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SUMMARY

High- and infinite-dimensional nonlinear dynamical systems often exhibit complicated

flow (spatiotemporal chaos or turbulence) in their state space (phase space). Sets invariant

under time evolution, such as equilibria, periodic orbits, invariant tori and unstable mani-

folds, play a key role in shaping the geometry of such system’s longtime dynamics. These

invariant solutions form the backbone of the global attractor, and their linear stability

controls the nearby dynamics.

In this thesis we study the geometrical structure of inertial manifolds of nonlinear dissi-

pative systems. As an exponentially attracting subset of the state space, inertial manifold

serves as a tool to reduce the study of an infinite-dimensional system to the study of a finite

set of determining modes. We determine the dimension of the inertial manifold for the one-

dimensional Kuramoto-Sivashinsky equation using the information about the linear stability

of system’s unstable periodic orbits. In order to attain the numerical precision required to

study the exponentially unstable periodic orbits, we formulate and implement “periodic

eigendecomposition”, a new algorithm that enables us to calculate all Floquet multipliers

and vectors of a given periodic orbit, for a given discretization of system’s partial differential

equations (PDEs). It turns out that the O(2) symmetry of Kuramoto-Sivashinsky equation

significantly complicates the geometrical structure of the global attractor, so a symmetry

reduction is required in order that the geometry of the flow can be clearly visualized. We

reduce the continuous symmetry using so-called slicing technique. The main result of the

thesis is that for one-dimensional Kuramoto-Sivashinsky equation defined on a periodic do-

main of size L = 22, the dimension of the inertial manifold is 8, a number considerably

smaller that the number of Fourier modes, 62, used in our simulations.

Based on our results, we believe that inertial manifolds can, in general, be approxi-

mately constructed by using sufficiently dense sets of periodic orbits and their linearized

neighborhoods. With the advances in numerical algorithms for finding periodic orbits in

chaotic/turbulent flows, we hope that methods developed in this thesis for a one-dimensional

nonlinear PDE, i.e., using periodic orbits to determine the dimension of an inertial man-

ifold, can be ported to higher-dimensional physical nonlinear dissipative systems, such as

Navier-Stokes equations.

ix



CHAPTER I

INTRODUCTION

The study of nonlinear dynamics covers a huge range of research topics. In this thesis,
we focus on the geometric or topological structures and statistic averages of dissipative
systems. The progress in this area comes from collaborative contributions from both ap-
plied mathematicians and physicists, from both theoretical and numerical aspects. In this
chapter, we introduce the mathematical framework to study the finite-dimensional behav-
ior embedded in an infinite-dimensional function space of dissipative systems described by
nonlinear partial differential equations (PDEs). In particular, we review the recent progress
in use of “covariant vectors” for investigating the dimensionality of chaotic systems. We
also focus on the important role that invariant structures such as periodic orbits play in the
description of chaotic dynamics and review the cycle averaging theory [22] for calculating
statistical properties of chaotic dynamical systems.

1.1 Overview of the thesis and its results

This thesis is organized as follows. In Chapter 1, we recall some basic facts about dissipative
dynamical systems relevant to this thesis, the traditional types of fractal dimensions, and
introduce the concept of the inertial manifold. We review the literature on estimating the
dimension of inertial manifolds by covariant (Lyapunov) vectors, and related algorithms.
Chapter 2 is devoted to the discussion of symmetries in dynamical systems. A reader who
is familiar with the group representation theory can skip Sect. 2.1. Sect. 2.2 discusses the
slicing technique we use to reduce continuous symmetries of dynamical systems, and the
tangent dynamics in the slice. Methods of Chapter 2 are a prerequisite to the calculations of
Chapter 3, where we study invariant structures in the symmetry-reduced state space of the
one-dimensional Kuramoto-Sivashinsky equation. Chapter 4 contains the main result of this
thesis. We investigate the dimension of the inertial manifold in the one-dimensional Kura-
moto-Sivashinsky equation using the information about the linear stability of pre/relative
periodic orbits of the system. Chapter 5 introduces our periodic eigendecomposition al-
gorithm, essential tool for computation of the Floquet multipliers and Floquet vectors re-
ported in Chapter 4. Readers not interested in the implementation details can go directly
to Sect. 5.5, where the performance of the algorithm is reported. We summarize our results
and outline some future directions in Chapter 6.

The original contributions of this thesis are mainly contained in Chapter 4 and Chap-
ter 5. The periodic eigendecomposition introduced in Chapter 5 is capable of resolving
Floquet multipliers as small as 10−27 067. In Chapter 4, we estimate the dimension of an
inertial manifold from the periodic orbits embedded in it, and verify that our results are
consistent with earlier work based on averaging covariant vectors over ergodic trajectories.
This calculation is the first of its kind on this subject that is not an ergodic average, but
it actually pins down the geometry of inertial manifold’s embedding in the state space. It
opens a door to tiling inertial manifolds by invariant structures of system’s dynamics.

1



1.2 Dissipative nonlinear systems

Dissipative nonlinear systems described by PDEs are infinite-dimensional in principle, but
a lot of them exhibit finite dimensional behavior after a transient period of evolution. In
this context, the concept of global attractor was introduced to describe the asymptotic
behavior of a dissipative system. Different definitions of dimension have been proposed to
characterize the dimensionality of a global attractor. The estimated dimension provides a
sense of the size of the global attractor, but such numbers, usually not integers, are smaller
than the number of degrees of freedom needed to determine the system. This is where the
inertial manifold is introduced to account for the question that how many modes are needed
to effectively describe a dissipative chaotic system.

1.2.1 Global attractor

Before we introduce a global attractor, let us define all necessary tools first. Here we follow
expositions of Robinson [71] and Temam [81]. Let a dynamical system u(t), t ≥ 0 be
defined in a state space M. M is a Hilbert space, usually the L2 space, with L2 norm the
appropriate norm for measuring distances between different states. f t is a semigroup that
evolves the system forward in time, u(t) = f tu0, with following properties:

f0 = 1 ,

f tfs = fs+t ,

f tu0 is continuous in u0 and t .

An absorbing set is a bounded set that attracts all orbits in this system. We define dissi-
pative systems as follows.

Definition 1.1 A semigroup is dissipative if it possesses a compact absorbing set B and
for any bounded set X there exists a t0(X) such that

f tX ⊂ B for all t ≥ t0(X)

Here, symbol ⊂ means that the left side is a proper subset of, or equal to the right side.
Therefore, in a dissipative system, all trajectories eventually enter and stay in an absorbing
set. Moreover, we say that a set X ⊂M is invariant if

f tX = X for all t ≥ 0 (1)

and a set X ⊂M is positive-invariant if

f tX ⊂ X for all t ≥ 0 . (2)

With the above setup, let us turn to the definition of a global attractor.

Definition 1.2 The global attractor A is the maximal compact invariant set

f tA = A for all t ≥ 0 (3)

and the minimal set that attracts all bounded sets:

dist(f tX,A)→ 0 as t→∞ (4)

for any bounded set X ⊂M, where M is the state space.

2



Here, the distance between two sets is defined as

dist(X,Y ) = sup
x∈X

inf
y∈Y
|x− y| . (5)

Requirement (3) says that a global attractor does not contain any transient trajectories,
and any trajectory in the state space will approach the global attractor arbitrarily close
according to (4). Note, the definition emphasizes that the attractor is “global/maximal”
because it attracts any bounded sets in state space M. If it only attracts some portion of
M, then it is an attractor but not a global one. On the other hand, the word “minimal” in
the definition is a consequence of (4). Suppose there is a smaller compact set B ( A, then
we take the bounded set X = A and get dist(f tA,B) = dist(A,B) which cannot reach zero
in a Hausdorff space. 1

Now, we turn to the question that whether a global attractor exists for a dissipative
system, and if it does, then what subsets in the state space should be included in it. We
have some expectations in mind. First, the concept of global attractor was introduced to
assist the study of the asymptotic behavior in a dissipative system, so we expect its exis-
tence in dissipative systems. Second, the global attractor should include all the important
dynamical structures of a dissipative system, such as equilibria, periodic orbits, their un-
stable manifolds, homoclinic/heteroclinic orbits and so on. If a global attractor fails either
of these two requirements, then it makes no sense to use it in practice. Both questions are
answered by the following theorem.

Theorem 1.3 If f t is dissipative and B ⊂M is a compact absorbing set then there exists
a global attractor A = ω(B).

Here, ω(B) is the ω-limit set of B. For any subset X ⊂M, its ω-limit set is defined as

ω(X) = {y : there exist sequences tn →∞ and un ∈ X with f tnun → y} . (6)

An equivalent limit supremum definition is

ω(X) =
⋂
t≥0

⋃
s≥t

fsX

Here, the overbar of a set means taking the closure of this set. It is easy to see that the
ω-limit set of a single point u consists of all limiting points of f tnu given it converges for a
sequence of {tn}∞n=1, tn →∞, i.e.,

ω(u) = {y : there exists a sequence tn →∞ with f tnu→ y} . (7)

Theorem 1.3 not only claims the existence of a global attractor in a dissipative system but
also gives the explicit form of it as the ω-limit set of a bounded set. Now, let us check
whether ω(B) contains all the important invariant structures in this system as expected.
By definition (6) and (7), we can obtain the ω-limit set for a few invariant dynamical
structures. For an equilibrium u: f tu = u, so ω(u) = u. For a periodic orbit p, ω(p) = p,
and for any u ∈ p, ω(u) = p. These two simple examples may tempt you to think that
∪u∈Xω(u) = ω(X). However, this is not true. Actually, what we only know is that⋃

u∈X
ω(u) ⊂ ω(X) . (8)

1 A Hausdorff space is a topological space in which distinct points have disjoint neighborhoods. Therefore,
distinct points have positive distance.

3



Usually, the left-side set in (8) is much smaller than the right-side set. To illustrate this
point, Figure 1, taken from [71], depicts a planar system with 3 equilibria {a, b, c}. a and c
are stable. b has a homoclinic orbit denoted as W u(b) 2 since it is also an unstable manifold
of b. For any u ∈ W u(b), ω(u) = b. However, for the whole orbit ω(W u(b)) = W u(b). An
intuitive explanation goes as follows. For any y ∈W u(b) and a tn > 0, we can find a point
un ahead of y on the homoclinic orbit un ∈ W u(b) such that f tnun = y. The larger tn is,
the closer un is to b. It takes an infinitely long time to go backward from y to b. So we find
sequences tn →∞ and un ∈W u(b) such that f tnxn → y, and by definition, y ∈ ω(W u(b)).
The same argument can be applied to the bounded stable manifold of c in Figure 1(a),
ω(W s(c)) = W s(c).

(a) (b)

Figure 1: (a) State space portrait of a 2d system. (b) The corresponding global attractor.

The ω-limit sets of equilibria, periodic orbits, and homoclinic orbits are the objects
themselves, so they all belong to the global attractor, as we would expect. Meanwhile,
concerning the stable and unstable manifolds, we have the following theorem.

Theorem 1.4 The unstable manifolds and bounded stable manifolds of a compact invariant
set are contained in the global attractor.

We stress that the global attractor does not contain unbounded stable/unstable manifolds.
Unstable manifolds are intrinsically bounded in dissipative systems, so we omit the word
“bounded” in front of it in theorem 1.4. The explanation is simple. Let u(t) be a point in
the unstable manifold of an invariant set X, i.e., u(t) ∈W u(X), then u(t) approaches X for
t→ −∞ by definition, and u(t) ∈ B when t→∞ because the system is dissipative with B
an absorbing set. Therefore, unstable manifold W u(X) is bounded. However, not all stable
manifolds are bounded. For example, one-dimensional dissipative system u̇ = −λu, λ > 0
has a global attractor u = 0, but its stable manifold extends to u→ ±∞. Such a distinction
between stable and unstable manifolds in dissipative systems is crucial for us to understand
the finite dimensionality of such systems. In an infinite-dimensional system described by a
PDE, an unstable invariant structure usually has only a few unstable modes and the rest,
infinite many, are all stable modes. Only a finite subset of these stable modes participates
in the dynamics. As we shall show in this thesis, the rest stable modes are decoupled from
other modes, decay exponentially, and do not belong to the global attractor.

2 The stable and unstable manifolds of a subset X ⊂M are denoted respectively as W s(X) and Wu(X).
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In the example shown in Figure 1(a), the 3 equilibria {a, b, c}, the stable manifold of c,
the homoclinic orbit of b and the heteroclinic orbit from b to a compose the global attractor,
which is shown in Figure 1(b).

The global attractor in the Lorenz system We now prove the existence of a global
attractor for the Lorenz system to illustrate the concepts introduced in this section. Theo-
rem 1.3 tells us that the key point of showing the existence of a global attractor is to find
a compact absorbing set B in the system. For Lorenz system

ẋ = −σx+ σy

ẏ = rx− y − xz
ż = xy − bz

with σ, r, b > 0, consider

V (x, y, z) = x2 + y2 + (z − r − σ)2 .

Then,

dV

dt
= −2σx2 − 2y2 − 2bz2 + 2b(r + σ)z

= −2σx2 − 2y2 − b(z − r − σ)2 − bz2 + b(r + σ)2

≤ −αV + b(r + σ)2

Here α = min(2σ, 2, b). By the Gronwall inequality, we obtain

V ≤ 2b(r + σ)2

α
.

Lemma 1.5 (Gronwall’s Inequality) If

du

dt
≤ au+ b ,

then

u(t) ≤ (u0 +
b

a
)eat − b

a
.

Therefore, there is an absorbing sphere S with radius (2b/α)1/2(r + σ) in Lorenz system.
So a global attractor exists and it is given as ω(S).

1.2.2 The dimension of an attractor

Though the state spaceMmay be infinite-dimensional, after a transient period of evolution,
the dynamics is usually determined only by a finite number of degrees of freedom. The global
attractor lives in a finite-dimensional subspace of the state space. Consequently, the study
of the dimension of the global attractor is crucial for us to understand the longtime behavior
of this system. According to ref. [31], the types of dimensions of chaotic attractors can be
classified into three categories. One is fractal dimensions, based purely on the geometry
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of the attractor such as the box-counting dimension DC and the Hausdorff dimension DH .
The second type incorporates the frequency with which a typical trajectory visits various
parts of the attractor, namely the natural measure of the attractor, such as the information
dimension DI , correlation dimension Dµ [46], and so on. The third one, Kaplan-Yorke
dimension DKY is defined in terms of the dynamical properties of an attractor rather than
the geometry or the natural measure. Kaplan and Yorke [38, 51] initially conjectured
that DKY = DC , but later it was shown that DKY is an upper bound of the information
dimension. Some comparison of these various definitions of dimension can be found in
refs. [31, 46, 49]. In this subsection, we list some representative definitions related to our
research.

Box-counting dimension (capacity dimension, Kolmogorov dimension) By using
a minimal set of balls with radius ε to cover the attractor and record the number of balls
N(ε), the box-counting dimension is given by

DC = lim sup
ε→0

logN(ε)

log(1/ε)
(9)

Note, we can also use cubes of side length ε, which does not change the result. Basically,
DC tells us how dense the state points are inside the attractor. Trivial cases, like DC = 1
for a straight line and DC = 2 for an area, are within our expectation, but for fractal
objects, it usually produces fraction/irrational numbers. For instance, DC = log 3/ log 2 for
the Sierpinski triangle shown in Figure 2.

Figure 2: The iterative process to get the Sierpinski triangle (from ref. [23]).

Hausdorff dimension The box-counting dimension uses balls of the same radius ε to
cover the attractor. Here, we try to cover the attractor with nonuniform open balls whose
radius is no larger than ε. First, we define the d-dimensional Hausdorff measure of a set X
in M.

Hd(X) = lim inf
ε→0

{ ∞∑
i=0

rdi : ri < ε and X ⊂
∞⋃
i=0

Bri(ui)

}
. (10)

Here, Bri(ui) is a d-dimensional open ball centered at ui with radius ri. The definition is
analogous to the definition of Lebesgue measure. The basic idea is to estimate the volume
of the attractor by the total volume of finer and finer countable d-dimensional covering
balls, where d is a parameter in this measure. If d is larger than the actual dimension of the
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attractor, then Hd(X) = 0. For example, we need 1/2r circles whose radius is r to cover a
unit one-dimensional segment. The total area of these circles goes to zero when r → 0. On
the other hand, if d is smaller than the actual dimension, then Hd(X)→∞. For instance,
we need infinitely long one-dimensional segments to cover a two-dimensional plane. Based
on this observation, the Hausdorff dimension of a compact set X is defined as

DH(X) = inf
{
d : Hd(X) = 0 with d > 0

}
. (11)

In general, the Hausdorff dimension is not easy to get for a dynamical system. But we do
have an upper bound

DH(X) ≤ DC(X) . (12)

This relation is easy to understand. In defining Hausdorff dimension we have more choices
of the covering balls than that in box-counting dimension. Also, (10) is taking an infimum
of all choices while DC takes the supremum. For a rigorous proof of (12), see ref. [71].

Information dimension The fractal dimension does not count the frequency with which
each small region is visited on the attractor. In order to incorporate such information, the
number of covering balls N(ε) is replaced by the entropy function −∑N(ε) Pi logPi, where
Pi is the probability contained in cube ci, namely the natural measure µ(ci) of the attractor.
The information dimension is then given as [31]

DI = lim
ε→0

−
N(ε)∑
i=1

Pi logPi

log(1/ε)
. (13)

The information dimension is no larger than the box-counting dimension, and DI = DC

when the natural measure is constant across the attractor.

Kaplan-Yorke dimension (Lyapunov dimension) Kaplan and Yorke first proposed
the idea of defining the dimension of a chaotic attractor by the Lyapunov exponents 3 in
ref. [51], and later they elaborated their proposal it in ref. [38]. Here I sketch their basic
idea [73].

Let λ1 ≥ · · · ≥ λn are the Lyapunov spectrum of an n-dimensional chaotic system
(λ1 > 0). We try to determine how many cubes needed to cover the neighborhood of a
template point u(0) as the system evolves. Suppose the neighborhood is an n-dimensional
parallelogram with initially each edge oriented in the covariant direction at u(0), and the
number of ε-cubes needed to cover this parallelogram is N(ε); then after an infinitesimal
time δt, the neighborhood moves to u(δt) and the parallelogram gets stretched/contracted
in each covariant direction. Choose some j + 1 such that λj+1 < 0, we use a smaller cube
with length eλj+1δtε to cover the new neighborhood, then

N(eλj+1δtε) =

(
j∏
i=1

e(λi−λj+1)δt

)
N(ε) (14)

Let’s explain the coefficient above. The ith direction with i < j + 1 has been stretched by
a factor eλiδt, and the new cube length is eλj+1δtε, so it needs e(λi−λj+1)δt times more cubes

3Actually, they used the magnitudes of multipliers or the ‘Lyapunov numbers’, defined as the exponentials
of the Lyapunov exponents.
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along this direction. Also, since choose λj+1 < 0, then for the ith direction with i > j+1, the
original number of cubes along this direction is enough to cover it, which means the above
formula is actually over-counting in this direction. The exponential law N(ε) ∝ ε−d from
(9) is valid when ε is small enough. Then (14) reduces to (eλj+1δtε)−d =

∏j
i=1 e

(λi−λj+1)δtε−d

and thus

d(j) = j −
∑j

i=1 λi
λj+1

. (15)

Just as stated above, formula (15) is an upper bound of the dimension. We need to find
the smallest d(j) under condition λj+1 < 0.

d(j + 1)− d(j) = 1−
∑j+1

i=1 λi
λj+2

+

∑j
i=1 λi
λj+1

=
(λj+2 − λj+1)(λ1 + · · ·+ λj+1)

λj+2λj+1

Let λ1 + · · ·+ λk ≥ 0 and λ1 + · · ·+ λk+1 < 0, then dk+1 > dk and dk < dk−1. Therefore

DKY = k +

∑k
i=1 λi
|λk+1|

(16)

with k the largest number making λ1 + · · ·+ λk non-negative.

Summary The definitions of dimension introduced in this section provide valuable in-
formation about the size of the global attractor. However, except for the Kaplan-Yorke
dimension, all the other definitions try to cover the global attractor with cubes statically.
The information about the topological structure of a global attractor has not been used. On
the other hand, strange attractors are almost always fractal, and thus the dimension is an
irrational number. With this number, we still do not know how many degrees of freedom are
needed to effectively describe the dynamics of a dissipative PDE in an infinite-dimensional
space. In the next section, we introduce the concept of the inertial manifold that contains
the global attractor and determines the dynamics by a finite number of degrees of freedom.

