ChaosBook.org chapter cycle stability

June 3, 2014 version 14.5.6,

periodic orbits are topological invariants

a fixed point remains a fixed point for any choice of coordinates
a periodic orbit remains periodic in any representation of the dynamics
any continuous re-parametrization of a dynamical system preserves its topology and the topological relations between periodic orbits, such as their relative inter-windings and knots. So the mere existence of periodic orbits suffices to partially organize the spatial layout of a non-wandering set.

stability of periodic orbits are metric invariants

No less important: cycle stabilities are metric invariants: they determine the relative sizes of neighborhoods in a non-wandering set.

Note: Jacobian matrices multiply, so the Jacobian matrix for the r th repeat of a prime cycle p of period T is

$$
J^{r T}(x)=J^{T}\left(f^{(r-1) T}(x)\right) \cdots J^{T}\left(f^{T}(x)\right) J^{T}(x)=J_{p}(x)^{r}
$$

where $J_{p}(x)=J^{T}(x)$ is the Jacobian matrix for a single traversal of the prime cycle p
$x \in \mathcal{M}_{p}$ is any point on the cycle
$f^{r T}(x)=x$ as $f^{t}(x)$ returns to x every multiple of the period T.
it suffices to study the stability of prime cycles

stretch / shrink along a periodic orbit

For a prime cycle p, Floquet matrix J_{p} returns an infinitesimal neighborhood of $x_{0} \in \mathcal{M}_{p}$ stretched and/or shrunk, with overlap ratio along the eigendirection $\mathbf{e}^{(i)}$ of $J_{p}(x)$ given by the Floquet multiplier $\left|\Lambda_{p, i}\right|$

these ratios are invariant under smooth nonlinear reparametrizations of state space coordinates intrinsic property of cycle p

Floquet eigenframe

the parallelepiped spanned by Floquet unit eigenvectors ('covariant vectors', 'covariant Lyapunov vectors') is transported along the orbit and deformed by Jacobian matrix

after one period T_{p}, the eigenframe maps into itself
Jacobian matrix is not self-adjoint eigenvectors are not orthogonal

Jacobian matrix transports velocity

two points along a periodic orbit p are mapped into themselves after one cycle period T,

hence a longitudinal displacement $\delta x=v\left(x_{0}\right) \delta t$ is mapped into itself by the cycle Jacobian matrix J_{p}.

Jacobian matrix transports velocity

$J^{t}\left(x_{0}\right)$ transports the velocity vector

$$
v(x(t))=J^{t}\left(x_{0}\right) v\left(x_{0}\right)
$$

For periodic orbit $\mathrm{p}, x\left(T_{p}\right)=x(0), v$ is an eigenvector of the Jacobian matrix $J_{p}=J^{T_{p}}$ with unit eigenvalue,

$$
J_{p}(x) v(x)=v(x), \quad x \in p
$$

Jacobian matrix for a continuous time periodic orbit always has a marginal stability multiplier $\Lambda_{k}=1$

cycle stability

an unstable periodic orbit repels every neighboring trajectory $x^{\prime}(t)$, except those on its center and stable manifolds

cycle stability

an unstable periodic orbit repels every neighboring trajectory $x^{\prime}(t)$, except those on its center and stable manifolds

example : Rössler short cycles

(a)

(b)

(a) $y \rightarrow P_{1}(y, z)$ return map for $x=0, y>0$ Poincaré section
(b) the $\overline{1}$-cycle found by Newton-Raphson, taking the fixed point $y_{k+n}=y_{k}$ as initial guess $(0, y(0), 0)$

1-cycle: $\quad T_{1}=5.88108845586$

$$
\left(\Lambda_{1, e}, \Lambda_{1, m}, \Lambda_{1, c}\right)=\left(-2.40395353,1,-1.29 \times 10^{-14}\right)
$$

$y_{k+3}=P_{1}^{3}\left(y_{k}, z_{k}\right)$, the third iterate of Poincaré return map is used to pick starting guesses for the Newton-Raphson searches for the two 3-cycles:
$z(t)$

$Z(t)$

001 and 011

Résumé

