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inertial manifold

strange attractor stuffed into a finite-dimensional body bag



Q: what is the physical dimension of a turbulent flow ?

question
does an attractor of a dissipative flow have a “dimension” ?

Foias et al1

mathematician’s answer
dimension of ‘inertial manifold’ is finite

1C. Foias et al., C. R. Acad. Sci., Paris 301, 285–288 (1985).

http://gallica.bnf.fr/ark:/12148/bpt6k6446253z/f299


Q: what is the physical dimension of a turbulent flow ?

question
does an attractor of a dissipative flow have a “dimension” ?

Ginelli, Chaté, Radons, et al1,2,3,4

physicist’s answer
‘Lyapunov covariant vectors’ split into

(a) finite number of ‘physical,’ entangled directions, in the
tangent space of the attractor

(b) infinitely many hyperbolically decaying directions that are
isolated and do not mix and

1A. Politi et al., Physica D 224, 90–101 (2006).
2F. Ginelli et al., Phys. Rev. Lett. 99, 130601 (2007).
3H.-l. Yang et al., Phys. Rev. Lett. 102, 074102 (2009).
4K. A. Takeuchi et al., Phys. Rev. Lett. 103, 154103 (2009).

http://dx.doi.org/10.1016/j.physd.2006.09.032
http://dx.doi.org/10.1103/PhysRevLett.99.130601
http://dx.doi.org/10.1103/PhysRevLett.102.074102
http://dx.doi.org/10.1103/PhysRevLett.103.154103


Q: what is the physical dimension of a turbulent flow ?

question
does an attractor of a dissipative flow have a “dimension” ?

Ding, Cvitanović et al1

physicist’s answer
Floquet vectors of unstable periodic orbits identify the local
number of degrees of freedom that captures the physics of a
‘turbulent’ PDE on a compact spatial domain

that number is proportional to the size LD of the D-dimensional
PDE system

1X. Ding et al., Phys. Rev. Lett. 117, 024101 (2016).

http://dx.doi.org/10.1103/PhysRevLett.117.024101


the killer plot : to be explained here

Kuramoto-Sivashinsky Lyapunov spectrum
cells L = 22,96,192 : it scales!
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Now double # computational elements, fixed L :
all new ones go to the transient spectrum2 !

2H.-l. Yang et al., Phys. Rev. Lett. 102, 074102 (2009).

http://dx.doi.org/10.1103/PhysRevLett.102.074102
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a life in extreme dimensions

Navier-Stokes equations (1822)

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f

goal : describe turbulence
starting from the equations (no statistical assumptions)

describe :



pipe experiment data point

a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe3

3Casimir W.H. van Doorne (PhD thesis, Delft 2004)



equations are known

Navier-Stokes equation

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u

requires at least ≈ 100,000-dimensional DNS
(direct numerical simulation)

the ‘physical’ dimension is still unknown: at least 100?
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what this chapter is about:

the attracting set of a dissipative flow
is embedded with the (curvilinear) inertial manifold
embedded into∞-dimensional state space

but try to draw THAT :)



what this chapter is about:

it is believed that the attracting set of a dissipative flow

is confined to :
a finite-dimensional smooth inertial manifold
“z” directions :
the remaining∞ of transient dimensions



what this chapter is about:

state space of dissipative flow is split into

inertial manifold : spanned locally by entangled covariant
vectors, tangent to unstable / stable manifolds
the rest : spanned by the remaining∞ of the contracting,
decoupled, transient covariant vectors



what this chapter is about:

inertial manifold

dynamics of the vectors that span the inertial manifold is
entangled, with small angles and frequent tangencies
any transient covariant vector : isolated,
nearly orthogonal to all other covariant vectors



what this chapter is about:

goal : construct inertial manifold for a turbulent flow

tile it with a finite collection of bricks centered on
recurrent states, each brick ≈ 10− 100 dimensions
span of∞ of transient covariant vectors :
no intersection with the entangled modes



if all this works out, it is kinda amazing

computation of turbulent solutions
requires at least
→ integration of 104-106 coupled ordinary differential equations

inertial manifold, tiled
50 linear tiles cover the (nonlinear, curved) inertial manifold

each tile 100 dimensional (fingers crossed :)
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1 spatial dimension “Navier-Stokes”

computationally not ready yet to explore
the inertial manifold of 3D turbulence - we start with

Kuramoto-Sivashinsky equation

ut + uOu = −O2u−O4u , x ∈ [−L/2,L/2] ,

describes spatially extended systems such as
flame fronts in combustion
reaction-diffusion systems
. . .