1.2.3 Inertial manifold

For dissipative chaotic systems, asymptotic orbits are contained in a lower-dimensional
subspace of the state space M. Thus the effective dynamics can be described by a finite
number of degrees of freedom. A global attractor usually has fractal dimension, which make
it hard to analyze, so we need to construct a ‘tight’ smooth manifold that encloses it, and
whose dimension gives the effective degrees of freedom of this system. This is called the
inertial manifold [34, 70, 71, 81].

Here we use the concept of “slaving” in order to understand how the transition from
infinite-dimensional space to finite-dimensional subspace happens. Let u(t) be a dynamical
system in an infinite-dimensional state space M governed by

du

dt
+Au+ F (u) = 0 . (17)

We split the “velocity” field into a linear part and a nonlinear part. Linear operator A is
usually a negative Laplace operator or a higher-order spatial derivative. If the nonlinear
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term F (u) is weak, then the dynamics is largely determined by the eigenspaces of A. That
is why in practice solution u(t) is usually expanded in terms of the eigenvectors of A.
Specifically, if A is a negative Laplace operator, and the system is defined either on an
infinite or periodic domain, then its eigenvectors are pure Fourier modes. u(t) is determined
by an infinite number of its Fourier coefficients. We say that high frequency modes are slaved
to low frequency modes if there is a map that uniquely maps low frequency modes to high
frequency modes. With such a map, the dynamics of the system is totally determined by
the low frequency modes. To make this idea more precise, let Pn denote the projection
from state space M to the subspace spanned by the eigenvectors of A corresponding to its
smallest n eigenvalues, and let Qn = I−Pn. Ranges of Pn and Qn are denoted as PnM and
QnM respectively. Subspaces PnM and QnM contain the low and high frequency modes of
the solution u(t). Though QnM is infinite-dimensional the effective dynamics is trapped in
a finite-dimensional subspace ofM. So we anticipate that there is a map Φ : PnM 7→ QnM
that determines the high frequency modes of u(t) given its low frequency modes. Denote

p(t) = Pnu(t) , q(t) = Qnu(t) (18)

and project (17) onto PnM, we obtain

dp

dt
+Ap+ PnF (p+ Φ(p)) = 0 . (19)

So we have reduced the dynamics to a subspace given the existence of such a mapping Φ.
Equation (19) is called the inertial form of this system. The graph of Φ

G[Φ] := {u : u = p+ Φ(p) , p ∈ PnM}

defines an n-dimensional manifold I. This manifold is proved [71] to be an inertial manifold
defined below.

Definition 1.6 An inertial manifold I is a finite-dimensional Lipschitz manifold, which is
positively invariant and attracts all trajectories exponentially,

dist(f tu0, I) ≤ C(|u0|)e−kt for some k > 0 and all u0 ∈M . (20)

Lipschitz means |Φ(p1) − Φ(p2)| ≤ L|p1 − p2| for any p1, p2 ∈ PnM and some positive
constant L. The Lipschitz condition is required for the initial form (19) to have unique
solutions. There are several differences between a global attractor and an inertial manifold.
First, an inertial manifold, by definition, has an integer number of dimensions, but a global
attractor of a chaotic system usually has a fractal dimension. Second, an inertial manifold
is only positive-invariant (2), but a global attractor is the maximal invariant subset of M.
Therefore, the global attractor is contained in the inertial manifold. Third, a global attrac-
tor can attract trajectories arbitrarily slowly by definition (4), while an inertial manifold
attracts trajectories exponentially fast.

Equation (20) also implies that the error introduced by approximating q(t) by Φ(p(t)
decays exponentially with time:

|q(t)− Φ(p(t))| ≤ C(|u0|)e−kt . (21)

The reason is as follows. From the definition of distance of two sets (5) and the fact that
u(t) = f tu0 = Pnu+Qnu, we have

dist(f tu0, I) = inf
s∈PnM

|(Pnu+Qnu)− (s+ Φ(s))| .
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Since projection Pn and Qn are orthogonal to each other, the above infimum is reached
when s = Pnu. Thus we have we

dist(f tu0, I) = |Qnu− Φ(Pnu))| = |q(t)− Φ(p(t))| .

The equivalence between (20) and (21) confirms that the idea of mode slaving works in a
dissipative system given the existence of an inertial manifold. For any point in the state
space, we can find an approximate state on the inertial manifold. These two states share the
same low frequency modes and only differ in their high frequency modes. High frequency
modes are slaved to low frequency modes, and their difference decays exponentially. So
after a short transient period, all orbits are effectively captured by the inertial manifold.

An inertial manifold exists in systems which possess the strong squeezing property [71].
A system says to have the strong squeezing property if for any two solutions u(t) = p(t)+q(t)
and ū(t) = p̄(t) + q̄(t), the following two properties hold. (i) the cone invariance property :
if

|q(0)− q̄(0)| ≤ |p(0)− p̄(0)| (22)

then
|q(t)− q̄(t)| ≤ |p(t)− p̄(t)| (23)

for all t ≤ 0, and (ii) the decay property : if

|q(t)− q̄(t)| ≥ |p(t)− p̄(t)| (24)

then
|q(t)− q̄(t)| ≤ |q(0)− q̄(0)|e−kt (25)

for some k > 0. The first property says that initially if two states satisfy the Lipschitz
condition with Lipschitz constant 1, then such a Lipschitz condition holds at any later
time. The second property accounts for the exponential attraction (20) of the inertial
manifold. In practice, it is hard to verify the strong squeezing property directly. Here we
provide an intuitive argument to show that a large gap in the eigenspectrum of operator
A in (17) leads to the strong squeezing property. Let A have eigenvalues λ1 ≤ λ2 ≤ · · · .
Inertial form (19) describes the dynamics of the n low frequency modes which correspond
to eigenvalues λ1, · · · , λn. The minimal growth rate in subspace PnM is −λn. While, the
rest high frequency modes should have approximately the largest growing rate −λn+1. If
−λn+1 is far smaller than −λn, then we anticipate that |p(t)− p̄(t)| should grow faster than
|q(t)− q̄(t)|, so (23) holds. Also, if −λn+1 < 0, then (25) should hold too. Note that we have
not taken into consideration the coupling between low and high frequency modes by the
nonlinear term F (u) in (17). Therefore, to ensure strong squeezing property, the threshold
of gap λn+1−λn should depend on F (u). Such a spectral gap condition is precisely described
in the following theorem.

Theorem 1.7 If F (u) is Lipschitz

|F (u)− F (v)| ≤ C1|u− v|, u, v ∈M

and eigenvalues of A in (17) satisfies

λn+1 − λn > 4C1 (26)

for some integer n, then the strong squeezing property holds, with k in (25) satisfying k ≥
λn + 2C1.
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See [71] for the proof of this theorem.
The existence of an inertial manifold has been proved for many chaotic or turbulent

systems such as Kuramoto-Sivashinsky equation, complex Ginzburg-Landau equation and
the two-dimensional Navier-Stokes equations [81]. Also, numerical methods such as Euler-
Galerkin [36] and nonlinear Galerkin method [61] have been proposed to approximate in-
ertial manifolds. Approximating mapping Φ : PnM 7→ QnM requires choosing an appro-
priate n first. If n is smaller than the dimension of the inertial manifold, then Φ fails to
describe the inertial manifold. However, if n is far larger than the dimension of the inertial
manifold, then simulations on such approximations to the inertial manifold are not numer-
ically efficient. At present, one uses empirical or some test number to truncate the original
system. For example, in [36], 3 modes are used to represent the inertial manifold of the
one-dimensional Kuramoto-Sivashinsky equation, but this truncated model is not sufficient
to preserve the bifurcation diagram. At the same time, mathematical upper bounds for the
dimension are not always tight. Therefore, little is known about the exact dimension of
inertial manifolds in dissipative chaotic systems.

1.3 Covariant vectors

The recent progress in numerical methods to calculate covariant vectors [42, 54] has mo-
tivated us to explore an inertial manifold by covariant vectors locally through a statistical
study of the tangency among covariant vectors [90] and difference vector projection [89].
The number of the covariant vectors needed for locally spanning the inertial manifold is
regarded as the dimension of an inertial manifold. The key observation in this study is that
tangent space can be decomposed into an entangled “physical” subspace and its comple-
ment, a contracting disentangled subspace. The latter plays no role in the longtime behavior
on the inertial manifold.

In this section, we will introduce covariant vectors (often called “covariant Lyapunov
vectors” in the literature [41, 42]) associated with periodic orbits and ergodic orbits. The
general setup is that we have an autonomous continuous flow described by

u̇ = v(u) , u(x, t) ∈ Rn . (27)

The corresponding time-forward trajectory starting from u0 is u(t) = f t(u0). In the linear
approximation, the equation that governs the deformation of an infinitesimal neighborhood
of u(t) (dynamics in tangent space) is

d

dt
δu = Aδu , A =

∂v

∂u
. (28)

Matrix A is called the stability matrix of the flow. It describes the rates of instantaneous
expansion/contraction and shearing in the tangent space. The Jacobian matrix of the flow
transports linear perturbation along the orbit:

δu(u, t) = J t(u0, 0) δu(u0, 0) (29)

Here we make it explicit that the infinitesimal deformation δu depends on both the orbit
and time. The Jacobian matrix is obtained by integrating equation

d

dt
J = AJ , J0 = I . (30)

Jacobian matrix satisfies the semi-group multiplicative property (chain rule) along an orbit,

J t−t0(u(t0), t0) = J t−t1(u(t1), t1)J t1−t0(u(t0), t0) . (31)
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1.3.1 Floquet vectors

For a point u(t) on a periodic orbit p of period Tp,

Jp = JTp(u, t) (32)

is called the Floquet matrix (monodromy matrix), and its eigenvalues the Floquet multipli-
ers Λj . The jth Floquet multiplier is a dimensionless ratio of the final/initial deformation
along the jth eigendirection. It is an intrinsic, local property of a smooth flow, invariant
under all smooth coordinate transformations. The associated Floquet vectors ej(u),

Jp ej = Λjej (33)

define the invariant directions of the tangent space at periodic point u(t) ∈ p. Evolving
a small initial perturbation aligned with an expanding Floquet direction will generate the
corresponding unstable manifold along the periodic orbit. Written in exponential form

Λj = exp(Tpλ
(j)
p ) = exp(Tpµ

(j) + iθj) ,

where λ
(j)
p

4 are the Floquet exponents. Floquet multipliers are either real, θj = 0, π, or form
complex pairs, {Λj ,Λj+1} = {|Λj | exp(iθj), |Λj | exp(−iθj)}, 0 < θj < π. The real parts of
the Floquet exponents

µ(j) = (ln |Λj |)/Tp (34)

describe the mean contraction or expansion rates per one period of the orbit. Appendix A
talks about the form of the Jacobian matrix of a general linear flow with periodic coefficients.

1.3.2 Covariant vectors

For a periodic orbit, the Jacobian matrix of n periods is the nth power of the Jacobian
corresponding to a single period. However, for an ergodic orbit, there is no such simple
relation. Integrating Jacobian matrix by (30) cannot be avoided for studying asymptotic
stability of this orbit. However, similar to Floquet vectors of a periodic orbit, a set of
covariant vectors exists for an ergodic orbit. Multiplicative ergodic theorem [66, 72] says
that the forward and backward Oseledets matrices

Ξ±(u) := lim
t→±∞

[J t(u)>J t(u)]1/2t (35)

both exist for an invertible dynamical system equipped with an invariant measure. Their
eigenvalues are eλ

+
1 (u) < · · · < eλ

+
s (u), and eλ

−
1 (u) > · · · > eλ

−
s (u) respectively, with λ±i (u) the

Lyapunov exponents (characteristic exponents) and s the total number of distinct exponents
(s ≤ n). For an ergodic system, Lyapunov exponents are the same almost everywhere, and

λ+
i (u) = −λ−i (u) = λi (36)

The corresponding eigenspaces U±1 (u), · · · , U±s (u) can be used to construct the forward and
backward invariant subspaces:

V +
i (u) = U+

1 (u)⊕ · · · ⊕ U+
i (u)

V −i (u) = U−i (u)⊕ · · · ⊕ U−s (u) .

4Here, subscript p emphasizes that it is associated with a periodic orbit so as to distinguish it with the
Lyapunov exponents defined in the next section.
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Figure 3: Four stages of covariant vector algorithm. The black line is a part of a long
ergodic trajectory.

So the intersections
Wi(u) = V +

i (u) ∩ V −i (u) (37)

are dynamically forward and backward invariant: J±t(u)Wi(u)→Wi(f
±t(u)), i = 1, 2, · · · , s.

(37) is called the Oseledets splitting. The expansion rate in the invariant subspace Wi(u)
is given by the corresponding Lyapunov exponent,

lim
t→±∞

1

|t| ln
ww J t(u)v

ww = lim
t→±∞

1

|t| ln
www [J t(u)>J t(u)]1/2v

www = ±λi , v ∈Wi(u) . (38)

If a Lyapunov exponent is nondegenerate, the corresponding subspace Wi(u) reduces to
a vector, called covariant vector. For periodic orbits, these λi (evaluated numerically as
t→∞ limits of many repeats of the prime period T) coincide with the real parts of Floquet
exponents (34). Subspace Wi(u) coincides with a Floquet vector, or, if there is degeneracy,
a subspace spanned by Floquet vectors.

The reorthonormalization procedure formulated by Benettin et al. [5] is the standard
way to calculate the full spectrum of Lyapunov exponents, and it is shown [29] that the
orthogonal vectors produced at the end of this procedure converge to U−i (u), eigenvectors
of Ξ−(u), called the Gram-Schmidt (GS) vectors (or backward Lyapunov vectors). Based
on this technique, Wolf et al. [87] and Ginelli et al. [41, 42] independently invented distinct
methods to recover covariant vectors from GS vectors. Here, we should emphasize that GS
vectors are not invariant. Except for the leading one, all of them depend on the specific
inner product imposed by the dynamics. Also, the local expansion rates of covariant vectors
are not identical to the local expansion rates of GS vectors. Specifically for periodic orbits,
Floquet vectors depend on no norm and map forward and backward as ej → J ej under
time evolution. In contrast, the linearized dynamics does not transport GS vectors into the
tangent space computed further downstream. For a detailed comparison, please see [54, 88].

1.3.3 Covariant vectors algorithm

Here we briefly introduce the method used by Ginelli et al. [41, 42] to extract covariant
vectors from GS vectors. The setup is the same as computing Lyapunov exponents. We
follow a long ergodic trajectory and integrate the linearized dynamics in tangent space (30)
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with orthonormalization regularly, shown as the first two stages in Figure 3. Here, Ji is
the short-time Jacobian matrix, and Qi+1Ri is the QR decomposition of JiQi. We use the
new generated orthonormal matrix Qi+1 as the initial condition for the next short-time
integration of (30). Therefore, if we choose an appropriate time length of each integration
segment, we can effectively avoid numerical instability by repeated QR decomposition. Set
the initial deformation matrix Q0 = I, then after n steps in stage 1, we obtain

Jn−1 · · · J0 = QnRn · · ·R0 .

The diagonal elements of upper-triangular matrices Ri store local Lyapunov exponents,
longtime average of which gives the Lyapunov exponents of this system. In stage 1, we
discard all these upper-triangular matrices Ri. We assume that Qi converges to the GS
vectors after stage 1, and start to record Ri in stage 2. Since the first m GS vectors span
the same subspace as the first m covariant vectors, which means

Ti = QiCi . (39)

Here Ti = [W1,W2, · · · ,Wn] refers to the matrix whose columns are covariant vectors at
step i of this algorithm. Ci is an upper-triangular matrix, giving the expansion coefficients
of covariant vectors in the GS basis. Since Ji−1Qi−1 = QiRi, we have Ti = Ji−1Qi−1R

−1
i Ci.

Also since Ti−1 = Qi−1Ci−1, we get

Ti = Ji−1Ti−1C
−1
i−1R

−1
i Ci (40)

Since Ti is invariant in the tangent space, namely, Ji−1Ti−1 = TiDi with Di a diagonal
matrix concerning the stretching and contraction of covariant vectors. Substitute it into
(40), we get I = DiC

−1
i−1R

−1
i Ci. Therefore, we obtain the backward dynamics of matrix Ci

:
Ci−1 = R−1

i CiDi (41)

Numerically, Di is not formed explicitly since it is only a normalization factor. Ginelli
et al. [41, 42] cleverly uncover this backward dynamics and show that Ci converges after
a sufficient number of iterations (stage 3 in Figure 3). We choose an arbitrary upper-
triangular matrix as the initial input for the backward iteration (41), Ri are those upper-
triangular matrices recorded during stage 2, and R−1

i are also upper-triangular. The product
of two upper-triangular matrices is still upper-triangular. Thus, backward iteration (41)
guarantees that Ci are all upper-triangular. This process is continued in stage 4 in Figure 3,
and Ci are recorded at this stage. For trajectory segment u(t1) to u(t2) in Figure 3, we
have the converged GS basis Qi and the converged Ci, then by (39), we obtain the covariant
vectors corresponding to this segment.

Covariant vector algorithm is invented to stratify the tangent spaces along an ergodic
trajectory, so it is hard to observe degeneracy numerically. However, for periodic orbits, it
is possible that some Floquet vectors form conjugate complex pairs. When this algorithm
is applied to periodic orbits, it is reduced to a combination of simultaneous iteration and
inverse power iteration; consequently, complex conjugate pairs cannot be told apart. This
means that we need to pay attention to the two-dimensional rotation when checking the
convergence of each stage in Figure 3. As is shown in Chapter 5, a complex conjugate pair
of Floquet vectors can be extracted from a converged two-dimensional subspace.
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Figure 4: Two stages of periodic Schur decomposition algorithm illustrated by three [6×6]
matrices. Empty locations are zeros.

1.3.4 Periodic Schur decomposition algorithm

Here, we review another algorithm related to our work. The double-implicit-shift QR algo-
rithm [84, 85] is the standard way of solving the eigen-problem of a single matrix in many
numerical packages, such as the eig() function in Matlab. Bojanczyk et al. [8] extend this
idea to obtain periodic Schur decomposition of the product of a sequence of matrices. Later
on, Kurt Lust [60] describes the implementation details and provides the corresponding
Fortran code. On the other hand, by use of the chain rule (31), the Jacobian matrix can be
decomposed into a product of short-time Jacobians with the same dimension. Therefore,
periodic Schur decomposition is well suited for computing Floquet exponents.

As illustrated in Figure 4, periodic Schur decomposition proceeds in two stages. First,
the sequence of matrices is transformed to the Hessenberg-Triangular form, one of which
has upper-Hessenberg form while the others are upper-triangular, by a series of Householder
transformations [84]. The second stage tries to diminish the sub-diagonal components of
the Hessenberg matrix until it becomes quasi-upper-triangular, that is, there are some [2×2]
blocks on the diagonal corresponding to complex eigenvalues. The eigenvalues of the matrix
product are given by the products of all individual matrices’ diagonal elements. However,
periodic Schur decomposition is not sufficient for extracting eigenvectors, except the leading
one. Kurt Lust [60] claims to formulate the corresponding Floquet vector algorithm, but to
the best of our knowledge, such an algorithm is not present in the literature. Fortunately,
Granat et al. [44] have proposed a method to reorder diagonal elements after periodic Schur
decomposition. This provides an elegant way to compute Floquet vectors as we will see in
Chapter 5.

1.4 Dynamics averaged over periodic orbits

Statistical properties and the geometrical structure of the global attractor are among the
major questions in the study of chaotic nonlinear dissipative systems. Generally, such a
system will get trapped to the global attractor after a transient period, and we are only
interested in the dynamics on the attractor. The intrinsic instability of orbits on the attrac-
tor make the longtime simulation unreliable, which is also time-consuming. Fortunately,
ergodic theorem [78] indicates that longtime average converges to the same answer as a
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spatial average over the attractor, provided that a natural measure exists on the attractor.

〈a〉 = lim
t→∞

1

|M|

∫
M
du0

1

t

∫ t

0
dτ a(u(τ)) (42)

=
1

|Mρ|

∫
M
du ρ(u) a(u) . (43)

Here, a(u(t)) is an observation, namely, a temporal physical quantity such as average dif-
fusion rate, energy dissipation rate, Lyapunov exponents and so on. 〈a〉 refers to its spa-
tiotemporal average on the attractor. u(t) defines a dynamical system described by (27).
M is the state space of this system. ρ(u) is the natural measure. Normalization quantities
are

|M| =
∫
M
du , |Mρ| =

∫
M
du ρ(u) (44)

We make a distinction between the notation for spatiotemporal average 〈a〉 and that for
spatial average

〈a〉 =
1

|M|

∫
M
du a(u) .

