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periodic orbits are topological invariants

a fixed point remains a fixed point for any choice of coordinates

a periodic orbit remains periodic in any representation of the
dynamics

any continuous re-parametrization of a dynamical system
preserves its topology and the topological relations between
periodic orbits, such as their relative inter-windings and knots.
So the mere existence of periodic orbits suffices to partially
organize the spatial layout of a non–wandering set.



stability of periodic orbits are metric invariants

No less important: cycle stabilities are metric invariants: they
determine the relative sizes of neighborhoods in a
non–wandering set.

Note: Jacobian matrices multiply, so the Jacobian matrix for the
r th repeat of a prime cycle p of period T is

J rT(x) = JT(f (r−1)T(x)) · · · JT(f T(x))JT(x) = Jp(x)r ,

where Jp(x) = JT(x) is the Jacobian matrix for a single
traversal of the prime cycle p
x ∈Mp is any point on the cycle
f rT(x) = x as f t (x) returns to x every multiple of the period T.

it suffices to study the stability of prime cycles



stretch / shrink along a periodic orbit

For a prime cycle p, Floquet matrix Jp returns an infinitesimal
neighborhood of x0 ∈Mp stretched and/or shrunk, with overlap
ratio along the eigendirection e(i) of Jp(x) given by the Floquet
multiplier |Λp,i |

these ratios are invariant under smooth nonlinear
reparametrizations of state space coordinates
intrinsic property of cycle p



Floquet eigenframe

the parallelepiped spanned by Floquet unit eigenvectors
(‘covariant vectors’, ‘covariant Lyapunov vectors’) is transported
along the orbit and deformed by Jacobian matrix

e(1)

e(2) x(0)

x(τ)
Jτ

e(1)
e(2)

after one period Tp, the eigenframe maps into itself

Jacobian matrix is not self-adjoint
eigenvectors are not orthogonal



Jacobian matrix transports velocity

two points along a periodic orbit p are mapped into themselves
after one cycle period T,

δ  x
x(T) = x(0)

hence a longitudinal displacement δx = v(x0)δt is mapped into
itself by the cycle Jacobian matrix Jp.



Jacobian matrix transports velocity

J t (x0) transports the velocity vector

v(x(t)) = J t (x0) v(x0)

For periodic orbit p, x(Tp) = x(0), v is an eigenvector of the
Jacobian matrix Jp = JTp with unit eigenvalue,

Jp(x) v(x) = v(x) , x ∈ p

Jacobian matrix for a continuous time periodic orbit always has
a marginal stability multiplier Λk = 1



cycle stability

x’ x=x(T)

x’(T)

an unstable periodic orbit repels every neighboring trajectory
x ′(t), except those on its center and stable manifolds
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example : Rössler short cycles
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(a) y → P1(y , z) return map for x = 0, y > 0 Poincaré section
(b) the 1-cycle found by Newton-Raphson, taking the fixed point
yk+n = yk as initial guess (0, y(0),0)

1-cycle: T1 = 5.88108845586
(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353,1,−1.29× 10−14)
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yk+3 = P3
1 (yk , zk ), the third iterate of

Poincaré return map is used to pick
starting guesses for the
Newton-Raphson searches for the two
3-cycles:
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Résumé

Link to full text

http://chaosbook.org/chapters/invariants.pdf