1-dimensional “Navier-Stokes”

Kuramoto-Sivashinsky equation

ut + u ux + uxx + νuxxxx = 0

“inertial” term u∂xu; nonlinear
energy-in “anti-diffusive” term −∂2

x u,
“hyper-viscosity” ∂4

x u - suppresses fast variations

only parameter: dimensionless length L̃ = L
2π



Kuramoto-Sivashinsky on a large spacetime domain

[horizontal] space x ∈ [0, 100] [up] time evolution

turbulent behavior
simpler physical, mathematical and computational setting
than Navier-Stokes



evolution of Kuramoto-Sivashinsky on small periodic domain
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a relative periodic orbit

full state space : many periods
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can explore shadowing
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(relative) periodic orbits are dense in the attractor
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[left] turbulent trajectory segment in [space×time]
Poincaré section, turbulent trajectory (natural measure)
periodic points, from 479 periodic orbits4

4N. B. Budanur, “Exact Coherent Structures in Spatiotemporal Chaos: From Qualitative Description to
Quantitative Predictions”, PhD thesis (School of Physics, Georgia Inst. of Technology, Atlanta, 2015).
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what is the dimension of the inertial manifold?

we determine it in 6 independent ways

Lyapunov exponents (diagnostic only, previous work)
Lyapunov vectors (sharp, previous work)
four periodic orbits determinations (presented here)



linearized deterministic flow

xn

xn+1

Jn vnvn+1

xn+1 + zn+1 = f (xn) + Jn zn , Jij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow
(2) transported by the Jacobian matrix Jn into a neighborhood

given by the J eigenvalues and eigenvectors5

5rechristianed by (F. Ginelli et al., Phys. Rev. Lett. 99, 130601 [2007]) to
“covariant Lyapunov vectors”

http://dx.doi.org/10.1103/PhysRevLett.99.130601


method (0) : algorithmic advance

F. Ginelli, H. Chaté, G. Radons, A. Politi, P. Poggi, A. Turchi, R.
M. Samelson, C. L. Wolfe:

computation of covariant “Lyapunov” vectors
Phys. Rev. Lett. 99, 130601 (2007); Tellus A 59, 355 (2007);
J. Phys. A 46, 254005 (2013)

covariant vectors are non-normal

(references are hyperlinked)

http://doi.org/10.1103/PhysRevLett.99.130601
http://doi.org/10.1111/j.1600-0870.2007.00234.x
http://doi.org/10.1088/1751-8113/46/25/254005


method (0)

global ergodic trajectory, t ∈ [−∞,∞]

Jacobian matrix : orthogonal frame→ non-orthogonal frame
→
QR decomposed into an R-matrix + Gram-Schmidt frame
→
next Jacobian matrix, and so on



beautiful insight of

F. Ginelli, H. Chaté, G. Radons, A. Politi, P. Poggi, A. Turchi,
H.-l. Yang, K. A. Takeuchi

physical dynamics is hyperbolically separated from
the infinity of transient modes :

physical dimension of an inertial manifold
Phys. Rev. Lett. 102, 074102 (2009); Phys. Rev. E 84, 046214 (2011);

Phys. Rev. Lett. 117, 024101 (2016)

Kuramoto-Sivashinsky? OK!
complex Ginzburg-Landau? OK!
Navier-Stokes? dunno...