So if we define the integrated observable

At(u0) =

∫ t

0
dτ a(u(τ)) , (45)

then

〈a〉 = lim
t→∞

1

t
〈At〉 = lim

t→∞

1

t

1

|M|

∫
M
du0 A

t(u0) . (46)

Formula (43) provides a nice way to calculate spatiotemporal average while avoiding long-
time integration. However, as a strange attractor usually has a fractal structure and the
natural measure ρ(u) could be arbitrarily complicated and non-smooth, computation by
(43) is not numerically feasible. This is where the cycle averaging theory [22] enters. In
this section, we illustrate the process of obtaining the spatiotemporal average (42) by the
weighted contributions from a set of periodic orbits.

1.4.1 The evolution operator

Towards the goal of calculating spatiotemporal averages, it does not suffice to follow a single
orbit. Instead, we study a swarm of orbits and see how they evolve as a whole. Equation
(46) deploys this idea exactly. We take all points in the state space and evolve them for
a certain time, after which we study their overall asymptotic behavior. By formula (46),
the spatiotemporal average of observable a(u(t)) is given by the asymptotic behavior of the
corresponding integrated observable At(u). However, instead of calculating 〈At〉, we turn
to

〈eβAt〉 =
1

|M|

∫
M
dus e

βAt(us) . (47)

Here we use us instead of u0 as in (46) to denote the starting point of the trajectory. β
is an auxiliary variable. The motivation of studying eβA

t
instead of At will be manifest

later. Actually, this form resembles the partition function in statistical mechanics where
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β = −1/kT . And we will find several analogous formulas in this section with those in the
canonical ensemble. Equation (47) can be transformed as follows.

〈eβAt〉 =
1

|M|

∫
M
dus

(∫
M
due δ

(
ue − f t(us)

))
eβA

t(us) (48)

=
1

|M|

∫
M
due

∫
M
dus δ

(
ue − f t(us)

)
eβA

t(us) (49)

=
1

|M|
∑

all trajectories
of length t

eβA
t(us) . (50)

From (47) to (48), we insert an identity in the integral, and from (48) to (49), we change
the integral order. Here, us and ue denote respectively the starting state and end state of
a trajectory. Basically, (50) says that whenever there is a path from us to ue, we should
count its contribution to the spatiotemporal average. This idea is inspired by the path
integral in quantum mechanics. Feynman interprets the propagator (transition probability)
〈ψ(x′, t′)|ψ(x, t)〉 as a summation over all possible paths connecting the starting and end
states, where the classical path is picked out when i/~ → ∞. Here, in (49) we are on a
better standing because the Dirac delta function picks out paths that obey the flow equation
exactly. Actually, the transition from a procedural law (42) to a high-level principle (50) is
a tendency in physics, similar to the transition from Lagrangian mechanics to the principle
of least action, or the transition from Schrödinger equation to the path integral.

The kernel of the integral in (49) is called the evolution operator

Lt(ue, us) = δ
(
ue − f t(us)

)
eβA

t(us) . (51)

The evolution operator shares a lot of similarities with the propagator in quantum mechan-
ics. For example, the evolution operator also forms a semigroup:

Lt1+t2(ue, us) =

∫
M
du′ Lt2(ue, u

′)Lt1(u′, us) (52)

We define the action of the evolution operator on a function as

Lt ◦ φ =

∫
M
dus Lt(ue, us)φ(us) (53)

which is a function of the end state ue. A function φ(u) is said to be the eigenfunction of Lt
if Lt ◦ φ = λ(t)φ. Here λ(t) is the eigenvalue. We make it explicit that it depends on time.
Note, Lt acts on a function space, so in principle, Lt is an infinite-dimensional operator.
However, in some cases such as piece-wise maps, if the observable is defined uniformly in
each piece of the domain, then Lt can effectively be expressed as a finite-dimensional matrix.
Here we give two examples of the eigenfunctions of Lt.

Example 1.1 The invariant measure of an equilibrium is an eigenfunction of Lt The invariant
measure of an equilibrium uq is given by

φ(u) = δ(u− uq) .
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Then

Lt ◦ φ =

∫
M
dus Lt(ue, us)δ(us − uq)

=

∫
M
dus δ

(
ue − f t(us)

)
eβA

t(us)δ(us − uq)

= δ
(
ue − f t(uq)

)
eβA

t(uq)

= δ(ue − uq) etβa(uq)

= etβa(uq)φ(ue) .

Therefore, the invariant measure of an equilibrium is an eigenfunction of the evolution operator with
eigenvalue etβa(uq).

Example 1.2 The invariant measure of a periodic orbit is an eigenfunction of LnT The invariant
measure of a periodic orbit is given by

φ(u) =
1

T

∫ T

0

δ(u− f t(u0)dt . (54)

Here, T is the period of this orbit. u0 is an arbitrarily chosen point on this orbit. Then

LnT ◦ φ =
1

T

∫ T

0

∫
M
dus δ

(
ue − fnT (us)

)
eβA

nT (us)δ(us − fnT (u0)dt

=
1

T

∫ T

0

∫
M
dus δ

(
ue − fnT+t(us)

)
eβA

nT (ft(u0)δ(us − f t(u0)dt

=
1

T

∫ T

0

δ
(
ue − f t(u0)

)
enβA

T (u0)dt

∫
M
dus δ(us − f t(u0)

=
1

T

∫ T

0

δ
(
ue − f t(u0)

)
enβA

T (u0)dt

= enβA
T (u0)φ(ue) .

In the above derivation, we have used the identity AnT (f t(u0) = nAT (u0) which is manifest because
u0 is a periodic point. In general, (54) is not an eigenfunction of Lt, but it is for t = nT . In the above
formula, AT (u0) actually does not depend on the choice of the starting point u0 as long as it is one
point on the periodic orbit.

Let us now turn to the original problem of how to calculate (46) and why we choose the
exponential form in (47). Combine (46), (47) and (49), we have

〈a〉 = lim
t→∞

1

t

∂

∂β
〈eβAt〉

∣∣∣∣
β=0

(55)

=
∂

∂β
lim
t→∞

1

t

1

|M|

∫
M
due

∫
M
dus Lt(ue, us)

∣∣∣∣
β=0

. (56)

Here, we have used a trick to obtain the spatial average by using an auxiliary variable β,
which is similar to what we do in the canonical ensemble. 〈a〉 is given by the longtime
average of the evolution operator. From example 1.1 and 1.2, we see that the eigenvalues
of Lt go to ∞ when t → ∞. Therefore, asymptotically, the leading eigenvalue of Lt will
dominate the spatiotemporal average in (56). By the semi-Lie group property (52), we
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define Lt = etA with A defined as the generator of the evolution operator. Then (56) is
simplified as follows,

〈a〉 = lim
t→∞

1

|M|

∫
M
due

∫
M
dus Lt(ue, us)

∂

∂β
A
∣∣∣∣
β=0

(57)

= lim
t→∞

1

|M|

∫
M
due

∫
M
dus δ

(
ue − f t(us)

) ∂

∂β
A
∣∣∣∣
β=0

(58)

= lim
t→∞
〈 ∂
∂β
A〉
∣∣∣∣
β=0

. (59)

As we said, the time limit above will converge to the leading eigenvalue of A. By letting

s0(β) := the largest eigenvalue of A when t→∞ , (60)

we ultimately reach the formula for spatiotemporal averages,

〈a〉 =
∂s0

∂β

∣∣∣∣
β=0

. (61)

Equation (61) connects the spatiotemporal averages with the largest eigenvalue of the gen-
erator of the evolution operator. It is one of the most important formulas in the cycle
averaging theory. We need to study Lt for t → ∞ to obtain (60). To make calculations
easier, we turn to the resolvent of Lt, i.e., the Laplace transform of Lt.∫ ∞

0
dt e−stLt =

1

s−A , Re s > s0 . (62)

So, the leading eigenvalue of A is the pole of the resolvent of the evolution operator. In the
next subsection, we will obtain the expression for the resolvent of Lt by a set of periodic
orbits.

1.4.2 Spectral determinants

The discussion in Sect. 1.4.1 motivates us to calculate the leading eigenvalue of the generator
A. Put it in another way, we need to solve equation

det (s−A) = 0 (63)

whose answer gives the full spectrum of A. We claim that spatiotemporal average can be
calculated by periodic orbits in this system. Still, there isn’t any hint how (63) is related
to periodic orbits. On one hand, we see that periodic orbits are related to the trace of the
evolution operator by the definition (51).

trLt =

∫
M
du Lt(u, u) =

∫
M
du δ

(
u− f t(u)

)
eβA

t(u) . (64)

On the other hand, matrix identity

ln detM = tr lnM (65)
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relates the determinant of a matrix M on the left-hand side in (65) with its trace on the
right-hand side. With these two pieces of information, we can express (63) in terms of trLt.

ln det (s−A) = tr ln(s−A) =

∫
tr

1

s−A ds . (66)

Also by the definition of resolvent (62), we have

det (s−A) = exp

(∫
ds

∫ ∞
0

dt e−sttrLt
)
. (67)

The remaining part of this subsection is devoted to calculating
∫∞

0 dt e−sttrLt. For a given
periodic orbit with period Tp, we decompose the trace (64) in two directions: one is parallel
to the velocity field u‖ and the other in the transverse direction u⊥,∫ ∞

0
dt e−sttrLt =

∫ ∞
0

dt e−st
∫
M
du⊥ du‖δ

(
u⊥ − f t⊥(u)

)
δ
(
u‖ − f t‖(u)

)
eβA

t(u) .

We first calculate the integration in the parallel direction. This is a one-dimensional
spatial integration. Due to the periodicity u‖ = f rT‖ (u) for r = 1, 2, · · · , we split the
integration in this parallel direction into infinitely many periods:∫ ∞

0
dt e−st

∮
p
du‖δ

(
u‖ − f t‖(u)

)
=

∫ ∞
0

dt e−st
∫ Tp

0
dτ ||v(τ)|| δ

(
u‖(τ)− u‖(τ + t)

)
(68)

=

∞∑
r=1

e−sTpr
∫ Tp

0
dτ ||v(τ)||

∫ ε

−ε
dt e−st δ

(
u‖(τ)− u‖(τ + rTp + t)

)
. (69)

The integrand in (69) is defined in a small time window [−ε, ε]. Within this window u‖(τ)−
u‖(τ + rT + t) = u‖(τ)− u‖(τ + t) ' −v(τ)t. So if we take ε→ 0,∫ ε

−ε
dt e−st δ

(
u‖(τ)− u‖(τ + rTp + t)

)
=

1

‖ v(τ) ‖ .

Therefore, we obtain the integration in the parallel direction,∫ ∞
0

dt e−st
∮
p
du‖δ

(
u‖ − f t‖(u)

)
= Tp

∞∑
r=1

e−sTpr . (70)

Now we calculate the trace integration in the transverse direction. In this case, we are
actually integrating on a Poincaré section transverse to this periodic orbit. So f t⊥(u) is the
projected evolution function in this section, which has codimension one with the full state
space. Therefore, ∫

P
du⊥δ

(
u⊥ − f rTp⊥ (u)

)
=

1∣∣det
(
1−M r

p

)∣∣ . (71)

Here Mp is the Floquet matrix projected on the Poincaré section of this periodic orbit.
Combine (70) and (71) and consider all periodic orbits inside this system, we obtain the

trace formula ∫ ∞
0

dt e−sttrLt =
∑
p

Tp

∞∑
r=1

er(βAp−sTp)∣∣det
(
1−M r

p

)∣∣ . (72)
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Ap is the integrated observable along the orbit for one period. Note, summation
∑

p counts
all periodic orbits inside this system. Substitute (72) into (67), we obtain the spectral
determinant

det (s−A) = exp

(
−
∑
p

∞∑
r=1

1

r

er(βAp−sTp)∣∣det
(
1−M r

p

)∣∣
)

(73)

of the flow.

1.4.3 Dynamical zeta functions

In the spectral determinant (73),
∣∣det

(
1−M r

p

)∣∣ is approximately equal to the product of
all the expanding eigenvalues of Mp. That is,

∣∣det
(
1−M r

p

)∣∣ ' |Λp|r. Here, Λp =
∏
e Λp,e

is the product of the expanding eigenvalues of the Floquet matrix Mp. The accuracy of this
approximation improves as r → ∞. Substitute it into the spectral determinant (73), we
have

exp

(
−
∑
p

∞∑
r=1

1

r

er(βAp−sTp)

|Λp|r

)
= exp

(∑
p

ln

(
1− eβAp−sTp

|Λp|

))
=
∏
p

(
1− eβAp−sTp

|Λp|

)
,

where we have used the Taylor expansion ln(1 − x) = −∑∞n=1
xn

n . Then we obtain the
dynamical zeta function,

1/ζ =
∏
p

(1− tp) , with tp =
eβAp−sTp

|Λp|
. (74)

Formulas (61), (73) and (74) are the ultimate goal of the discussion in this section.
They tell us that the spatiotemporal average is determined by the leading eigenvalue of the
generator of the evolution operator A, and the eigenspectrum of A can be obtained by the
whole set of periodic orbits inside this system. Formula (73) precisely describes our per-
spective on chaotic deterministic flows. The flow on the global attractor can be visualized
as a walk chaperoned by a hierarchy of unstable invariant solutions (equilibria, periodic
orbits) embedded in the attractor. An ergodic trajectory shadows one such invariant so-
lution for a while, is expelled along its unstable manifold, settles into the neighborhood
of another invariant solution for a while, and repeats this process forever. Together, the
infinite set of these unstable invariant solutions forms the skeleton of the strange attractor,
and in fact, spatiotemporal averages can be accurately calculated as a summation taken
over contributions from periodic orbits weighted by their stabilities [16, 22].

In practice, we truncate (73) or (74) according to the topological length of periodic
orbits, which is primarily established by symbolic dynamics, or if not available, by the
stability of periodic orbits. This technique is called cycle expansion, whose effectiveness has
been demonstrated in a few one-dimensional maps [3, 4] and ergodic flows [13, 16, 56]. See
[22] for more details.
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CHAPTER II

SYMMETRIES IN DYNAMICAL SYSTEMS

Symmetries play an important role in physics. In the study of pattern formation [20],
patterns with different symmetries form under different boundary conditions or initial con-
ditions. By considering symmetries only, quite a few prototype equations such as complex
Ginzburg-Landau equation [2] are proposed and have abundant applications in many fields.
So, in general, symmetries help create a wonderful physical world for us. However, in the
analysis of chaotic systems, symmetries introduce drifts of orbits along the symmetry di-
rections and thus make the geometrical structure of the global attractor more complicated
than it really is. In this case, symmetries should be reduced before we conducting any
analysis. In this chapter, we review the basic notions of group theory, symmetry reduction
methods, and establish the relation between dynamics in the full state space and that in
the symmetry-reduced state space.

2.1 Group theory and symmetries: a review

In quantum mechanics, whenever a system exhibits some symmetry, the corresponding
symmetry group commutes with the Hamiltonian of this system, namely, [U(g), H] =
U(g)H−HU(g) = 0. Here U(g) denotes the operation corresponding to symmetry g whose
meaning will be explained soon. The set of eigenstates with degeneracy `, {φ1, φ2, · · · , φ`},
corresponding to the same system energy Hψi = Enψi, is invariant under the symmetry
since U(g)ψi are also eigenvectors for the same energy. This information helps us under-
stand the spectrum of a Hamiltonian and the quantum mechanical selection rules. We
now apply the same idea to the classical evolution operator Lt(ue, us) for a system f t(u)
equivariant under a discrete symmetry group G = {e, g2, g3, · · · , g|G|} of order |G|:

f t(Dg)u) = D(g) f t(u) for ∀g ∈ G . (75)

We start with a review of some basic facts of the group representation theory. Some exam-
ples of good references on this topic are ref. [47, 82].

Suppose group G acts on a linear space V and function ρ(u) is defined on this space
u ∈ V . Each element g ∈ G will transform point u to D(g)u. At the same time, ρ(u) is
transformed to ρ′(u). The value ρ(u) is unchanged after state point u is transformed to
D(g)u, so ρ′(D(g)u) = ρ(u). Denote U(g)ρ(u) = ρ′(u), so we have

U(g)ρ(u) = ρ(D(g)−1u) . (76)

This is how functions are transformed by group operations. Note, D(g) is the representation
of G in the form of space transformation matrices. The operator U(g), which acts on the
function space, is not the same as group operation D(g), so (76) does not mean that ρ(u)
is invariant under G. Example 2.1 gives the space transformation matrices of C3.

Example 2.1 A matrix representation of cyclic group C3. A 3-dimensional matrix representation
of the 3-element cyclic group C3 = {e, C1/3, C2/3} is given by the three rotations by 2π/3 around the
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z-axis in a 3-dimensional state space,

D(e) =

1
1

1

 , D(C1/3) =

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

1

 ,
D(C2/3) =

cos 4π
3 − sin 4π

3
sin 4π

3 cos 4π
3

1

 .
(continued in Example 2.2)

2.1.1 Regular representation

An operator U(g) which acts on an infinite-dimensional function space is too abstract to
analyze. We would like to represent it in a more familiar way. Suppose there is a function
ρ(u) with symmetry G defined in full state spaceM, then full state space can be decomposed
as a union of |G| tiles each of which is obtained by transforming the fundamental domain,

M =
⋃
g∈G

gM̂ , (77)

where M̂ is the chosen fundamental domain. So ρ(u) takes |G| different forms by (76) in
each sub-domain in (77). Now, we obtained a natural choice of a set of bases in this function
space called the regular bases,

{ρreg1 (û), ρreg2 (û), · · · , ρreg|G| (û)} = {ρ(û), ρ(g2û), · · · , ρ(g|G|û)} . (78)

Here, for notation simplicity we use ρ(giû) to represent ρ(D(giû)) without ambiguity. These
bases are constructed by applying U(g−1) to ρ(û) for each g ∈ G, with û a point in the
fundamental domain. The [|G|×|G|] matrix representation of the action of U(g) in bases
(78) is called the (left) regular representation Dreg(g). Relation (76) says that Dreg(g) is a
permutation matrix, so each row or column has only one nonzero element.

We have a simple trick to obtain the regular representation quickly. Suppose the element
at the ith row and the jth column of Dreg(g) is 1. It means ρ(giû) = U(g)ρ(gj û), which is
gi = g−1gj =⇒ g−1 = gig

−1
j . Namely,

Dreg(g)ij = δg−1, gig
−1
j
. (79)

So if we arrange the columns of the multiplication table by the inverse of the group elements,
then setting positions with g−1 to 1 defines the regular representation Dreg(g). Note, the
above relation can be further simplified to g = gjg

−1
i , but it exchanges the rows and columns

of the multiplication table, so g = gjg
−1
i should not be used to get Dreg(g). On the other

hand, it is easy to see that the regular representation of group element e is always the
identity matrix.

Example 2.2 The regular representation of cyclic group C3. (continued from Example 2.1) Take
an arbitrary function ρ(u) over the state space u ∈ M, and define a fundamental domain M̂ as a 1/3
wedge, with axis z as its (symmetry invariant) edge. The state space is tiled with three copies of the
wedge,

M = M̂1 ∪ M̂2 ∪ M̂3 = M̂ ∪ C1/3M̂ ∪ C2/3M̂ .
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Table 1: The multiplication tables of the (a) group C2 and (b) C3.

(a)

C2 e σ−1

e e σ
σ σ e

(b)

C3 e (C1/3)−1 (C2/3)−1

e e C2/3 C1/3

C1/3 C1/3 e C2/3

C2/3 C2/3 C1/3 e

Function ρ(u) can be written as the 3-dimensional vector of functions over the fundamental domain
û ∈ M̂,

(ρreg1 (û), ρreg2 (û), ρreg3 (û)) = (ρ(û), ρ(C1/3û), ρ(C2/3û)) . (80)

The multiplication table of C3 is given in Table 1. By (79), the regular representation matrices Dreg(g)
have ‘1’ at the location of g−1 in the multiplication table, ‘0’ elsewhere. The actions of the operator
U(g) are now represented by permutations matrices (blank entries are zeros):

Dreg(e) =

1
1

1

 , Dreg(C1/3) =

 1
1

1

 , Dreg(C2/3) =

 1
1

1

 . (81)

Table 2: The multiplication table of D3, the group of symmetries of an equilateral triangle.

