}(\mathbf{x}_0)$$

For periodic orbit p, $x(T_p) = x(0)$, v is an eigenvector of the Jacobian matrix $J_p = J^{T_p}$ with unit eigenvalue,

$$J_{\rho}(x) v(x) = v(x), \qquad x \in \rho$$

Jacobian matrix for a continuous time periodic orbit always has a marginal stability multiplier $\Lambda_k = 1$

cycle stability

an unstable periodic orbit repels every neighboring trajectory x'(t), except those on its center and stable manifolds

cycle stability

an unstable periodic orbit repels every neighboring trajectory x'(t), except those on its center and stable manifolds

example : Rössler short cycles

(a) $y \rightarrow P_1(y, z)$ return map for x = 0, y > 0 Poincaré section (b) the $\overline{1}$ -cycle found by Newton-Raphson, taking the fixed point $y_{k+n} = y_k$ as initial guess (0, y(0), 0)

$$\begin{array}{rcl} \overline{1} \text{-cycle:} & T_1 &=& 5.88108845586 \\ & (\Lambda_{1,e},\Lambda_{1,m},\Lambda_{1,c}) &=& (-2.40395353,1,-1.29\times10^{-14}) \end{array}$$

 $y_{k+3} = P_1^3(y_k, z_k)$, the third iterate of Poincaré return map is used to pick starting guesses for the Newton-Raphson searches for the two 3-cycles:

 $\overline{001}$ and $\overline{011}$

Résumé

► Link to full text