(references are hyperlinked)

http://doi.org/10.1103/PhysRevLett.102.074102
http://doi.org/10.1103/PhysRevE.84.046214
http://doi.org/10.1103/PhysRevLett.117.024101


eigenvector span the “physical” manifold

t = −∞

t = +∞

blip!

a pair of “entangled” eigenvectors
distinct Lyapunov exponents
dance along t from −∞ to −∞ orbit

at the instant “blip!” they are (nearly) collinear



(0) distribution of angles between eigenvectors
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histogram of angles between nth leading covariant vector and
the next, accumulated over many long orbits :

(top) For n = 1 · · · 7 (eigenvector within the entangled
manifold) the angles can be arbitrarily small
(bottom ) For the remaining, transient eigenvectors,
n = 8,11,12, · · · : angles are bounded away from zero



(2) machine learning

Linot & Graham6

Deep learning to discover and predict dynamics on an inertial
manifold, arXiv:2001.04263

6A. J. Linot and M. D. Graham, Deep learning to discover and predict dynamics on an inertial manifold, 2020.

https://arXiv.org/abs/2001.04263


(3) approximate inertial manifold

Akram, Hassanaly & Raman7

A priori analysis of reduced description of dynamical systems
using approximate inertial manifolds

7M. Akram et al., J. Comput. Phys. 409, 109344 (2020).

http://dx.doi.org/10.1016/j.jcp.2020.109344


OK, so the frame
is
locally flat

but where the (blip) are we in the state space?



we are here

next : cartography of a roller coaster ride
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cartography for fluid dynamicists

cover the inertial manifold with a set of flat charts

we can do this with
finite-dimensional bricks embedded in 10100 000 dimensions!



tile the inertial manifold by recurrent flows

a fixed point

a 2-cycle, etc.

smooth dynamics (left frame)
tesselated by the skeleton of recurrent flows,
together with (right frame) their linearized neighborhoods



charting the inertial manifold

x̂(0)

x̂(t)

M̂ (2)

M̂
(1)

x̂2

x̂1

two tangent “entangled” tiles = finite-dimensional bricks

shaded plane :
when integrating your equations, switch the local chart



method (1) : local relative periodic orbit, one period

two marginal eigenvectors
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all eigenvectors computed to the machine precision8

8X. Ding and P. Cvitanović, SIAM J. Appl. Dyn. Syst. 15, 1434–1454 (2016).

http://dx.doi.org/10.1137/15M1037299


(1) algorithmic breakthrough :
all Floquet exponents to machine precision

µ(i) eiTpω(i)

1=2 0.0331970261043278 -0.42330856002164
+ i 0.905985575499084

3=4 (2 marginal)
5 -0.216338085869672 1

6=7 -0.265233812289065 -0.867175421594352
+ i 0.49800279937231

. . . . . . . . .
29 -316.19797864063 1
30 -320.666664811713 -1

Floquet exponents for the shortest pre-periodic orbit :

µ(i) = real part of the exponent.
either the multiplier sign for a real exponent, or
ω(i) → the multiplier phase for a complex Floquet exponent



(1) algorithmic breakthrough :
all Floquet exponents to machine precision

why is this a big deal?

periodic Schur decomposition : resolves Floquet multipliers
differing by thousands of orders of magnitude

here the smallest Floquet multiplier for the shortest periodic
orbit is

|Λ62| ' e−6080.4×10.25 ≈ 10−27069



(1) Floquet and Lyapunov exponents, L = 22 small cell
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8 entangled modes, rest transient :
inertial manifold is 8 dimensional!



(1) dimension of the inertial manifold from an individual orbit (??)

Floquet exponents separate into entangled vs. transient
for every single periodic orbit! (checked 500 orbits)

if true for Navier-Stokes, that would make life easy!