D3 e (σ12)−1 (σ23)−1 (σ31)−1 (C1/3)−1 (C2/3)−1

e e σ12 σ23 σ31 C2/3 C1/3

σ12 σ12 e C1/3 C2/3 σ31 σ23

σ23 σ23 C2/3 e C1/3 σ12 σ31

σ31 σ31 C1/3 C2/3 e σ23 σ12

C1/3 C1/3 σ31 σ12 σ23 e C2/3

C2/3 C2/3 σ23 σ31 σ12 C1/3 e

Example 2.3 The regular representation of dihedral group D3. D3 = {e, σ12, σ23, σ31, C1/3, C2/3}
represents the symmetries of a triangle with equal sides. C1/3 and C2/3 are rotations by 2π/3 and 4π/3
respectively. σ12, σ23 and σ31 are 3 reflections. The regular bases in this case are(

ρ(û), ρ(σ12û), ρ(σ23û), ρ(σ31û), ρ(C1/3û), ρ(C2/3û)
)
.

It helps us obtain the multiplication table quickly by the following relations

σ31 = C1/3σ12 , σ23 = C2/3σ12 , C1/3σ12 = σ12C
2/3 , C2/3σ12 = σ12C

1/3 . (82)

The multiplication table of D3 is given in Table 2. By (79), the 6 regular representation matrices
Dreg(g) have ‘1’ at the location of g−1 in the multiplication table, ‘0’ elsewhere. For example, the
regular representation of the action of operators U(σ23) and U(C2/3) are, respectively:

Dreg(σ23) =


0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

 , Dreg(C1/3) =


0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

 .
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2.1.2 Irreducible representations

U(g) is a linear operator under the regular bases. Any linearly independent combination of
the regular bases can be used as new bases, and then the representation of U(g) changes
respectively. So we ask a question: can we find a new set of bases

ρirri =
∑
j

Sijρ
reg
j (83)

such that the new representation Dirr(g) = SDreg(g)S−1 is block-diagonal for any g ∈ G ?

Dirr(g) =

D
(1)(g)

D(2)(g)
. . .

 =

r⊕
µ=1

dµD
(µ)(g) . (84)

In such a block-diagonal representation, the subspace corresponding to each diagonal block
is invariant under G and the action of U(g) can be analyzed subspace by subspace. It can be
easily checked that for each µ, D(µ)(g) for all g ∈ G form another representation (irreducible
representation, or irrep) of group G. Here, r denotes the total number of irreps of G. The
same irrep may show up more than once in the decomposition (84), so the coefficient dµ
denotes the number of its copies. Moreover, it is proved [47] that dµ is also equal to the
dimension of D(µ)(g) in (84). Therefore, we have a relation

r∑
µ=1

d2
µ = |G| .

Example 2.4 Irreps of cyclic group C3. (continued from Example 2.2) For C2 whose multiplication
table is in Table 1, we can form the symmetric base ρ(û)+ρ(σû) and the antisymmetric base ρ(û)−ρ(σû).
You can verify that under these new bases, C2 is block-diagonalized. We would like to generalize this
symmetric-antisymmetric decomposition to the order 3 group C3. Symmetrization can be carried out on
any number of functions, but there is no obvious anti-symmetrization. We draw instead inspiration from
the Fourier transformation for a finite periodic lattice, and construct from the regular bases (80) a new
set of bases

ρirr0 (û) =
1

3

[
ρ(û) + ρ(C1/3û) + ρ(C2/3û)

]
(85)

ρirr1 (û) =
1

3

[
ρ(û) + ω ρ(C1/3û) + ω2ρ(C2/3û)

]
(86)

ρirr2 (û) =
1

3

[
ρ(û) + ω2ρ(C1/3û) + ω ρ(C2/3û)

]
. (87)

Here ω = e2iπ/3. The representation of group C3 in this new bases is block-diagonal by inspection:

Dirr(e) =

1
1

1

 , Dirr(C1/3) =

1 0 0
0 ω 0
0 0 ω2

 , Dirr(C2/3) =

1 0 0
0 ω2 0
0 0 ω

 . (88)

So C3 has three 1-dimensional irreps. Generalization to any Cn is immediate: this is just a finite lattice
Fourier transform.
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Character tables. Finding a transformation S which simultaneously block-diagonalizes
the regular representation of each group element sounds difficult. However, suppose it can
be achieved and we obtain a set of irreps D(µ)(g), then according to Schur’s lemmas [47],
D(µ)(g) must satisfy a set of orthogonality relations:

dµ
|G|

∑
g

D
(µ)
il (g)D

(ν)
mj(g

−1) = δµνδijδlm . (89)

Denote the trace of irrep D(µ) as χ(µ), which is referred to as the character of D(µ). Prop-
erties of irreps can be derived from (89), and we list them as follows:

1. The number of irreps is the same as the number of classes.

2. Dimensions of irreps satisfy
∑r

µ=1 d
2
µ = |G|

3. Orthonormal relation I :
∑r

i=1 |Ki|χ(µ)
i χ

(ν)∗
i = |G|δµν .

Here, the summation goes through all classes of this group, and |Ki| is the number of
elements in class i. This weight comes from the fact that elements in the same class
have the same character. Symbol ∗ means the complex conjugate.

4. Orthonormal relation II :
∑r

µ=1 χ
(µ)
i χ

(µ)∗
j = |G|

|Ki|δij .

The characters for all classes and irreps of a finite group are conventionally arranged into a
character table, a square matrix whose rows represent different classes and columns represent
different irreps. Rules 1 and 2 help determine the number of irreps and their dimensions.
As the matrix representation of class {e} is always the identity matrix, the first row is
always the dimension of the corresponding representation. All entries of the first column are
always 1, because the symmetric irrep is always one-dimensional. To compute the remaining
entries, we should use properties 3, 4 and the class multiplication tables. Spectroscopists
conventions use labels A and B for symmetric, respectively antisymmetric nondegenerate
irreps, and E, T , G, H for doubly, triply, quadruply, quintuply degenerate irreps.

Table 3: Character tables of C2, C3 and D3. The classes {σ12, σ13, σ14}, {C1/3, C2/3} are
denoted 3σ, 2C, respectively.

C2 A B

e 1 1
σ 1 -1

C3 A E

e 1 1 1

C1/3 1 ω ω2

C2/3 1 ω2 ω

D3 A B E

e 1 1 2
3σ 1 -1 0
2C 1 1 -1

Example 2.5 Character table of D3. (continued from Example 2.3) Let us construct Table 3.
one-dimensional representations are denoted by A and B, depending on whether the basis function is
symmetric or antisymmetric with respect to transpositions σij . E denotes the two-dimensional represen-
tation. As D3 has 3 classes, the dimension sum rule d21 +d22 +d23 = 6 has only one solution d1 = d2 = 1,
d3 = 2. Hence there are two one-dimensional irreps and one two-dimensional irrep. The first row is 1, 1, 2,
and the first column is 1, 1, 1 corresponding to the one-dimensional symmetric representation. We take
two approaches to figure out the remaining 4 entries. First, since B is an antisymmetric one-dimensional
representation, so the characters should be ±1. We anticipate χB(σ) = −1 and can quickly figure out
the remaining 3 positions. Then we check that the obtained table satisfies the orthonormal relations.
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Second, denote χB(σ) = x and χE(σ) = y, then from the orthonormal relation of the second column
with the first column and itself, we obtain 1 + x+ 2y = 0 and 1 + x2 + y2 = 6/3. Then we get two sets
of solutions, one of which is incompatible with other orthonormal relations, so we are left with x = −1,
y = 0. Similarly, we can get the other two characters.

2.1.3 Projection operator

We have listed the properties of irreps and the techniques of constructing a character table,
but we still do not know how to construct the similarity transformation S which takes a
regular representation into a block-diagonal form. Think of it in another way, each irrep is
associated with an invariant subspace, so by projecting an arbitrary function ρ(u) into its
invariant subspaces, we find the transformation (83). One of these invariant subspaces is∑

g ρ(gû), which is the basis of the one-dimensional symmetric irrep A. For C3, it is (85).
But how to get the others? We resort to the projection operator:

P
(µ)
i =

dµ
|G|

∑
g

(
D

(µ)
ii (g)

)∗
U(g) . (90)

It projects an arbitrary function into the ith basis of irrep D(µ) provided the diagonal

elements of this representation D
(µ)
ii are known. P

(µ)
i ρ(u) = ρ

(µ)
i . Here, symbol ∗ means the

complex conjugate. For unitary groups
(
D

(µ)
ii (g)

)∗
= D

(µ)
ii (g−1). Summing i in (90) gives

P (µ) =
dµ
|G|

∑
g

(
χ(µ)(g)

)∗
U(g) . (91)

This is also a projection operator which projects an arbitrary function onto the sum of the
bases of irrep D(µ).

Note, for one-dimensional representations, (91) is equivalent to (90). The projection op-
erator is known after we obtain the character table, since the character of an one-dimensional
matrix is the matrix itself. However, for two-dimensional or higher-dimensional represen-

tations, we need to know the diagonal elements D
(µ)
ii in order to get the bases of invariant

subspaces. That is to say, (90) should be used instead of (91) in this case. Example 2.6
illustrates this point. The two one-dimensional irreps are obtained by (91), but the other
four two-dimensional irreps are obtained by (90).

Example 2.6 Bases for irreps of D3. (continued from Example 2.3) We use projection operator
(91) to obtain the bases of irreps of D3. From Table 3, we have

PAρ(û) =
1

6

[
ρ(û) + ρ(σ12û) + ρ(σ23û) + ρ(σ31û) + ρ(C1/3û) + ρ(C2/3û)

]
(92)

PBρ(û) =
1

6

[
ρ(û)− ρ(σ12û)− ρ(σ23û)− ρ(σ31û) + ρ(C1/3û) + ρ(C2/3û)

]
. (93)

For projection into irrep E, we need to figure out the explicit matrix representation first. Obviously, the
following 2 by 2 matrices are E irreps.

DE(e) =

[
1 0
0 1

]
, DE(C1/3) =

[
ω 0
0 ω2

]
, DE(C2/3) =

[
ω2 0
0 ω

]
(94)

DE(σ12) =

[
0 1
1 0

]
, DE(σ23) =

[
0 ω2

ω 0

]
, DE(σ31) =

[
0 ω
ω2 0

]
. (95)

27



So apply projection operator (90) on ρ(û) and ρ(σ12û), we get

PE1 ρ(û) =
1

6

[
ρ(û) + ωρ(C1/3û) + ω2ρ(C2/3û)

]
(96)

PE2 ρ(û) =
1

6

[
ρ(û) + ω2ρ(C1/3û) + ωρ(C2/3û)

]
(97)

PE1 ρ(σ12û) =
1

6

[
ρ(σ12û) + ωρ(σ31û) + ω2ρ(σ23û)

]
(98)

PE2 ρ(σ12û) =
1

6

[
ρ(σ12û) + ω2ρ(σ31û) + ωρ(σ23û) .

]
(99)

The above derivation has used formulas (82). Under the invariant bases{
PAρ(û), PBρ(û), PE1 ρ(û), PE2 ρ(σ12û), PE1 ρ(σ12û), PE2 ρ(û)

}
,

we have

Dirr(σ23) =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 ω2 0 0
0 0 ω 0 0 0
0 0 0 0 0 ω2

0 0 0 0 ω 0

 Dirr(C1/3) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 ω 0 0 0
0 0 0 ω2 0 0
0 0 0 0 ω 0
0 0 0 0 0 ω2

 .
The C3 and D3 examples used in this section can be generalized to any Cn and Dn. For

references, Example 2.7, Example 2.8 and Example 2.9 give the character tables of Cn and
Dn.

Example 2.7 Character table of cyclic group Cn. The symmetry under a discrete rotation by angle
2π/n gives birth to a cyclic group Cn = {e, Cn, C2

n, · · · , Cn−1n }. Since Cn is Abelian, each element
forms a separate class, and thus Cn has n one-dimensional irreducible representations. The characters
multiply as group elements: χα(Cin)χα(Cjn) = χα(Ci+jn ) mod n . Therefore, we get Table 4.

Table 4: Character table of cyclic group Cn. Here k, j = 1, 2, · · · , n− 1.

Cn A Γj
e 1 1

Ckn 1 exp( i2πkjn )

Example 2.8 Character table of dihedral group Dn = Cnv, n odd. The Dn group

Dn = {e, Cn, C2
n, · · · , Cn−1n , σ, Cnσ, · · · ,Cn−1n σ}

has n rotation elements and n reflections. Group elements satisfies Cin · Cjnσ = Cjnσ · Cn−in , so Cin and
Cn−in form a class. Also, Cn−in ·C2i+j

n σ = Cjnσ ·Cn−in implies that Cjnσ and C2i+j
n σ are in the same class.

Therefore, there are only three different types of classes: {e}, {Ckn, Cn−kn } and {σ,Cnσ, · · · ,Cn−1n σ}.
The total number of classes is (n+ 3)/2. In this case, there are 2 one-dimensional irreducible representa-
tions (symmetric A1 and anti-symmetric A2 ) and (n−1)/2 two-dimensional irreducible representations.
In the jth two-dimensional irreducible representation, class {e} has form

(
1 0
0 1

)
, class {Ckn, Cn−kn } has

form
( exp( i2πkjn ) 0

0 exp(− i2πkjn )

)
, and class {σ,Cnσ, · · · ,Cn−1n σ} has form

(
0 1
1 0

)
. We get Table 5.

Example 2.9 Character table of dihedral group Dn = Cnv, n even. In this case, there are (n+
6)/2 classes: {e}, {C1/2}, {Ck/n, C(n−k)/n}, {σ, σC2/n, · · · , σC(n−2)/n} and {σC1/n, σC3/n, · · · , σC(n−1)/n}.
There are four different one-dimensional irreducible representations, whose characters are ±1 under re-
flection σ and shift-reflect operation σC1/n. We get Table 6.
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Table 5: Character table of dihedral group Dn = Cnv, n odd.

Dn (n odd) A1 A2 Ej
e 1 1 2

Ckn, C
n−k
n 1 1 2 cos(2πkj

n )
σ, σC1

n, · · · , σCn−1
n 1 -1 0

Table 6: Character table of dihedral group Dn = Cnv, n even. Here k, j = 1, 2, · · · , n− 1.

Dn (n even) A1 A2 B1 B2 Ej
e 1 1 1 1 2

C1/2 1 1 (−1)n/2 (−1)n/2 2(−1)j

Ck/n, C(n−k)/n (k odd) 1 1 -1 -1 2 cos(2πkj
n )

Ck/n, C(n−k)/n (k even) 1 1 1 1 2 cos(2πkj
n )

σ, σC2/n, · · · , σC(n−2)/n 1 -1 1 -1 0

σC1/n, σC3/n, · · · , σC(n−1)/n 1 -1 -1 1 0

2.2 Symmetry reduction for dynamical systems

In a dynamical system with discrete or continuous symmetries, points in the state space
which are related to each other by symmetry operation should be treated as a group.
Each member of this group has the same dynamical properties, so we say that they are
dynamically equivalent. It is a good practice to choose a single representative in each
group and study the dynamics of this representative point instead. This treatment is called
symmetry reduction. The new state space that this representative point lives in is called
the (symmetry-)reduced state space After it was invented, symmetry reduction becomes
extremely successful for simplifying the analysis of a dynamical system with symmetries. In
this section, we will discuss symmetry reduction techniques and study the tangent dynamics
in the reduced state space.

2.2.1 Continuous symmetry reduction

We use the same setup as in Sect. 1.3 and copy a few equations here for convenience. The
content of this subsection is based on the materials in [22]. Let u̇ = v(u) , u(x, t) ∈ Rn
define a flow. Usually we omit the dependence on coordinates, and write u(t). Denote the
evolution semigroup of this flow by u(t) = f t(u0). We say that this flow is equivariant under
a continuous symmetry group G if

gv(u) = v(gu) , gf t(u) = f t(gu) for any g ∈ G . (100)

The two equations above are equivalent. In practical applications, G is always a Lie group.
Basically, (100) means that if two starting states, which are related to each other by a group
operation, evolve for the same period of time, then the end states are related by the same
group operation.

Now we introduce the terminology that will be used in the later discussion. In is often
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more convenient to write the Lie group G in its exponential form

g(φ) = eφ ·T , φ ·T =

s∑
a=1

φaTa , (101)

where Ta, a = 1, 2 · · · , s are the generators of G, and φa are the parameters of this group.
Dot product refers to a sum over generators in this section. Generators of a real represen-
tation are antisymmetric:

Ta
> = −Ta , (102)

where Ta
> denotes the transpose of Ta. Let’s work out a simple example. The translation

group {g : g(x0)u(x, t) = u(x + x0, t)} is denoted as g(x0) = exp(x0
∂
∂x). Here, ∂

∂x is the
only generator and x0 is the parameter. Furthermore, we assume that the generators of
g(φ) commute with each other: TaTb = TbTa.

We define the group orbit of a point u as

Orb(u) = {g u : g ∈ G} . (103)

A group orbit is an s-dimensional manifold, but it is not a real orbit. It is a collection of
all dynamically equivalent points. The group tangent of state u is defined as

ta(u)i = (Ta)ijuj , (104)

which is basically a matrix-vector product. Note, (100) says that the flow equation is
equivariant under G, but it does not mean that any orbit in the state space possesses all
symmetries in G. Now we define several important invariant structures.

Equilibrium u(t) = u(0). Namely, v(u) = 0.

Relative equilibrium A state point u(x, t) is a relative equilibrium if

u(t) = g(t c)u(0) = et c·Tu(0) , (105)

where c is a constant. Definition (105) is equivalent to v(u) = c ·t(u). A relative equilibrium
is very similar to an equilibrium except for a constant drifting in the group direction.

Periodic orbit u(Tp) = u(0). Tp is the period.

Relative periodic orbit Similar to periodic orbits, if a state returns to its initial state
except for a group translation after a center time, then we say that this point is on a relative
periodic orbit.

up(0) = gpup(Tp) , (106)

where Tp is the period. gp = g(φp) takes the end state to the initial state. We use subscript
p to indicate that the variable belongs to a periodic orbit or relative periodic orbit.

With the above setup, we illustrate how to use slice to reduce continuous symmetries.
The idea is similar to a Poincaré section. We define a slice that cuts every group orbit only
once, so that we can use this intersection point as the representative of the whole group
orbit. The simplest slice is a flat hypersurface that is normal to the group tangent of a
pre-specified point û′:

〈û− û′|t′a〉 = 〈û|t′a〉 = 0 , t′a = ta(û
′) = Ta û

′ , for a = 1, 2, · · · , s . (107)
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Here, we use a bra-ket notation for the inner product of two real vectors in Rn,

〈u|w〉 = u>w =
n∑
i=1

uiwi .

A hat on a state indicates that it is a state in the symmetry-reduced state space. Definition
(107) has used 〈û′|t′a〉 = 〈û′|Ta û

′〉 = 0 which is the result of the antisymmetry of Ta (102).
Now, symmetry reduction turns out to be a process of finding a specific group element g(φ)
that transforms each state u into the slice.

û = g−1(φ)u . (108)

û is the state on the slice that represents u and the whole group orbit of u. Note, it usually
requires different group parameter φ for different states in (108). Equivalently, we can
recover the state in the full state space by the state in the symmetry-reduced state space
and the group parameter φ,

u = g(φ) û . (109)

The symmetry reduction process described above is called the post-processing method.
That is, we need to know the trajectory beforehand in order to reduce it into the slice.
However, many a time, it is more efficient to integrate the system in the slice directly. This
posts a question of what the dynamics is like in the slice. Let us start from finding the
reduced velocity in the slice. Take the time derivative of both sides of (109), v(gû) = v(u) =
ġû+ gv̂. Rewrite it with v̂ = g−1v(g û)− g−1ġ û and the equivariance condition (100) leads
to v̂ = v − g−1ġ û. Also, by (101) and the definition of the group tangent (104), we get

g−1ġ û =
s∑

a=1

φ̇a(û) Taû =
s∑

a=1

φ̇a(û)ta(û) .

So the velocity in the slice is given as

v̂(û) = v(û) −
s∑

a=1

φ̇a(û)ta(û) (110)

The dynamics of φa(û) is governed by the slice. Taking the time derivative of the slice
condition (107) and substituting (110), we get

〈t′a|v̂(û)〉 = 〈t′a|v(û)〉 −
s∑
b=1

〈t′a|tb(û)〉 φ̇b = 0 , for a = 1, 2, · · · , s .

