Chapter 11

Qualitative dynamics, for pedestrians

Stability of Lorenz flow equilibria

Lorenz flow: a 1-d return map
We now deploy the symmetry of Lorenz flow to streamline and complete analysis of the Lorenz strange attractor.

The dihedral $D_{1}=\{e, R\}$ symmetry identifies the two equilibria $E Q_{1}$ and $E Q_{2}$, and the traditional "two-eared" Lorenz flow is replaced
by the "single-eared" Van Gogh flow. Furthermore, symmetry identifies two sides of any plane through the z axis, replacing a full-space Poincaré section plane by a half-plane, and the two directions of a full-space eigenvector of $E Q_{0}$ by a one-sided eigenvector, see figure ?? (a).

(b)
(a) A Poincare section of the Lorenz flow in the doubled-polar angle representation, figure ??, given by the $\left[y^{\prime}, z\right]$ plane that contains the z-axis and the equilibrium $E Q_{1} . x^{\prime}$ axis points toward
the viewer. (b) The Poincare section of the Lorenz flow by the section plane (a); compare with figure ??. Crossings into the section are marked red (solid) and crossings out of the section are marked blue (dotted). Outermost points of both in- and out-sections are given by the $E Q_{0}$ unstable manifold $W^{u}\left(E Q_{0}\right)$ intersections.

The Poincaré return map $s_{n+1}=P\left(s_{n}\right)$ parameterized by Euclidean arclength s measured along the $E Q_{1}$ unstable manifold, from $X_{E Q 1}$ to $W^{\mathrm{L}}\left(E Q_{0}\right)$ section point, uppermost right point of the blue segment in figure ?? (b). The critical point (the "crease") of the map is given by the section of the heteroclinic orbit $W^{s}\left(E Q_{0}\right)$ that descends all the way to $E Q_{0}$, in infinite time and with infinite slope.

Kuramoto-Sivashinsky

15-d \rightarrow 15-d Poincaré return map projection on the $\left[a_{6} \rightarrow a_{6}\right.$] (or any other) Fourier component is not even $1 \rightarrow 1$.

Intrinsic coordinatization!

flow visualized as
1-d Poincaré return map

$$
s \rightarrow f(s)
$$

close returns to unstable manifold of the shortest periodic point

For $\tilde{L} \approx 2.889 \rightarrow$ all periodic solutions up to period n; $\approx 10^{3}$ unstable recurrent patterns were determined.

Local unstable manifold return maps

Now each thin repelling Smale horseshoe has its local return map $s \rightarrow f(s)$ onto the local unstable manifold (shortest cycles indicated):

center

side