(2) dimension of the inertial manifold from ensemble of orbits

principal angles between hyperplanes spanned by Floquet
vectors



(2) Floquet vectors

e(1)

e(2) x(0)

x(τ)
Jτ

e(1)e(2)

a parallelepiped spanned by a pair of Floquet eigenvectors
(‘covariant vectors’) transported along the orbit

Jacobian matrix not self-adjoint : the eigenvectors are not
orthogonal, the eigenframe is ‘non-normal’
Measure the angle between eigenvectors
e(i)(x(t)) and e(j)(x(t))



(2) example : Kuramoto-Sivashinsky relative periodic orbit

dotted green : a group orbit
solid red : a relative periodic orbit
planes : a tangent space spanned and transported by 2 Floquet
vectors



(2) distribution of principal angles between Floquet subspaces
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histogram of angles between Sn (n leading Floquet vectors)
and S̄n (the rest), accumulated over the 400 orbits :

(top) For n = 1 · · · 7 (Sn within the entangled manifold) the
angles can be arbitrarily small
(bottom ) For the S̄n spanned by transient modes,
n = 8,10,12, · · · ,28 : angles bounded away from unity

.



(3), (4) dimension of the inertial manifold from
a chaotic trajectory shadowing a given orbit

two independent measurements
(3) shadowing separation vector lies within the orbit’s Floquet

entangled manifold
(4) shadowing separation vector lies within the chaotic

trajectories covariant vectors’ entangled manifold

‘separation vector’ = difference vector between the chaotic orbit
point and periodic orbit point at their (locally) closest passage

accumulate 1000’s of near recurrences



(3)
chaotic trajectory
shadows
periodic orbits
within the
entangled subspace
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what about large or∞ domains ?

spatiotemporal chaos

spatiotemporal chaos is extensive



summary for the impatient

state space of dissipative flow is split into

inertial manifold : spanned locally by entangled covariant
vectors, tangent to unstable / stable manifolds
the rest : spanned by the remaining∞ of the contracting,
decoupled, transient covariant vectors



Benettin et al.9 Lyapunov exponents algorithm relies on
construction of orthogonal sets of Gram-Schmidt vectors. They
are not covariant, i.e., the Gram-Schmidt vectors at a given
state space point are not mapped by the linearized dynamics
into the Gram-Schmidt vectors of the forward images of this
point

in contrast, the Jacobian matrix Jn eigenvectors e(i), which
span the d-dimensional tangent space, and are covariantly
transported by the flow, are generically not normal

9G. Benettin et al., Meccanica 15, 9–20 (1980).

http://dx.doi.org/10.1007/BF02128236


strongly contracting Λ(j) multiplier forward in time, becomes the
leading 1/Λ(j) multiplier backward in time. Matrix power method
then pulls out this eigenvalue as the leading one within the
subspace TM[j]

increase the dimension of the subspace by one, and you get
the next Λ(j+1)

repeat, and you get all eigenvalues and eigenvectors, even
those insanely contacting ones, like Λ(j) ≈ 10−137



‘physical’ tangent space is transported across the whole curved
strange manifold ergodically, and nonhyperbolicity of the
attractor is used as a test that trajectory initiated along a given
direction stays within the attractor

probability density of angles between adjacent physical
eigenvectors computed over long time is flat, not peaked at 90o

‘trivial,’ hyperbolically decaying eigen-directions that are
isolated exhibit no such small inter-angles anywhere along the
ergodic trajectory



angle between stable / unstable eigendirections

Hénon attractor non-hyperbolicity
attractor (black line) and a
finite-length approximation of
its stable manifold (dotted line)

red vectors: the covariant
vectors at the state space point

blue vectors: Gram-Schmidt
vectors



separate the women from girls : hyperbolicity

Hénon attractor

0 π/4 π/2Φ
0

2

4
P(Φ)

(a)

0 π/4 π/2Φ
0

1

2 P(Φ)

(b)
Hénon map (green)
xn+1 = 1− 1.4 x2

n + 0.3xn−1

Lozi map (black)
xn+1 = 1− 1.4 |xn|+ 0.3xn−1

probability distribution of the angle between stable and unstable
eigenvector



the leading Lyapunov vectors are tangent to the attractor.
Perturbations that are on the attractor can be found in the
subspace of the leading Lyapunov vectors

the main advance of using Lyapunov vectors instead of
eigenvalues alone is that the approximate orthogonality of the
‘isolated’ ones provides a clear threshold between the ‘physical’
and the rest



example : Kuramoto-Sivashinsky flow
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system size L.