This defines s linear equations with total s unknowns. Define the coefficient matrix as L
whose element is

L(û)ab = 〈t′a|tb(û)〉 , (111)

then we can solve the equation for φ̇a(û). In summary, the dynamics in the slice is governed
by

v̂(û) = v(û) −
s∑

a=1

φ̇a(û)ta(û) , û ∈ M̂ (112)

φ̇a(û) =

s∑
b=1

(L−1)ab〈t′b|v(û)〉 , a = 1, 2, · · · , s . (113)
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The above in-slice dynamics fails when L is singular. One obvious cause of failure is a
situation where some t′a are parallel. So when choosing the template points for defining the
slice, we need to guarantee that t′a, a = 1, 2, · · · , s are not parallel. Under this assumption,
a slice fails only when the in-slice state û makes (111) singular. The set of these points
defines the border of the slice.

When the group has only one parameter φ, then matrix L is a scalar and the above
formula can be simplified as

v̂(û) = v(û) − φ̇(û)t(û) , û ∈ M̂ (114)

φ̇(û) = 〈v(û)|t′〉/〈t(û)|t′〉 . (115)

2.2.2 Tangent dynamics in the slice

Equations (112)(113) or (114)(115) describe the dynamics in the slice, by which we can
obtain the whole in-slice trajectory given a starting in-slice state. However, sometimes we
not only desire the in-slice orbit but also the tangent dynamics in the slice. More precisely,
formulas (28) and (30) describe the tangent dynamics in the full state space. What are
the corresponding formulas in the slice? What is the relation between Jacobian matrix in
the slice and that in the full state space? This subsection is devoted to answering these
questions. For simplicity, in the following, we assume that the continuous group has only
one parameter, i.e., s = 1 in (101). Nevertheless, the technique described below can be
easily extended to symmetries with more than one group parameter.

g−1(φ1) g−1(φ2)

δu(t1)

δu(t2)

δû(t1)

δû(t2)

Figure 5: The relation between deformations in the full state space and in the slice. The
pink plane is the slice. The black curve is a trajectory in the state space. The cyan curve
is the corresponding trajectory in the slice. Infinitesimal deformation δu(t1) at time t1 is
transported to δu(t2) at time t2. δû(t1) and δû(t2) are the in-slice correspondents.

First, we investigate how infinitesimal deformation is transformed into the slice from
the full state space. We start from the slice condition (107). Infinitesimal deformation δû
at û should be confined to the slice too, so we have a constraint

〈δû|t′〉 = 0 . (116)
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Here, the subscript of t′ is omitted because we assume that there is only one group pa-
rameter. Taking the derivative of (109) we get δu = δg(φ)û + g(φ)δû which is equivalent
to

δû = −Tûδφ+ g(φ)−1δu .

Substituting it into (116), we get 〈−Tûδφ+ g(φ)−1δu|t′〉 = 0 which is

δφ =
〈t′|g(φ)−1δu〉
〈t(û)|t′〉 . (117)

Now δû, the infinitesimal deformation in the slice, can be expressed by the deformation in
the full state space δu:

|δû〉 = −〈t
′|g(φ)−1δu〉
〈t(û)|t′〉 |t(û)〉+ g(φ)−1|δu〉 ,

that is,

|δû〉 =

(
1− |t(û)〉〈t′|

〈t(û)|t′〉

)
g(φ)−1|δu〉 := h(û)g(φ)−1|δu〉 (118)

The physical interpretation of (118) is manifest. Infinitesimal deformation δu at u in the
full state space is first transformed to point û by g(φ)−1 and then projected into the slice
by h(û) illustrated in Figure 5. The matrix

h(û) = 1− |t(û)〉〈t′|
〈t(û)|t′〉 (119)

projects infinitesimal deformation in the full state space into the slice. It is singular and
has the following properties.

• h(û)|t(û)〉 = 0 : any infinitesimal deformation along the group tangent direction at û
in the full state space will disappear after projection.

• 〈t′|h(û) = 0 : any vector projected into the slice will be perpendicular to the group
tangent of the template point as expected. This property and the above one both
prove that matrix h(û) is not full-rank.

• In-slice velocity (114) turns out to be

v̂(û) = v(û)− 〈v(û)|t′〉
〈t(û)|t′〉 t(û) = h(û)v(û) .

The velocity field is transformed by matrix h(û).

Since projection matrix (119) is singular, the projection reduces the dimension of the
system by one. However, (119) is still expressed in the full state space. In practice, we desire
to work in a lower-dimensional system after quotienting out the continuous symmetry. Now
let’s decrease the dimension of all matrices and vectors in the slice by one explicitly. Denote

h(û) =


h1

h2
...
hn

 .
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Each hi is a row vector and n is the dimension of the full state space. From the second
property of h(û) we know that hi are linear dependent: t′1h1 + t′2h2 + · · ·+ t′nhn = 0. Here
t′i are components of vector t′. Assume t′ξ 6= 0, then

hξ =

n∑
i=1,i6=ξ

− t
′
i

t′ξ
hi

so hξ can be eliminated from h(û):

h(û) =



1
1

. . .

− t′1
t′ξ
− t′2
t′ξ

· · · − t′n
t′ξ

. . .

1


︸ ︷︷ ︸

n×(n−1)



h1
...

hξ−1

hξ+1
...
hn


︸ ︷︷ ︸
(n−1)×n

:= P ′h(−)(û) .

The above expression is the rank factorization of h(û) with h(−)(û) a full-rank matrix. The
superscript of the minus sign indicates that the matrix (vector) is (n − 1)-dimensional.
Similarly, from the slice condition 〈t′|û〉 = 0, we can reduce the dimension of a point on the
slice by one

û = P ′û(−)

and also reduce the dimension of an infinitesimal deformation by one

δû = P ′δû(−) .

Here, û(−) and δû(−) are both (n− 1)-dimensional vectors.

û(−) = [û1, · · · , ûξ−1, ûξ+1, · · · , ûn]> , δû(−) = [δû1, · · · , δûξ−1, δûξ+1, · · · , δûn]> .

Now relation (118) can be rewritten as:

|δû(−)〉 = h(−)(û)g(φ)−1|δu〉 (120)

Note that the left side of the above equation is an (n−1)-dimensional vector while the right
side |δu〉 is an n-dimensional vector and the [(n− 1)×n] matrix h(−)(û) is the “projection”
operator.

2.2.3 In-slice Jacobian matrix

Now let’s turn to the transformation of the Jacobian matrix. In Figure 5, there is a tra-
jectory from u(t1) to u(t2) in the full state space. The corresponding transformed in-slice
trajectory is from û(t1) to û(t2). Infinitesimal deformations in the full state space and in
the slice will be evolved by the Jacobian matrix in the full state space and in the slice
respectively.

Jδu(t1) = δu(t2) (121)

Ĵδû(−)(t1) = δû(−)(t2) . (122)
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Here, J = J t2−t1(u(t1), t1) and Ĵ = J t2−t1(û(−)(t1), t1). For notation simplicity, we omit all
parameters of Jacobian matrix if no confusion occurs. Substituting (120) into (122), we get

Ĵh(−)(û(t1))g(φ1)−1δu(t1) = h(−)(û(t2))g(φ2)−1δu(t2) = h(−)(û(t2))g(φ2)−1Jδu(t1) .

The last step above has used relation (121). This results in

Ĵh(−)(û(t1))g(φ1)−1 = h(−)(û(t2))g(φ2)−1J . (123)

Ĵ is an [(n− 1)× (n− 1)] matrix as we can easily see. The geometrical meaning of relation
(123) is obvious in Figure 5. On the left side, the infinitesimal deformation δu(t1) at u(t1)
is transported to the slice first, and then projected into the slice, after which it is evolved
by Ĵ to in-slice point û(t2). On the right side, the infinitesimal deformation δu(t1) at u(t1)
is evolved first to u(t2) by J , then transported to the slice, and finally projected into the
slice.

By (123), the relation between covariant vectors in the full state space and in the slice
can be obtained for physically interesting invariant subsets: equilibria, relative equilibria,
periodic orbits, and relative periodic orbits.

In-slice stability matrix of an equilibrium For an equilibrium u(t1) = u(t2) := uq,
we have û(t1) = û(t2) := ûq and φ1 = φ2 := φq. Formula (123) becomes

Ĵh(−)(ûq)g(φq)
−1 = h(−)(ûq)g(φq)

−1J . (124)

Moreover, by (30) we have J = e(t2−t1)A for equilibria, so (124) becomes

Âh(−)(ûq)g(φq)
−1 = h(−)(ûq)g(φq)

−1A , (125)

where Â is the in-slice stability matrix. (125) relates stability matrix in the slice and that
in the full state space by a similarity transformation. So

Λ̂j = Λj , êj = h(−)(ûq)g(φq)
−1ej . (126)

Here, Λ̂j and Λj are the stability exponents in the slice and in the full state space respec-
tively. ê and e are the corresponding eigenvectors.

In-slice stability matrix of a relative equilibrium For an relative equilibrium g(c(t2−
t1))u(t2) = u(t1), we also have û(t1) = û(t2) := ûq and φ1 = φ2 − c(t2 − t1). Formula (123)
reduces to

Ĵ
(
h(−)(ûq)g(φ1)−1

)
=
(
h(−)(ûq)g(φ1)−1

)
g(c(t2 − t1))−1J . (127)

If let t2 − t1 = δt be an infinitesimal time lapse. Then

J = 1 +Aδt and g(c(t2 − t1)) = 1 + cTδt

are first-order accurate. Thus (127) gives

Â
(
h(−)(ûq)g(φ1)−1

)
=
(
h(−)(ûq)g(φ1)−1

)
(−cT +A) . (128)

Actually, −cT +A is the effective stability matrix of a relative equilibrium in the full state
space, so (128) relates the stability matrix in the slice with the effective stability matrix in
the full state space by a similarity transformation. Therefore, their spectra and eigenvectors
have the same relation as in (126).
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In-slice Jacobian matrix of a periodic orbit For a periodic orbit u(0) = u(Tp), if we
set t2 = t1 + Tp we have û(t1) = û(t2) := ûp and φ1 = φ2 := φp. So, the Floquet matrix
has relation Ĵph

(−)(ûp)g(φp)
−1 = h(−)(ûp)g(φp)

−1Jp. Therefore, the Floquet vectors and
Floquet multipliers in the slice and those in the full state space have the same relation as
in (126).

In-slice Jacobian matrix of a relative periodic orbit For a relative periodic orbit
u(0) = g(φp)u(Tp), if we also set t2 = t1 + Tp then we have û(t1) = û(t2) := ûp and
φ1 = φp + φ2. Relation (123) becomes

Ĵh(−)(ûp)g(φ1)−1 = h(−)(ûp)g(φ1)−1Jp . (129)

Here Jp = g(φp)J is the Floquet matrix in the full state space for a relative periodic orbit.
So the same as periodic orbits, we have relation (126).

In summary, relation (126) holds for equilibria, relative equilibria, periodic orbits, and
relative periodic orbits. The stability spectrum (Floquet spectrum) in the slice is the same
as that in the full state space. Eigenvectors (Floquet vectors) in the full state space are
first transported to the slice and then projected into the slice. This is the exact reason
that using a slice to reduce continuous symmetries not only keeps the dynamical properties
unchanged but also simplifies the analysis.

2.2.4 An example: the two-mode system

In this subsection, we use the two-mode system as an example to illustrate the techniques
described in the previous two subsections. We follow Chaosbook [22] for the setup of the
two-mode system

ẋ1 = (µ1 − r2)x1 + c1 (x1x2 + y1y2) , r2 = x2
1 + y2

1

ẏ1 = (µ1 − r2) y1 + c1 (x1y2 − x2y1)

ẋ2 = x2 + y2 + x2
1 − y2

1 + a2x2r
2

ẏ2 = −x2 + y2 + 2x1y1 + a2y2r
2 . (130)

and the choice of parameters:

µ1 = −2.8 , a2 = −2.66 , c1 = −7.75 .

Full state space points are represented as u = (x1, y1, x2, y2)>. The two-mode system (130)
has an SO(2) symmetry

g(φ) =


cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 cos 2φ sin 2φ
0 0 − sin 2φ cos 2φ


with the corresponding Lie group generator

T =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

 . (131)
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In order to reduce this continuous symmetry, û′ = (1, 0, 0, 0)> is chosen as the template
point the same as that in Chaosbook [22], and thus the resulting slice condition is

〈û|t′〉 = 0 and x̂1 > 0 with t′ = (0,−1, 0, 0)> .

The in-slice state is denoted as û = (x̂1, 0, x̂2, ŷ2)>. Symmetry reduction is equivalent to
rotating every state into the positive real axis in the (x1, y1) plane.

Figure 6: The configuration of 1 in the full state space projected into subspace [x1, x2, y2]
(the blue curve) and in the slice ( the red curve).

In this subsection, we focus on one relative periodic orbit in the two-mode system whose
initial condition is

1 : (0.4525719, 0.0, 0.0509257, 0.0335428) . (132)

The orbit has period 3.6415. Figure 6 depicts relative periodic orbit 1 in the full state space
and in the slice. The Floquet multipliers associated with this orbit are

Λj : (−1.481177, −1.066888 · 10−09, 0.999414, 0.999913) . (133)

It has a weak expanding direction, a strong contracting direction, and two marginal direc-
tions.

The velocity field v(u) and the group tangent t(u) are Floquet vectors of this system
and give rise to the two marginal multipliers in (133), but the corresponding two Floquet
vectors are degenerate which cannot be told apart when we solving the eigenequation of
the Jacobian matrix. However, we can check whether v(u) and t(u) are contained in the
subspace spanned by these two Floquet vectors. This is the idea of Figure 7, in which
we show the planes spanned by the two marginal Floquet vectors, the velocity field, and
the group tangent, along this orbit. As we can see, v(u) and t(u) do lie in the planes.
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Figure 7: The gray planes are spanned by the two marginal Floquet vectors. of relative
periodic orbit 1. The pink, green arrows are the velocity vectors and the group tangents
on this orbit respectively. The blue curve is relative periodic orbit 1 projected into the
subspace [x1, x2, y2].

Therefore, the calculation of Floquet spectrum and Floquet vectors of 1 is accurate at least
for illustration purpose.

Now the task is to transform these Floquet vectors into the slice. By the Lie group
generator (131), we get the group tangent of an in-slice point û = (x̂1, 0, x̂2, ŷ2)>:

t(û) = (0,−x̂1, 2ŷ2,−2x̂2) .

Then by (119) we have

h(û) =


1 0 0 0
0 0 0 0
0 2ŷ1/x̂1 1 0
0 −2x̂2/x̂1 0 1

 .

We choose to eliminate the second coordinate ŷ1, then

h(−)(û) =

1 0 0 0
0 2ŷ1/x̂1 1 0
0 −2x̂2/x̂1 0 1

 .

Matrix h(−)(û) transforms Floquet vectors in the full state space into the slice which are
shown in Figure 8. The group tangent t(û), as one marginal vector, disappears and the
planes in Figure 7 collapse to the velocity field along the orbit shown in Figure 8(a). The
other two projected Floquet vectors are shown in Figure 8(b).
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Figure 8: In-slice Floquet vectors for relative periodic orbit 1. The red closed curve is 1.
(a) The marginal Floquet vector (pink). (b) The expanding (blue) and contracting (green)
Floquet vectors in the slice.

In a similar way [22], Floquet vectors on the slice could be projected onto a Poincaré
section. The projection matrix is

hP(û) = 1− |v̂〉〈∂U |〈v̂|∂U〉 ,

where U(x) = 0 defines the Poincaré section with ∂U its normal direction. v̂ is the in-slice
velocity. A Poincaré section can be fixed by choosing three points on it, or equivalently, by
three conditions. Here, we choose a “vertical” Poincaré section, namely, we demand that
the ŷ2 component of its normal direction vanishes. Next, this Poincaré section goes through
the origin (0, 0, 0) and a relative equilibrium

(x̂e1, x̂e2, ŷe2) = (0.439965, −0.386267, 0.070204) ,

shown in Figure 9. In this case, ∂U = (x̂e2,−x̂e1, 0) and we get

hP(û) =
1

v̂1x̂e2 − v̂2x̂e1

−v̂2x̂e1 v̂1x̂e1 0
−v̂2x̂e2 v̂1x̂e2 0
−v̂3x̂e1 v̂3x̂e1 v̂1x̂e2 − v̂2x̂e1

 .

Figure 9 shows the projected expanding and contracting Floquet vectors on the Poincaré
section. The marginal vector (velocity field) disappears.

Last, Figure 10 shows the Poincaré section and the two projected Floquet vectors. A
set of circularly distributed points around the intersection point evolves for one period and
their first returning points are recorded. The contracting direction is close to the vertical
direction, and (133) says that the contracting rate is large in this direction. Therefore, the
returning points are squashed heavily in the vertical direction; however, the magnitude of
expanding multiplier is about 1.5, so the elongation in the horizontal direction is relatively
small.

In summary, we have reduced the SO(2) symmetry of the two-mode system and discussed
the Floquet vectors of a specific relative periodic orbit in the full state space and in the
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Figure 9: A vertical Poincaré section is constructed from the origin (black point) and
a relative equilibrium (blue point) in the slice. The Poincaré section intersects 1 (the red
closed curve) at the green point. In-slice Floquet vectors are projected into the Poincaré
section. The red/blue vector is the expanding/contracting Floquet vector. The marginal
vector along the orbit disappears on the Poincaré section.

slice. The marginal direction along the group orbit tangent is eliminated by the slice.
Furthermore, we have constructed a Poincaré section of codimension two with respect to
the original system. In this Poincaré section, the relative periodic orbit 1 is reduced to a fixed
point with one expanding and one contracting Floquet vector, and the dynamics is greatly
simplified. This simple example illustrates why symmetry reduction is an indispensable tool
when studying dynamical systems with continuous symmetries.

40



Figure 10: A set of circularly (radis=0.1) distributed points (red) around the intersection
point evolves for one period. Their first returning points (green) are recorded. The pink and
blue arrows are the expanding and contracting Floquet vectors projected onto the Poincaré
section respectively. Here r = (x̂2

1 + x̂2
2)1/2.
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CHAPTER III

KURAMOTO-SIVASHINSKY EQUATION

Kuramoto-Sivashinsky equation is one of the most studied models of complex spatiotem-
poral dynamics in spatially extended systems. It was formulated independently by Ku-
ramoto in the context of angular phase turbulence in reaction-diffusion systems [55], and
by Sivashinsky in the study of hydrodynamic instability of laminar flames [63]. It also de-
scribes the instabilities of dissipative trapped ion modes in plasmas [58] and the flow of a
viscous liquid film down a vertical wall [75]. Its one-dimensional form is frequently written
as

ut +
1

2
(u2)x + uxx + uxxxx = 0 , x ∈ [0, L] (134)

defined on a periodic domain u(x, t) = u(x + L, t). In the combustion formulation, u(x, t)
represents the flame front velocity. Everyday experience tells us that a candle flame flickers
and its shape changes quite often, without any exterior influence. Therefore, Kuramo-
to-Sivashinsky equation is expected to exhibit chaotic behaviors. Figure 11 displays its
spatiotemporal profiles with domain size L = 100 and 200 respectively. Recurrent patterns
appear not only along the temporal axis but also along the spatial axis. This spatiotemporal
chaotic behavior is also observed in other spatially-extended dynamical systems such as
complex Ginzburg-Landau equation [76]. At the same time, Figure 11 provides coarse
information about the time and length scale of this “dimensionless” system. In all our
simulations, we set L = 22, which is large enough to exhibit complex spatiotemporal chaotic
dynamics [21].

3.1 Numerical setup

Periodic boundary condition enables us to transform (134) into a set of ODEs in the Fourier
space

ȧk = (q2
k − q4

k) ak − i
qk
2

∞∑
m=−∞

amak−m (135)

where qk = 2πk/L and the coefficients are complex,

ak = bk + ick .

Pseudo-spectral method [83] is deployed to evaluate terms in (135). That is, the linear
term is calculated in the Fourier space; while the nonlinear term is first transformed to the
physical space, calculated there and then transformed back to the Fourier space. In our
simulations, discrete Fourier transform is used with N = 64 modes, i.e., k = −N/2 + 1 up
to N/2 in (135).

Since u(x, t) is real, ak(t) = a∗−k(t); thus, only half of the Fourier modes are independent.
As ȧ0 = 0 from (135), we can set a0 = 0 corresponding to zero mean velocity without loss of
generality. Also, the nonlinear term of ȧN/2, in fact, has coefficient −i(qN/2 + q−N/2)/2 = 0
from symmetric consideration [83]; thus, aN/2 is decoupled from other modes and it can be
set to zero as well. Therefore, the number of independent variables is N − 2,

ũ = (b1, c1, b2, c2, · · · , bN/2−1, cN/2−1)> . (136)
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Figure 11: Simulations of the one-dimensional Kuramoto-Sivashinsky equation for do-
main size L = 100, 200 respectively with random initial conditions. The color represents
the magnitude of u(x, t).

This is the full state space in the discussion that follows.
The stiffness caused by the quaternary term in the linear part makes popular integration

methods such as fourth order Runge-Kutta inefficient in this case. Therefore, we resort to
exponential integrators [48, 64] to integrate the linear part exactly. In our simulations,
exponential time-differencing scheme combined with fourth order Runge-Kutta [19, 52] is
implemented to integrate (135). By this scheme, a relatively large time step can be used to
achieve a fourth-order global accuracy.

3.2 Symmetries

The one-dimensional Kuramoto-Sivashinsky equation has three different symmetries. Sup-
pose u(x, t) is an orbit in this system, then we have

• Galilean invariance: u(x−ct, t)+c is also a valid orbit, where c is a constant number.
These two orbits have different mean velocity

∫
dxu.

• Reflection invariance: −u(−x, t) is also a valid orbit. In the Fourier mode space,
reflection takes form ak → −a∗k.

• Translation invariance: u(x+ `, t) is another valid orbit. In the Fourier mode space,
translation takes form ak → eiqkφak with φ = 2π`/L.

The zeroth Fourier mode a0 represents the mean velocity of u(x, t). by setting a0 = 0 in
the integrator, we eliminate the Galilean symmetry. Therefore, we only need to account for
the O(2) symmetry of this system. Reflection in state space (136) takes the form

R = Diag(−1, 1, −1, 1, · · · ) .
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The translation symmetry corresponds to an one-parameter SO(2) group in the state space,

g(φ) = Diag(r1, r2, · · · , rN/2−1)

with

rk =

(
cos kφ sin kφ
− sin kφ cos kφ

)
.

The corresponding Lie group generator is

T = Diag(t1, t2, · · · , tN/2−1), tk =

(
0 k
−k 0

)
.

Based on the consideration of these symmetries, there are three types of invariant orbits
in Kuramoto-Sivashinsky system: periodic orbits in the bk = 0 invariant antisymmetric
subspace, preperiodic orbits which are self-dual under reflection, and relative periodic orbits
with a shift along group orbit after one period. As claimed in ref. [21], the first type is absent
for a domain as small as L = 22, and thus we focus on the last two types of orbits.

• For preperiodic orbits ũ(0) = Rũ(Tp) , we only need to evolve the system for a prime
period Tp which is half of the whole period. The Floquet matrix is Jp(ũ) = RJTp(ũ).

• A relative periodic orbit, ũ(0) = gpũ(Tp), returns after one period Tp to the initial
state upon the group transform gp = g(φp), so the corresponding Floquet matrix is
Jp(ũ) = gpJ

Tp(ũ).

In later sections, we calculate the stability of both preperiodic orbits and relative periodic
orbits. We anticipate that there are two marginal directions for both types of orbits. One
marginal direction corresponds to the velocity field and the other one is the group tangent,
which is proved in Example 3.1.

Example 3.1 v(ũ) and t(ũ) are the two marginal directions of both preperiodic orbits and rela-
tive periodic orbits The Jacobian matrix transports both velocity field and group tangent along
the flow JTpv(ũ(0)) = v(ũ(Tp)), JTpt(ũ(0)) = t(ũ(Tp)). Therefore, for preperiodic orbits, we have
Jpv(ũ(0)) = Rv(ũ(Tp)) = Rv(Rũ(0)). Here, we have used the definition of a preperiodic orbit and
the form of its Floquet matrix. By use of the equivariance relation of the velocity field under reflection
v(Rũ(0)) = Rv(ũ(0)), we get

Jpv(ũ(0)) = R ·Rv(ũ(0)) = v(ũ(0)) .

So, we see that the velocity field is one marginal direction of preperiodic orbits with Floquet multiplier
1. Similarly, for the group tangent we have Jpt(ũ(0)) = Rt(Rũ(0)) = R ·T ·Rũ(0) following definition
(104). Since reflection anti-commutes with rotation RT + TR = 0, then we have

Jpt(ũ(0)) = −T ·R ·Rũ(0) = −t(ũ(0)) .

Therefore, the group tangent is also a marginal direction of preperiodic orbits but with Floquet multiplier
−1. A group tangent reverses direction after one period for preperiodic orbits.

For relative periodic orbits, by a similar process we have

Jpv(ũ(0)) = gpv(g−1p ũ(0)) = v(ũ(0))

and
Jpt(ũ(0)) = gpt(g

−1
p ũ(0)) = t(ũ(0)) .

So, the velocity field v(ũ) and the group tangent t(ũ) are two degenerate Floquet vectors for relative
periodic orbits, but not degenerate for preperiodic orbits.
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In order to reduce O(2) symmetry, we can choose to reduce reflection symmetry first and
then translation symmetry, or vice versa. Note that reflection does not commute with
translation Rg(φ) = g(−φ)R, so the result of symmetry reduction depends on the order
we choose. In this section, we elect to quotient out the SO(2) symmetry by the technique
described in Sect. 2.2, more precisely, by the 1st mode slice [14] defined by

c1 = 0, b1 > 0 . (137)

This corresponds to choosing û′ = (1, 0, · · · , 0) as the template point in (107). The reduced
state space is denoted as

û = (b̂1, b̂2, ĉ2, · · · , b̂N/2−1, ĉN/2−1)> . (138)

Here, ĉ1 = 0 is omitted explicitly. We can rotate orbits in the full state space to the SO(2)-
reduced state space by transformation ak → e−ikφ1ak where φ1 is the phase of the first
Fourier mode. Alternatively, we can choose to integrate the system directly in the slice. For
a reduced state space point (138), which is a (N−3)-element vector, the corresponding group
tangent in the full state space is t(û) = (0,−b̂1, 2ĉ2,−2b̂2, · · · , (N/2 − 1)ĉN/2−1,−(N/2 −
1)b̂N/2−1)>. The template point is û′ = (1, 0, · · · , 0); then the corresponding group tangent
is t′ = (0,−1, 0, · · · , 0). From (115) we get the dynamics in the slice

v̂(û) = v(û) − φ̇(û)t(û) , φ̇(û) =
−Im [v1(û)]

b̂1
.

When an in-slice orbit gets close to the slice border b̂1 = 0, the trajectory can attain
arbitrarily high speed. To alleviate this numerical difficulty, we rescale the time step by
dt = b̂1dτ . Thus the time-rescaled dynamics in the slice is

dû

dτ
= b̂1v(û) + Im[v1(û)]t(û) . (139)

3.3 Invariant solutions

Invariant structures, together with their stable and unstable manifolds, shape the geomet-
rical structure of the state space. We also anticipate that spatiotemporal averages can be
calculated by periodic orbits, as discussed in Sect. 1.4.2. Since invariant structures play
such an important role in chaotic systems, we now discuss them in the one-dimensional
Kuramoto-Sivashinsky equation with L = 22. These include equilibria, relative equilibria,
preperiodic orbits, and relative periodic orbits, whose definitions can be found in Sect. 2.2.1.

3.3.1 Equilibria and relative equilibria

There are only three equilibria and two relative equilibria for domain size L = 22 [21].
They can be obtained by Newton-based numerical search such as the Levenberg-Marquardt
algorithm [59, 62] even with random initial inputs.

Figure 12 shows the profiles of these three equilibria. E1 is in the anti-symmetric sub-
space u(x, t) = −u(−x, t). E2 and E3 are period-2 and period-3 harmonic solutions. Since
a1 = 0, E2 and E3 are in the slice border.

Figure 13 shows the profiles of the two relative equilibria. Their time-evolution profiles
are shown in Figure 14(a)(c). The color of the heat map represents u(x, t). Both of them
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Figure 12: Three equilibria E1, E2, and E3 from left to right in the one-dimensional
Kuramoto-Sivashinsky equation.

Figure 13: Two relative equilibria TW1 (left) and TW2 (right) in the one-dimensional
Kuramoto-Sivashinsky equation.

have constant spatial translation velocity. That is why they are also called traveling waves.
The in-slice trajectories are shown in Figure 14(b)(d), in which translation symmetry has
been reduced. Note, TW2 fails to maintain its profile after t = 80 due to its instability. For
the stability exponents of these three equilibria and two relative equilibria, please see [21].

3.3.2 Preperiodic orbits and relative periodic orbits

Using a multishooting method, over 60 000 preperiodic orbits and relative periodic orbits [21]
are found with periods ranging from 10.25 to 200. All of them have either one or two unstable
directions. Let ppoT and rpoT denote the preperiodic orbit and relative periodic orbit with
period T respectively. Figure 15 shows the shortest three preperiodic orbits and shortest
three relative periodic orbits. A preperiodic orbit reflects itself after one prime period, so
it is truly periodic after two prime periods. While a relative periodic orbit has a specific
spatial translation after each period. Figure 16 shows the corresponding in-slice orbits.
Since translation symmetry has been reduced, relative periodic orbits become periodic in
the slice. Note, some of them undergo quick twists at certain times. This is because we
are using a post-processing method to transform orbits in the full state space to the slice;
therefore, when an orbit gets close to the slice border, the rotation phase jumps sharply. If
we integrate the system directly in the slice by (139), then time will dilate when an orbit
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(a) (b) (c) (d)

Figure 14: (a)(c) TW1 and TW2 in the full state space. (b)(d) TW1 and TW2 in the
slice.

Figure 15: The shortest three preperiodic orbits and three relative periodic orbits in the
full state space. Left three: ppo10.25, ppo14.33 and ppo32.36. Right three: rpo16.31, rpo32.80

and rpo33.50.

gets close to the slice border.
This set of preperodic or relative periodic orbits forms the backbone of the global at-

tractor. An ergodic trajectory shadows one orbit for a certain period and then is repelled
to the neighborhood of another orbit. This random walk is determined by the stability
of the preperodic and relative periodic orbits. Table 7 gives the Floquet exponents of the
six orbits in Figure 15, which are obtained by periodic eigendecomposition algorithm that
will be covered in Chapter 5. There are a few observations. First, all orbits have one or
two unstable directions and are weakly unstable. ppo14.33 and rpo16.31 are the two most
unstable orbits in our database. Second, all orbits have two marginal directions. For prepe-
riodic orbits, one marginal direction has inverse hyperbolicity, i.e., one Floquet multiplier
is equal to −1. This was proved in Example 3.1. Third, the leading 8 Floquet exponents
vary sharply among different orbits, but the remaining spectrum is similar. More precisely,
for large index k, the real parts of Floquet exponents lie on the curve (q2

k − q4
k) as shown

in Figure 17 for ppo10.25. This means that the nonlinear term in (135) is almost negligible
for higher Fourier modes, and thus they are decoupled from other modes and shrink ex-
ponentially with rate |q2

k − q4
k|. Also, Floquet exponents appear in pairs for large indices
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Figure 16: Orbits of Figure 15 in the slice.

Figure 17: The real parts of the Floquet exponents paired for a given k as (k, µ(2k−1))
and (k, µ(2k)) for ppo10.25. The dashed line (green) is q2

k − q4
k with qk = 2πk/L. The inset

is a magnification of the region containing the 8 leading exponents.

simply because the real and complex part of high Fourier modes have a similar contraction
rate. From these observations, we gain an intuition of how many directions are important
in shaping the neighborhood of a pre/relative periodic orbit.

3.4 Floquet vectors

Floquet vectors are important for shaping the geometrical structure of the global attrac-
tor in a dissipative system. Floquet vectors of a pre/relative periodic orbit stratify the
neighborhood of this orbit. They give a rough picture of the dynamics close to this or-
bit. On the other hand, the stable and unstable manifolds of this orbit are tangent to
the Floquet vectors, so numerically we grow the unstable manifolds from unstable Floquet
vectors. Thus, Floquet vectors provide a way of studying the dynamics far away from this
orbit. Calculating Floquet vectors is not an easy task due to the large range of orders of
expansion/contraction rates indicated by Table 7. However, with the invention of periodic
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Table 7: The first 10 and last four Floquet multipliers Λi = exp(T µ(i) ± iθi) for six
representative orbits. θi column lists either the phase, if the Floquet multiplier is complex,
or ‘-1’ if the multiplier is real, but inverse hyperbolic.

ppo10.25 ppo14.33 ppo32.36

i µ(i) θi i µ(i) θi i µ(i) θi
1,2 0.033209 ±2.0079 1 0.31095 -1 1,2 0.064755 ±1.9790
3 -4.1096e-13 2 -1.7825e-12 3 -6.3772e-14
4 -3.3524e-14 -1 3 2.5049e-13 -1 4 1.9306e-13 -1
5 -0.21637 4 -0.12154 -1 5 -0.17511
6,7 -0.26524 ±2.6205 5 -0.20150 6 -0.24418 1
8 -0.33073 -1 6 -0.29265 -1 7,8 -0.27968 ±0.6990
9 -1.9605 7,8 -0.34313 ±1.7872 9 -1.9868 -1
10 -1.9676 -1 9 -1.9530 -1 10 -1.9891

10 -1.9928
· · · · · · · · ·

59 -5313.6 -1 59 -5312.7 -1 59 -5313.3 -1
60 -5317.6 60 -5318.4 60 -5317.9
61 -6051.8 -1 61 -6057.8 61 -6052.9
62 -6080.4 62 -6074.4 -1 62 -6079.2 -1

rpo16.31 rpo32.80 rpo33.50

i µ(i) θi i µ(i) θi i µ(i) θi
1 0.32791 1,2 0.018610 ±1.397964 1 0.073049
2 2.8679e-12 3 6.1717e-14 2 0.015160 -1
3 2.3559e-13 4 -5.7430e-14 3 1.1725e-14
4 -0.13214 -1 5 -0.19688 -1 4 -8.8541e-14
5,6 -0.28597 ±2.7724 6 -0.24726 -1 5 -0.11390 -1
7 -0.32821 -1 7,8 -0.30869 ±2.20628 6 -0.25224
8 -0.36241 9 -1.9660 -1 7,8 -0.26398 ±1.0521
9,10 -1.9617 ±2.2411 10 -1.9575 -1 9,10 -1.993196 ±0.60493

· · · · · · · · ·
59 -5314.4 59 -5313.9 59 -5313.2 -1
60 -5317.7 60 -5317.2 60 -5318.0 -1
61 -6059.2 61 -6053.9 -1 61 -6052.5
62 -6072.9 62 -6078.3 -1 62 -6079.7

eigendecomposition algorithm (Chapter 5), we are able to get a full set of Floquet vectors
at each point of a pre/relative periodic orbit.

Figure 18 shows the real part of the 1st Floquet vector, the 5th, the 10th and 30th
Floquet vectors of ppo10.25. As index increases, Floquet vectors behave more like pure
Fourier modes. Figure 19 shows a few selected Floquet vectors along ppo10.25 and rpo16.13 for
one prime period respectively. We can see that the spatiotemporal plots of the few leading
Fv s, see panels (a,b) and (e,f), exhibit turbulent structures containing only long waves,
for both ppo10.25 and rpo16.13, but for Floquet vectors corresponding to strong contraction
rates, i.e., panels (c,d), (g,h), the configurations are almost pure sinusoidal curves. The
power spectra in Figure 20 demonstrate this point too. The leading 8 Floquet vectors have
large components in the first 5 Fourier modes and the spectra are entangled with each
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(a) (b)

(c) (d)

Figure 18: Floquet vectors of ppo10.25 at t = 0 in Figure 15. (a) is the real part of the
1st Floquet vector. (b), (c) and (d) are the 5th, 10th, and 30th Floquet vectors.

other; while the remaining Floquet vectors almost concentrate on a single Fourier mode
and are decoupled from each other; more specifically, the ith Floquet vector with i ≥ 9
peaks at the d i2eth1 mode in Figure 20. Takeuchi et al. [79, 90] observe similar features in
covariant vectors along ergodic trajectories and by measuring the tangency between these
two groups of covariant vectors, they reach a reasonable conclusion about the dimension
of the inertial manifold in Kuramoto-Sivashinsky equation and complex Ginzburg-Landau
equation. Therefore, we anticipate that analyzing the tangency of Floquet vectors along
different pre/relative periodic orbits can also lead to the same conclusion, which will be
discussed in detail in Chapter 4.

3.5 Unstable manifolds and shadowing

Unstable manifolds of the three equilibria and the two relative equilibria, and their con-
necting orbits in the full state space have been discussed in detail in [21]. With the advance
in the technique of symmetry reduction, we have a better picture of the in-slice state space.
Moreover, relative periodic orbits become periodic in the slice, which helps us organize the

1 Here, dxe denotes the smallest integer no less than x.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 19: (a) ∼ (d) : the 1st (real part), 5th, 10th and 30th Floquet vector along
ppo10.25 for one prime period. (e) ∼ (h) : the 1st, 4th (real part), 10th (imaginary part)
30th (imaginary part) Floquet vector along rpo16.31 for one prime period. Axes and color
scale are the same as Figure 15.

pre/relative periodic orbits in our database. In this section, we will discuss the unstable
manifolds of (relative) equilibria and show shadowing incidences of different orbits.

3.5.1 O(2) symmetry reduction

Sect. 3.2 introduces the 1st mode slice to reduce SO(2) in the one-dimensional Kuramoto-
Sivashinsky equation. Here, we go one step further, i.e., quotienting out reflection symmetry
in the 1st mode slice. Different from the invariant polynomial approach used by N. B.
Budanur [11, 12], we turn to the fundamental domain.

In Sect. 3.2, the 1st mode slice (137) is defined as the half hyperplane c1 = 0, i.e., the
imaginary part of the 1st mode vanishes. Here, when reducing reflection in the slice, we
find it is more convenient to define the slice as

b1 = 0, c1 > 0 , (140)

namely, we let the real part of the 1st mode vanish. Literature [14, 27] all chooses (137).
That is why we insist on using (137) to define the 1st mode slice in other chapters of this
thesis. Thus conversion (140) is only used in this section. The benefit of using (140) instead
of (137) in this section is that the reflection axis is parallel to the slice (140) such that the
reflection rule does not change from the full state space to the slice.

Example 3.2 Reflection rule is invariant under SO(2) reduction by (140) Suppose two states
u1 and u2 in the full state space are related to each other by reflection, u2 = Ru1. Let û1 and û2 be
their reduced states in the slice (140). If the 1st Fourier mode of u1 is (b1 + ic1), then the 1st Fourier
mode of u2 is (−b1 + ic1). So if g(φ1) transforms u1 onto the positive imaginary axis in (b1, c1) plane,
that is, û1 = g(φ1)u1, then û2 = g(−φ1)u2 as shown in Figure 21. Therefore,

û2 = g(−φ1)Ru1 = Rg(φ1)u1 = Rû1 .

Here we have used the anti-commuting relation g(−φ)R = Rg(φ). So we see that the choice of slice
(140) keeps the reflection rule unchanged.

The reflection operator is R = Diag(−1, 1, −1, 1, · · · ). Since b̂1 = 0 in the slice, thus b̂k
with k > 1 changes sign after reflection. We define the fundamental domain in the slice as

b̂2 > 0 . (141)
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(a) (b)

Figure 20: The power spectrum of the first 30 Floquet vectors for ppo10.25 (left) and
rpo16.31 (right) at t = 0. Red lines correspond to the leading 8 Floquet vectors; while the
blue lines correspond to the left 22 Floquet vectors with the ith one localized at index d i2e.
Power at index k is defined to be the square of the kth Fourier coefficient’s magnitude of
Floquet vectors. The x-axis is labeled by the Fourier mode indices. Only the k > 0 part is
shown, and the part for negative k follows by reflection. For complex Floquet vectors, the
power spectra of the real part and imaginary part are calculated separately. Since almost
all contracting Floquet vectors of rpo16.31 form complex conjugate pairs, their power peaks
are far less than 1, as shown in panel (b).

Whenever an in-slice orbit leaves the fundamental domain, we transform it back by reflec-
tion. With the sacrifice of allowing discontinuity, we quotient out O(2) symmetry in the
one-dimensional Kuramoto-Sivashinsky equation.