Kuramoto-Sivashinsky physical dimension
grows linearly with the domain size!
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Now double # Fourier modes : all new ones go to the transient
spectrum 10

10Yang et al (Phys. Rev. Lett. 2009)



example : Kuramoto-Sivashinsky flow

dimension of the Kuramoto-Sivashinsky flow is roughly four
times the number of positive/marginal Floquet (or Lyapunov)
exponents, and twice its Kaplan-Yorke estimate



one might be unimpressed by the KS example, as the −k4

hyper-diffusion term kills all higher Fourier modes very
effectively

complex Ginzburg-Landau equation is persuasive; the
nonlinearity is of u(x)3 variety (instead of u∂u of Navier-Stokes
and KS), but there is only a −k2 diffusive term, and
nevertheless there is a clear threshold for the ‘isolated’
Lyapunov vectors
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this is the periodic-orbit implementation of the idea of state
space tessellation



follow an ant as it traces out a trajectory x̂ (1)(τ), confined to the
Poincaré section P(1) The moment 〈(x̂ (1)(τ)− x̂ ′(2))|v (2)〉
changes sign, the ant has crossed the ridge and continues its
merry stroll within the P(2) Poincaré section



we propose to construct a global atlas by deploying a set of
linear Poincaré sections in neighborhoods of the most
important equilibria and/or periodic orbits as local charts

physical task is to, for a given dynamical flow, pick a set of
qualitatively distinct templates whose Poincaré sections are
locally tangent to the strange attractor



state space tessellation by periodic orbits

two 1-cycles

a 2-cycle that alternates
between the
neighborhoods of the two
1-cycles, shadowing first
one of the two 1-cycles,
and then the other

smooth dynamics (left frame) tesselated by the skeleton of
periodic points, together with their linearized neighborhoods,
(right frame)
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(left) Lyapunov exponents λk versus k for the periodic orbit 1
compared with the stability eigenvalues of the u(x , t) = 0
stationary solution k2 − νk4. λk for k ≥ 8 fall below the
numerical accuracy of integration and are not meaningful

(right) Lyapunov exponents λj for the full state space, periodic
b.c. KS for L = 22, from a 124 real Fourier modes (blue circles)
long-time simulation overlayed on the Tp = 10.2534 periodic
orbit (green squares)



periodic orbits

the idea is to coarsely cover the continuous-symmetry reduced
nonlinear strange attractor with a set of tangent hyperplanes

any adjacent pair intersects in a ‘ridge’ hyperplane of one less
dimension

the task:
for a given strange attractor, pick a set of Poincaré
section-fixing points, such that each local section is
approximately tangent to the strange attractor



résumé

if a physical flow is confined to a lower-dimensional manifold,
one should use this fact to implement a dimensionality
reduction

we have described dimensionality reduction by the method
linear Poincaré sections, a linear procedure particularly simple
and practical to implement

We propose instead to construct a global atlas by deploying
sets of linear Poincaré sections as charts of neighborhoods of
the most important (relative) equilibria and/or (relative) periodic
orbits



résumé
6 ways to determine the dimension of the inertial manifold

Tangent spaces separate into entangled vs. transient
1 Lyapunov exponents (plausible, previous work)
2 Lyapunov vectors (sharp, previous work)
3 for each individual orbit Floquet exponents separate into

entangled vs. transient (new)
4 for an ensemble of orbits principal angles between

hyperplanes spanned by Floquet vectors separate into
entangled vs. transient (new)

5 for a chaotic trajectory shadowing a given orbit the
separation vector lies within the orbit’s Floquet entangled
manifold (new)

6 for a chaotic trajectory shadowing a given orbit the
separation vector lies within the chaotic trajectories
covariant vectors’ entangled manifold (new)



homework - bonus points:

do it for Navier-Stokes!



what next? take the course!

student raves :
...106 times harder than any other online course...
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