3.5.2 Unstable manifold of E2

There are three equilibria E1, E2 and E3 and two relative equilibria TW1 and TW2 in this
system. E2 and E3 are symmetric under shifts by L/2 and L/3 respectively as shown in
Figure 12. As shown in [21], one branch of the unstable manifold of E1 and the unstable
manifold of E3 terminate at E2 or its symmetry-equivalent counterparts in the full state
space. Also, the unstable manifold of E2 is a set of homoclinic orbits of itself. Therefore,
we believe that E2 has a large influence on the geometrical structure of the in-slice state
space.

Figure 22 shows the unstable manifold of E2 and several pre/relative periodic orbits in
the fundamental domain projected into some Fourier mode subspace. Since E2 and E3 are
in the slice border, their SO(2) symmetry can not be quotiented out by the 1st mode slice.
The blue and green straight lines are the group orbits of E2 and E3 in the slice respectively.
These two lines depict the slice border in this three-dimensional subspace. Note, this does
not mean that the unstable manifold of E2 should also live in the slice. Actually, E2

has one pair of unstable complex conjugate stability eigenvectors, which do have nonzero
first Fourier mode components. Hence, the corresponding unstable manifolds have unique
locations, determined by the first Fourier mode phase of this pair of eigenvectors, in the
symmetry reduced state space.

There are a few interesting observations in Figure 22. First, the pre/relative periodic
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c1
u2 u1

φ1−φ1

Figure 21: Illustration of the phase relation in Example 3.2.

orbits look continuous, but in fact, they are discontinuous in the fundamental domain. We
choose the three-dimensional subspace to be (ĉ1, ĉ3, ĉ2) which is invariant under reflection.
Thus reflection has no effect on this specific projection. Second, the unstable manifold of
E2 is discontinuous. Whenever it crosses the slice border, there is a phase jump by π, which
causes ĉ3 to change sign. Third, we can see that both ppo8 (ppo41.08) and rpo3 (rpo33.50)
shadow the unstable manifold of E2 for a certain period of time. Actually, there are plenty
of pre/relative periodic orbits in our database that shadow the unstable manifold of E2. In
this sense, E2 plays a substantial role in shaping the dynamics.

3.5.3 Shadowing among orbits

In Figure 22, we see that ppo2 (ppo14.33) is quite similar to rpo1 (rpo16.31). Actually, these
two orbits shadow each other and have similar periods. There are a lot of other shadowing
incidences between different pre/relative periodic orbits. For example, in Figure 23(a),
rpo57.59 shadows rpo16.31 and rpo35.97 closely. The period of this longer orbit is close to the
sum of the periods of the two shorter orbits. In Figure 23(b), ppo57.67 shadows ppo14.33 for
a certain period of time. Shadowing helps us classify all the pre/relative periodic orbits
and helps build the symbolic dynamics of this system. This is important for the spectral
determinant (73) to converge quickly when it is expanded by only a few short orbits [22].

On the other hand, preperiodic orbits and relative periodic orbits frequently show up in
pairs in the one-dimensional Kuramoto-Sivashinsky equation. For instance, rpo57.59 in Fig-
ure 23(a) and ppo57.67 in Figure 23(b) are such a pair. N. B. Budanur and P. Cvitanović [12]
believe that this phenomenon comes from symmetry-breaking bifurcation as the domain size
L is varied.
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(a)

(b)

Figure 22: The unstable manifold of E2 in the fundamental domain in the slice. The
dense set of thin curves is the unstable manifold of E2. The blue and green straight lines are
the group orbits of E2 and E3 respectively. ppo2 is ppo14.33 in Figure 15. rpo1 is rpo16.31.
ppo8 is ppo41.08. rpo3 is rpo33.50. Projection axes are the imaginary parts of the first 3
Fourier modes [v1, v2, v3] = [ĉ1, ĉ3, ĉ2]. This set is invariant under reflection.
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(a)

(b)

Figure 23: Shadowing among pre/relative periodic orbits in the fundamental domain.
The dense set of thin curves is the unstable manifold of E2. The two straight lines are the
group orbits of E2 and E3 respectively. Projection axes are the imaginary parts of the first
3 Fourier modes [v1, v2, v3] = [ĉ1, ĉ3, ĉ2]. This set is invariant under reflection. (a) The three
relative periodic orbits are (red) rpo16.31, (blue) rpo35.97 and (black) rpo57.59. (b) The red
preperiodic orbit is ppo2 (ppo14.33). The black preperiodic orbit is ppo24 (ppo57.67).
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CHAPTER IV

THE INERTIAL MANIFOLD OF A KURAMOTO-SIVASHINSKY
SYSTEM

As stated in Sect. 1.2, dynamics in chaotic dissipative systems is expected to land, after
a transient period of evolution, on the inertial manifold [18, 34, 70, 80, 81], which is a
finite-dimensional object in state space. This is true even for infinite-dimensional systems
described by partial differential equations, and offers hope that their asymptotic dynamics
may be represented by a finite set of ordinary differential equations.

The existence of a finite-dimensional inertial manifold has been established for systems
such as the Kuramoto-Sivashinsky, the complex Ginzburg-Landau, and some reaction-
diffusion systems [81]. For the Navier-Stokes flows its existence remains an open prob-
lem [80], but dynamical studies, such as the determination of sets of periodic orbits em-
bedded in turbulent flows [40, 86], strengthen the case for a geometrical description of
turbulence.

In this chapter, we discuss the existence and the dimension of the global attractor
and the inertial manifold for a particular one-dimensional Kuramoto-Sivashinsky system,
defined on a “minimal domain”. Our discussion has two parts. In Sect. 4.1, we review the
mathematical proof of the existence of a global attractor and the rigorous bounds for the
dimension of the inertial manifold. In Sect. 4.2, we determine the dimension of the inertial
manifold by the numerical study of Floquet vectors along pre/relative periodic orbits for
this particular system.

4.1 The existence of an inertial manifold

As discussed in Sect. 1.2.3, an inertial manifold is the graph of a map Φ : PnM 7→ QnM,
where Pn is the projection to the eigenspace spanned by the eigenvectors of ∂xx + ∂xxxx,
corresponding to its smallest n eigenvalues. ∂xx + ∂xxxx has eigenvalues −q2

k + q4
k with

Fourier modes as eigenvectors. Thus the existence of an inertial manifold indicates that
a finite number of low frequency Fourier modes can describe the asymptotic behavior of
this system. Any trajectory will be attracted to this manifold exponentially fast. This
expectation is also reflected in (135), where the velocity field of a high frequency Fourier
mode, i.e., ak with large k, is dominated by the linear part (q2

k−q4
k) ak. Thus, high frequency

Fourier modes are almost decoupled from other modes.
An inertial manifold exists in a system which possesses the strong squeezing property

(22)–(25). As shown in Theorem 1.7, as long as the spectrum of ∂xx+∂xxxx has a sufficiently
large gap for some n, then an inertial manifold exists. The kth eigenvalue of ∂xx + ∂xxxx is
λk = −q2

k+q4
k. so λn+1−λn is unboundedly increasing with respect to n. In one-dimensional

Kuramoto-Sivashinsky equation (134), the nonlinear part of the velocity field is −uux. If
we can determine a Lipschitz constant C1 for −uux, then surely there is an n such that
λn+1 − λn > 4C1. As a result, an inertial manifold exists.

Strong squeezing property has been shown to hold for one-dimensional Kuramoto-Siva-
shinsky equation (Theorems 3.2 and corollary 3.7 in [35], Theorem 4 in [69]). Moreover,
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Robinson (Corollary 5 in [69]) states that if there is an absorbing ball with radius O(Lα) 1 in
the one-dimensional Kuramoto-Sivashinsky equation, then an inertial manifold exists with
dimension bounded above by O(L3α/5+3/2). Also, Theorem 1.3 says that a global attractor
exists if an absorbing set exists in the state space. Therefore, both a global attractor and
an inertial manifold exist, provided the existence of an absorbing set in the state space,
which is a Hilbert space with the L2 norm

‖u ‖2 =

(∫ L

0
u2dx

)1/2

.

4.1.1 Rigorous upper bounds

In 1985, Nicolaenko, Scheurer and Temam [65] gave the first asymptotic boundedness of the
L2 norm of u(x, t) in the antisymmetric subspace, showing the existence of an absorbing
ball S = {u : ‖u ‖2 ≤ CL5/2} for antisymmetric solutions. They also show that the Haus-
dorff dimension of the global attractor is bounded above by O(L13/8). This antisymmetric
assumption was later removed by Goodman [43]. The estimate was improved by Collet et
al. [17] who extended it to the whole state space and improved the exponent from 5/2 to
8/5. In 2006, Bronski and Gammbill [10] gave a better upper bound

lim sup
t→∞

‖u ‖2 = O(L
3
2 ) . (142)

All these results were obtained through the Lyapunov function approach, the main idea of
which is to find an appropriate gauge function Φ(x):

u(x, t) = v(x, t) + Φ(x) (143)

such that the transformed field ‖ v(x, t) ‖2 is bounded. Upper bound (142) is claimed to
be the best result one can get by the Lyapunov function approach. On the other hand, by
treating Kuramoto-Sivashinsky equation as a perturbation of Burgers’ equation, Giacomelli
and Otto [39] proved that 2

lim sup
t→∞

||u||2 = o(L
3
2 ) . (144)

Later on, Otto [67] shows that

lim sup
t→∞

1

T

∫ T

0
dt ‖ |∂x|αu ‖2 = O(L · ln10/3 L) , 1/3 < α ≤ 2 ,

and claims that it is the optimal bound for the one-dimensional Kuramoto-Sivashinsky
equation. The norm of the time-averaged fractional derivatives of u(x, t) is almost propor-
tional to L1/2. Bronski and Gammbill [10] also claim that 1/2 is believed to be the best
possible exponent.

Based on an upper bound of size of the attracting set, we can estimate the dimension
of the inertial manifold. In 1988, Foias, Nicolaenko, Sell and Temam [35] gave an upper
bound O(L7/2) for the dimension of the inertial manifold. Better estimate O(L2.46) is

1 The big-O notation: f(x) = O(g(x)) if and only if there exists a positive real number M and a real
number x0 such that |f(x)| ≤M |g(x)| for all x ≥ x0.

2 The little-O notation : f(x) = o(g(x)) if and only if there exists a a real number x0 such that |f(x)| ≤
M |g(x)| for all x ≥ x0 and for all positive real number M .
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given in ref. [33, 50]. Based on bound (144), the upper bound can be further improved to
o(L12/5) [39].

In the remaining part of this section, we show the existence of an absorbing ball through
the Lyapunov function approach. The main result comes from the work of Collet et al. [17].
Though the estimate is not optimal, it demonstrates the general process of obtaining the
upper bound by choosing an appropriate gauge function in (143).

4.1.2 Existence of an absorbing ball

Due to Galilean invariance of the Kuramoto-Sivashinsky equation, we impose zero mean
velocity

∫ L
0 u(x, t)dx = 0 in the state space. Then we state that

Theorem 4.1 There is an absorbing ball S with radius CL8/5 in the one-dimensional Ku-
ramoto-Sivashinsky equation defined on a periodic domain [0, L]. Here, C is a constant.

Here, for simplicity, we only provide the proof of theorem 4.1 for the antisymmetric case.
For the full proof, please refer [17, 50]. That is , we impose that both v(x, t) and Φ(x) in
(143) have period L and are antisymmetric: v(−x, t) = −v(x, t), Φ(−x) = −Φ(x). Then
rewriting Kuramoto-Sivashinsky equation (134) in terms of v(x, t), we have

vt = (−∂2
x − ∂4

x)(v + Φ)− vvx − vΦx − Φvx − ΦΦx .

Multiplying on both sides of the above equation with v and integrating over the whole
domain, we get

1

2
∂t

∫
v2 =

∫
v(−∂2

x − ∂4
x)(v + Φ)−

∫
v2vx −

∫
v2Φx −

∫
vΦvx −

∫
vΦΦx

=

∫
v(−∂2

x − ∂4
x)(v + Φ)− 0−

∫
v2Φx +

1

2

∫
v2Φx −

∫
vΦΦx

=

∫
v(−∂2

x − ∂4
x)(v + Φ)− 1

2

∫
v2Φx −

∫
vΦΦx . (145)

In the above,
∫
v2vx vanishes because of the periodic boundary condition. From (145), we

see that the evolution of ‖ v(x, t) ‖22 depends on the choice of the gauge function. In order
to bound ‖ v(x, t) ‖2, we need to bound the right side of (145) for some carefully chosen
gauge function Φ(x). Before that, we define notation

(v1, v2)γΦ =

∫
v1(∂2

x + ∂4
x + γΦx)v2 . (146)

Therefore, (145) becomes

1

2
∂t

∫
v2 = −(v, v)Φ/2 − (v,Φ)Φ . (147)

To bound the right side of (147), we bring up two propositions.

Proposition 4.2 There is a constant K and an antisymmetric gauge function Φ(x) such
that for all γ ∈ [1

4 , 1] and all antisymmetric v(x, t) one have inequalities

(v, v)γΦ ≥
1

4

∫
(v2
xx + v2) and (148)

(Φ,Φ)γΦ ≤ KL16/5 . (149)
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Proposition 4.3 Definition (146) defines an inner product in the L2 space.

With these two propositions, we then continue from (147),

1

2
∂t

∫
v2 ≤ −(v, v)Φ/2 + (v, v)

1/2
Φ (Φ,Φ)

1/2
Φ (150)

= −(v, v)Φ/2 + (ε(v, v)Φ)1/2

(
1

ε
(Φ,Φ)Φ

)1/2

≤ −(v, v)Φ/2 +
ε

2
(v, v)Φ +

1

2ε
(Φ,Φ)Φ

= −
∫
v

(
(1− ε

2
)(∂2

x + ∂4
x) + (

1

2
− ε

2
)γΦx

)
v +

1

2ε
(Φ,Φ)Φ

= −(1− ε

2
)(v, v)Φ( 1

2
− ε

2
)/(1− ε

2
) +

1

2ε
(Φ,Φ)Φ

≤ −(1− ε

2
)
1

4

∫
(v2
xx + v2) +

1

2ε
(Φ,Φ)Φ (151)

≤ −(1− ε

2
)
1

4

∫
v2 +

1

2ε
(Φ,Φ)Φ .

We set ε = 2/3 to make (1
2 − ε

2)/(1− ε
2) = 1/4, so we get

∂t

∫
v2 ≤ −1

3

∫
v2 +

3

2
(Φ,Φ)Φ . (152)

Step (150) has used proposition 4.3 such that Cauchy-Schwarz inequality can be applied
: (v,Φ)2 ≤ (v, v)(Φ,Φ). Step (151) has used (148) in proposition 4.2. Derivative of

∫
v2

is bounded as shown in (152) and note that term 3
4(Φ,Φ)Φ does not depend on time, so

applying lemma 1.5, we obtain∫
v(x, t)2dx ≤ e−t/3

∫
v(x, 0)2dx+

9

2
(1− et/3)(Φ,Φ)Φ . (153)

Since u(x, t) = v(x, t) + Φ(x), we therefore obtained an absorbing ball in the Kuramoto-
Sivashinsky equation centered at Φ(x) with radius ρ > ρ0, where

ρ0 = 3

√
(Φ,Φ)Φ

2
= O(L8/5) . (154)

Here, we have used relation (149). Actually, Jolly, Rosa, and Temam [50] constructed a
gauge function such that the L2 norm of Φ is bounded ‖Φ ‖2 = O(L3/2). Therefore, the
center of the absorbing ball can be moved to the origin. Thus

lim sup
t→∞

‖u(x, t) ‖2 = O(L8/5) +O(L3/2) = O(L8/5) .

As shown in (154), the radius of the absorbing ball depends on the choice of the gauge
function Φ(x). To make the radius as small as possible, we try to minimize the exponent in
(149) and at the same time to meet the requirement of (148). This requires us to choose the
gauge function with the least norm which also supports (149) and proposition 4.3. Actually,
proposition 4.3 is a natural corollary of proposition 4.2. The reason is as follows. Apparently,
the bilinear form (146) satisfies relations (λv1 + µv2, v3)γΦ = λ(v1, v3)γΦ + µ(v2, v3)γΦ and
(v1, v2)γΦ = (v2, v1)γΦ. In order to make it an inner product, we only need to demonstrate
that (v, v)γΦ ≥ 0 with equality if and only if v = 0. Equation (148) provides this relation.
Therefore, we only need to prove proposition 4.2, which is given in appendix B.
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4.2 Numerical evidence provided by Floquet vectors

While mathematical approaches provide rigorous bounds on dimensions of inertial mani-
folds, their constructive description remains a challenge. In this section, we provide numer-
ical evidence that gives a specific integer dimension of the inertial manifold inside the one-
dimensional Kuramoto-Sivashinsky equation. We show that the finite-dimensional physical
manifold can be precisely embedded in its infinite-dimensional state space, thus opening a
path towards its explicit construction. The key idea [22] is to populate the inertial man-
ifold by an infinite hierarchy of unstable time-invariant solutions, such as periodic orbits,
an invariant skeleton which, together with the local “tiles” obtained by linearization of the
dynamics, fleshes out the physical manifold. Chaos can then be viewed as a walk on the
inertial manifold, chaperoned by the nearby unstable solutions embedded in the physical
manifold. Unstable periodic orbits have already been used to compute global averages of
spatiotemporally chaotic flows [16, 21, 40, 56].

In our analysis, we use 200 preperiodic orbits and 200 relative periodic orbits. These
are the shortest periodic orbits taken from the set of over 60 000 determined in ref. [21]
by near-recurrence searches. The method preferentially finds orbits embedded in the long-
time attracting set but offers no guarantee that all orbits up to a given period have been
found. There are infinitely many unstable orbits, and each of them possesses infinitely
many Floquet modes. While in the example that we study here we do not have a detailed
understanding of the organization of periodic orbits (their symbolic dynamics), we show
that one only needs to consider a finite number of them to tile the physical manifold to a
reasonable accuracy. We also show, for the first time, that each local tangent tile spanned
by the Floquet vectors of an unstable periodic orbit splits into a set of physical Floquet
modes and the remaining set of spurious modes. Furthermore, we verify numerically that
the physical Floquet manifold coincides locally with the physical manifold determined by
the covariant Lyapunov vectors approach.

4.2.1 Motivation from covariant vectors

Recent progress towards this aim came from numerical investigations of the covariant vectors
of spatiotemporally chaotic flows [79, 90], made possible by the algorithms developed in
refs. [41, 42, 87]. These works have revealed that the tangent space of a generic spatially-
extended dissipative system is split into two hyperbolically decoupled subspaces: a finite-
dimensional subspace of “entangled” or “physical” Lyapunov modes (referred to in what
follows as the “physical manifold”), which is presumed to capture all long-time dynamics,
and the remaining infinity of transient (“isolated,” “spurious”) Lyapunov modes. Covariant
(Lyapunov) vectors span the Oseledec subspaces [28, 66] and thus indicate the intrinsic
directions of growth or contraction at every point on the physical manifold. The dynamics
of the vectors that span the physical manifold is entangled, with frequent tangencies between
them. The spurious modes, on the other hand, are damped so strongly that they are isolated
- at no time do they couple by tangencies to the physical modes. Specifically, for domain
size L = 22, the physical manifold consists of the leading 8 covariant vectors.

It was conjectured in ref. [79, 90] that the physical manifold provides a local linear ap-
proximation to the inertial manifold at any point on the attractor, and that the dimension
of the inertial manifold is given by the number of the physical Lyapunov modes. Further
support for this conjecture was provided by ref. [89], which verified that the vectors con-
necting pairs of recurrent points –points on the chaotic trajectory far apart in time but
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nearby each other in state space– are confined within the local tangent space of the physical
manifold.

While these works showed that the physical manifold captures the finite dimensionality
of the inertial manifold, they do not tell us much about how this inertial manifold is ac-
tually laid out in state space. This is the primary reason that we instead study the set of
pre/relative periodic orbits inside this system as they form the backbone the attractor.

4.2.2 Decoupling of local Floquet exponents
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Figure 24: (a) Floquet exponents for ppo10.25 (circles), rpo16.31 (squares), and Lyapunov
exponents of a chaotic trajectory (crosses). The inset shows a close-up of the 8 leading
exponents. For the full Floquet spectrum of these two orbits, see Table 7. (b) Time
series of local Floquet exponents λj(u(t)) for ppo10.25. (c) Close-up of (b) showing the
8 leading exponents. Dashed lines indicate degenerate exponent pairs corresponding to
complex Floquet multipliers.

The definitions of Floquet exponents and Floquet vectors are given in Sect. 1.3.1. More
specifically, for preperiodic orbits and relative periodic orbits defined in Sect. 3.2, Floquet
multipliers Λj and vectors ej(u) are the eigenvalues and eigenvectors of Jacobian matrix
Jp = RJTp or Jp = g(θp)J

Tp for pre-periodic or relative periodic orbits, respectively, ex-
plained in Sect. 3.2. The Floquet exponents λj (if complex, we shall only consider their
real parts, with multiplicity 2) are related to multipliers by λj = ln |Λj |/Tp. For an orbit
(λj , ej) denotes the jth Floquet (exponent, vector); for a chaotic trajectory it denotes the
jth Lyapunov (exponent, vector).
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Figure 24 (a) shows the Floquet exponents spectra for the two shortest orbits, ppo10.25

and rpo16.31, overlaid on the Lyapunov exponents computed from a chaotic trajectory. The
basic structure of this spectrum is shared by all 400 orbits used in our study. 3 For
chaotic trajectories, hyperbolicity between an arbitrary pair of Lyapunov modes can be
characterized by a property called the domination of Oseledec splitting (DOS) [7, 68].
Consider a set of finite-time Lyapunov exponents

λτj (u) ≡ 1

τ
ln ||Jτ (u)ej(u)|| , (155)

with L2 normalization ‖ ej(u) ‖ = 1. A pair of modes j < ` is said to fulfill ‘DOS strict
ordering’ if λτj (u) > λτ` (u) along the entire chaotic trajectory, for τ larger than some lower
bound τ0. Then this pair is guaranteed not to have tangencies [7, 68]. For chaotic trajecto-
ries, DOS turned out to be a useful tool to distinguish physical modes from hyperbolically
decoupled spurious modes [79, 90]. Periodic orbits are by definition the infinite-time orbits
(τ can be any repeat of Tp), so generically all nondegenerate pairs of modes fulfill DOS.
Instead, we find it useful to define, by analogy to the ‘local Lyapunov exponent’ [9], the
‘local Floquet exponent’ as the action of the strain rate tensor [57] 2D(u) = A(u)> +A(u)
(where A is the stability matrix (28)) on the normalized jth Floquet eigenvector,

λj(u) = ej(u)>D(u) ej(u) = lim
τ→0

λτj (u) . (156)

We find that time series of local Floquet exponents λj(u(t)) indicate a decoupling of the
leading ‘physical’ modes from the rest of the strictly ordered, strongly negative exponents
[Figure 24 (b) and (c)]. Another example, the local Floquet exponents of rpo16.31 is shown
in Figure 25. Perhaps surprisingly, for every one of the 400 orbits we analyzed, the number
of the physical Floquet modes was always 8, equal to the previously reported number of the
physical Lyapunov modes for this system [89]. 4 This leads to our first surmise: (1) each
individual orbit embedded in the attracting set carries enough information to determine the
dimension of the physical manifold.

4.2.3 Decoupling of Floquet vectors

For an infinite-time chaotic trajectory, hyperbolicity can be assessed by measuring the
distribution of minimal principal angles [6, 53] between any pair of subspaces spanned by
Lyapunov vectors [41, 79, 90]. For any two subspaces U and V , the kth principal angle θk is
defined as cos(θk) = max(u>v). Here, u and v are two normalized vectors in U and V and
are subject to restriction u>ui = 0 , v>vi = 0 for i = 1, . . . , k − 1. Here, ui and vi achieve
the ith principal angle. Therefore, we can also write cos(θk) = (u>k vk). Principle angles
provide information about the relative position of these two subspaces in their embedding
space. For our purpose, we are only interested in the first principal angle which is the
smallest angle that can be formed by two arbitrary vectors from these two subspaces. Let
U = QuRu and V = QvRv be the QR decomposition of U and V respectively, then the first
principal angle is given as θ1 = arccos(σ1), with σ1 the smallest singular value of Q>uQv.
In the following, whenever we say principal angle θ or φ, we shall be referring to the first
principal angle.

3 Refs. [79, 89, 90] include the marginal Galilean symmetry mode in the mode count; here this mode is
absent, as we have set

∫
u(x, t)dx = 0. Consequently, the number of the physical modes (the dimension of

the physical manifold) differs by one.
4 see footnote 3 on page 62.
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Figure 25: The leading 10 local Floquet exponents of rpo16.31 along the orbit for one
period. The (5th, 6th) and (9th, 10th) exponents are complex conjugate pairs. See Table 7
for its full spectrum.

Numerical work indicates that as the physical and spurious modes are hyperbolically
decoupled, the distribution of the angles between these subspaces is bounded away from
zero, and that observation yields a sharp physical-spurious threshold. This strategy cannot
be used for individual orbits, as each one is of a finite period, and the minimal principal
angle reached by a pair of Floquet subspaces remains strictly positive. Instead, we measure
the angle distribution for a collection of orbits, and find that the physical-spurious threshold
is as sharp as for a long chaotic trajectory: Figure 26 shows the principal angle distribution
between two subspaces Sn and S̄n, with Sn spanned by the leading n Floquet vectors and S̄n
by the rest. As in the Lyapunov analysis of long chaotic trajectories [90], the distributions
for small n indicate strictly positive density as φ → 0. In contrast, the distribution is
strictly bounded away from zero angles for n ≥ 8, the number determined above by the
local Floquet exponents analysis. This leads to our second surmise: (2) the distribution of
principal angles for collections of periodic orbits enables us to identify a finite set of physical
Floquet modes, the analogue of the chaotic trajectories’ physical covariant vector modes.

4.2.4 Shadowing controlled by Floquet vectors

It is known, at least for low-dimensional chaotic systems, that a dense set of periodic
orbits constitutes the skeleton of a strange attractor [22]. Chaotic trajectories meander
around these orbits, approaching them along their stable manifolds, and leaving them along
their unstable manifolds. If trajectories are indeed confined to a finite-dimensional physical
manifold, such shadowing events should take place within the subspace of physical Floquet
modes of the shadowed orbit. To analyze such shadowing, we need to measure the distances
between the chaotic trajectories and the invariant orbits. But due to SO(2) symmetry, such
shadowing actually happens between two tori, so we work in the 1st mode slice (137) defined
in Sect. 3.2 to investigate shadowing incidences.
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Figure 26: A histogram of the principal angles φ between Sn (the subspace spanned
by the n leading Floquet vectors) and S̄n (the subspace spanned by the remaining d − n
Floquet vectors), accumulated over the 400 orbits used in our analysis. (top panel) For n =
1, 2, · · · , 7 (Sn within the physical manifold) the angles can be arbitrarily small. (bottom
panel) For n = 8, 10, 12, · · · , 28 (in the order of the arrow), for which all physical modes are
contained in Sn, the angles are bounded away from unity.

The dimension of the slice subspace is one less than that of the full state space: slice
eliminates the marginal translational direction, while the remaining Floquet multipliers Λj
are unchanged. Therefore, for the system studied here, there are only seven physical modes,
with one marginal mode (time invariance) in the in-slice description, instead of eight and
two, respectively, in the full state space description. Although we calculate Floquet vectors
in the full state space, relation (129) tells us how to get in-slice Floquet vectors from Floquet
vectors in the full state space.

A shadowing of an orbit up(x, t
′) by a nearby chaotic trajectory u(x, t) is then charac-

terized by the in-slice separation vector

∆û(x, t) ≡ û(x, t)− ûp(x, tp), (157)

where tp is chosen to minimize the in-slice distance ||∆û||. Now we test whether the ∆û(x, t)
is confined to the tangent space spanned by the physical in-slice Floquet vectors. To evaluate
this confinement, one needs to take into account the nonlinearity of the stable and unstable
manifolds for finite amplitude of ∆û(x, t). We decompose the separation vector as

∆û(x, t) = v̂n(x, t) + ŵn(x, t), (158)

where v̂n(x, t) is a vector in the subspace Ŝn spanned by the leading n in-slice Floquet vectors
and ŵn(x, t) is in the orthogonal complement of Ŝn. If n is large enough so that Ŝn contains
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Figure 27: (a) Shadowing event between a chaotic trajectory and ppo33.39, drawn over
2Tp. (b) Parametric plot of sinϕn(t) vs ||∆û(x, t)|| during the single shadowing event
shown in (a), for n = 6, 7, 8. (c) Same as (b), but a total of 230 shadowing events of
ppo33.39 are used. (d) Average of sinϕn in (c), taken within each bin of the abscissa, for
n = 4, 5, 6, 7, 9, 11, 17, 21, 25 from top to bottom. (e)(f) Same as (c)(d), respectively, but for
217 shadowing events with rpo34.64. The dashed lines show sinϕn ∝ ||∆û|| in all panels.

the local approximation of the inertial manifold, we expect ||ŵn|| ∼ ||v̂n||2 ∼ ||∆û||2 because
of the smoothness of the inertial manifold; otherwise ||ŵn|| does not vanish as ||∆û|| → 0.
In terms of the angle ϕn between Ŝn and ∆û, sinϕn ∼ ||ŵn||/||v̂n|| ∼ ||∆û|| for n above the
threshold, while sinϕn remains non-vanishing otherwise.

Following this strategy, we collected segments of a long chaotic trajectory during which
it stayed sufficiently close to a specific orbit for at least one period of the orbit. Figure 27 (a)
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illustrates such a shadowing event for ppo33.39. A parametric plot of sinϕn(t) vs. ||∆û(x, t)||
during this event is shown in Figure 27 (b) for n = 6, 7, 8 (blue circles, red squares, orange
triangles, respectively). We can already speculate from such a single shadowing event that
sinϕn does not necessarily decrease with ||∆û|| for n < 7, while it decreases linearly with
||∆û|| for n ≥ 7. This threshold is clearly identified by accumulating data for all the
recorded shadowing events with ppo33.39, Figure 27 (c): sinϕn is confined below a line that
depends linearly on ||∆û|| if and only if n ≥ 7. Similarly, there is a clear separation in
the average of sinϕn taken within each bin of the abscissa [Figure 27 (d)]. This indicates
that for n < 7 (empty symbols), typical shadowing events manifest significant deviation of
∆û from the subspace Ŝn, whereas for n ≥ 7 (solid symbols) ∆û is always confined to Ŝn.
We therefore conclude that shadowing events are confined to the subspace spanned by the
leading 7 in-slice Floquet vectors, or equivalently, by all the 8 physical Floquet vectors in
the full state space. The same conclusion was drawn for rpo34.64 [Figure 27 (e) and (f)] and
five other orbits (not shown). We also verified that, when a chaotic trajectory approaches an
orbit, the subspace spanned by all physical Floquet modes of the orbit coincides with that
spanned by all physical Lyapunov modes of the chaotic trajectory. This implies our third
surmise: (3) the physical Floquet manifold coincides locally with the physical Lyapunov
manifold, with either capturing the local structure of the inertial manifold.

4.2.5 Summary

In summary, we used the Kuramoto-Sivashinsky system to demonstrate by six independent
calculations that the tangent space of a dissipative flow splits into physical vs. spurious
subspaces, and to determine the dimension of its inertial manifold. The Lyapunov modes
approach of refs. [41, 79, 89, 90] identifies (1) the “physical” Lyapunov exponents, by the
dynamics of finite-time Lyapunov exponents, (155); and (2) the “physical” tangent manifold,
or “physical manifold,” by measuring the distributions of angles between covariant vectors.
The Floquet modes approach [24] developed here shows that (3) Floquet exponents of each
individual orbit separate into physical vs. spurious, Figure 24; (4) for ensembles of orbits,
the principal angles between hyperplanes spanned by Floquet vectors separate the tangent
space into physical vs. spurious, Figure 26; (5) for a chaotic trajectory shadowing a given
orbit the separation vector lies within the orbit’s Floquet physical manifold, Figure 27; and
(6) for a chaotic trajectory shadowing a given orbit the separation vector lies within the
covariant vectors’ physical manifold.

All six approaches yield the same inertial manifold dimension, reported in earlier work [89].
5 The Floquet modes / unstable periodic orbits approach is constructive, in the sense that
periodic points should enable us, in principle (but not attempted in this thesis), to tile the
global inertial manifold by local tangent spaces of an ensemble of such points. Moreover, and
somewhat surprisingly, our results on individual orbits’ Floquet exponents, Figure 24 (b)
and (c), and on shadowing of chaotic trajectories, Figure 27, suggest that each individ-
ual orbit embedded in the attracting set contains sufficient information to determine the
physical-spurious threshold. However, the computation and organization of unstable peri-
odic orbits is still a major undertaking, and can currently be carried out only for rather
small computational domains [21, 86]. The good news is that the physical Lyapunov modes
approach [90] suffices to determine the inertial manifold dimension, as Lyapunov modes cal-
culations only require averaging over long chaotic trajectories, are much easier to implement,

5 see footnote 3 on page 62.
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and can be scaled up to much larger domain sizes than L = 22 considered here.
We hope the computational tools introduced here, namely, local Floquet exponents,

principal angles obtained by Floquet vectors, and expansion errors of difference vectors in
shadowing incidences, will eventually contribute to solving outstanding issues of dynamical
systems theory, such as the existence of an inertial manifold in the transitional turbulence
regime of the Navier-Stokes equations.
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CHAPTER V

PERIODIC EIGENDECOMPOSITION ALGORITHM

When studying the dimension of an inertial manifold in Sect. 4.2, we have used the informa-
tion of the Floquet spectra and Floquet vectors of pre-periodic orbits and relative periodic
orbits. In this chapter, we discuss how to calculate them accurately.

The Floquet matrix can be naively obtained numerically by integrating (30) along the
orbit. However, it is almost certain that this process will overflow or underflow at an
exponential rates as the system evolves, or the resulting Jacobian is highly ill-conditioned.
Thus, accurate calculation of expansion rate is not trivial for nonlinear systems, especially
for those that evolve in high-dimensional spaces. In such cases, the expansion/contraction
rates can easily range over many orders of magnitude, which raises a challenge to formulating
an effective algorithm to tackle this problem. However, the semi-group property (31) enables
us to factorize the Jacobian matrix into a product of short-time matrices with matrix
elements of comparable orders of magnitude. So the problem is reduced to calculating the
eigenvalues of the product of a sequence of matrices.

In this chapter, we introduce periodic eigendecomposition algorithm, which is designed
to calculate the full Floquet spectrum and Floquet vectors. It is based on the covariant
vector algorithm (Sect. 1.3.3) and the periodic Schur decomposition (Sect. 1.3.4).

5.1 Description of the problem

According to (31), Jacobian matrix can be integrated piece by piece along a state orbit:

J t(u0) = J tm−tm−1(u(tm−1), tm−1) · · · J t2−t1(u(t1), t1)J t1−t0(u(t0), t0)

with t0 = 0, tm = t and u0 the initial point. For periodic orbits, u(tm) = u0. The time
sequence ti, i = 1, 2, · · · ,m − 1 is chosen properly such that the elements of the Jacobian
matrix associated with each small time interval have a relatively similar order of magnitude.
For simplicity, we drop all the parameters above and use a bold letter to denote the product:

J(0) = JmJm−1 · · · J1 , Ji ∈ Rn×n, i=1, 2, · · · ,m . (159)

Let the eigendecomposition of J(0) be

J(0) = E(0)Σ(E(0))−1 , (160)

where Σ is a diagonal matrix which stores J(0)’s eigenvalues (Floquet multipliers), {Λ1, · · · ,Λn},
and columns of matrix E(0) are the eigenvectors (Floquet vectors) of J(0): E(0) = [e

(0)
1 , · · · , e(0)

n ].
In this chapter all vectors are written in the column form, transpose of v is denoted v>,
and Euclidean ‘dot’ product by (v> u). The challenge associated with obtaining diago-
nalized form (160) is the fact that often J(0) should not be written explicitly since the
integration process (30) may overflow or the resulting matrix is highly ill-conditioned. Flo-
quet multipliers can easily vary over hundreds of orders of magnitude, depending on the
system under study and the period of the orbit; therefore, all transformations should be
applied to the short-time Jacobian matrices Ji individually, instead of working with the
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full-time J(0). Also, in order to characterize the geometry along a periodic orbit, not only
the Floquet vectors at the initial point are required, but also the sets at each point on
the orbit. Therefore, we also desire the eigendecomposition of the cyclic rotations of J(0):
J(k) = JkJk−1 · · · J1Jm · · · Jk+1 for k = 1, 2, . . . ,m−1. Eigendecomposition of all J(k) is
called the periodic eigendecomposition of the matrix sequence Jm, Jm−1, · · · , J1.

The process of implementing eigendecomposition (160) proceeds in two stages. First,
Periodic Real Schur Form (PRSF) is obtained by a similarity transformation for each Ji,

Ji = QiRiQ
>
i−1 , (161)

with Qi orthogonal matrix, and Q0 = Qm. One of Ri above is quasi-upper triangular with
[1×1] and [2×2] blocks on the diagonal, and the others are all upper triangular. Since the
definition of J(k) is cyclic, we can choose Rm to be quasi-upper triangular without loss of
generality. The existence of PRSF, proved in ref. [8], provides the periodic QR algorithm
that implements periodic Schur decomposition. Defining R(k) = RkRk−1 · · ·R1Rm · · ·Rk+1,
we have

J(k) = QkR
(k)Q>k , (162)

with the eigenvectors of matrix J(k) related to eigenvectors of quasi-upper triangular matrix
R(k) by orthogonal matrix Qk. J(k) and R(k) have the same eigenvalues, stored in the [1×1]
and [2×2] blocks on the diagonal of R(k), and their eigenvectors are transformed by Qk, so
the second stage concerns the eigendecomposition of R(k). Eigenvector matrix of R(k) has
the same structure as Rm. We evaluate it by two distinct algorithms. The first one is power
iteration, while the second algorithm relies on solving a periodic Sylvester equation [44].

As all R(k) have the same eigenvalues, and their eigenvectors are related by similarity
transformations,

R(k) = (Rm · · ·Rk+1)−1R(0)(Rm · · ·Rk+1) , (163)

one may be tempted to calculate the eigenvectors of R(0), and obtain the eigenvectors of
R(k) by (163). The pitfall of this approach is that numerical errors accumulate when multi-
plying a sequence of upper triangular matrices, especially for large k, such that contracting
eigenvectors are contaminated by expanding ones during this process.

Our work illustrates the connection between different algorithms in the two stages of
implementing periodic eigendecomposition, pays attention to the case when eigenvectors
appear as complex pairs, and demonstrates that eigenvectors can be obtained directly from
periodic Sylvester equation without restoring PRSF.

5.2 Stage 1 : periodic real Schur form (PRSF)

This is the first stage of implementing periodic eigendecomposition. Eq. (162) represents the
eigenvalues of matrix J(k) as real eigenvalues on the diagonal, and complex eigenvalue pairs
as [2×2] blocks on the diagonal of R(k). More specifically, if the ith eigenvalue is real, it is
given by the product of all the ith diagonal elements of matrices R1, R2, · · · , Rm. In practice,
the logarithms of magnitudes of these numbers are added, in order to overcome numerical
overflow or underflow. If the ith and (i + 1)th eigenvalues form a complex conjugate pair,
all [2×2] matrices at position (i, i+1) on the diagonal of R1, R2, · · · , Rm are multiplied with
normalization at each step, and the two complex eigenvalues of the product are obtained.
There is no danger of numerical overflow or underflow because all these [2×2] matrices
are in the same position and in our applications their elements are of similar order of
magnitude. Sect. 1.3.4 introduces the periodic Schur decomposition to achieve PRSF. An
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alternative is the first two stages of covariant vector algorithm in Sect. 1.3.3, which reduces
to simultaneous iteration for periodic orbits. Actually, for a single matrix, simultaneous
iteration is equivalent to QR iteration [84]. When it comes to matrix product, simultaneous
iteration and periodic Schur decomposition both achieve the PRSF, but their computational
complexities differ.

Simultaneous iteration The basic idea of simultaneous iteration is implementing QR
decomposition in the process of power iteration. Assume all Floquet multipliers are real,
without degeneracy, and order them by their magnitude: |Λ1| > |Λ2| > · · · > |Λn|, with cor-
responding normalized Floquet vectors e1, e2, · · · , en. For simplicity, here we have dropped

the upper indices of these vectors. An arbitrary initial vector q̃1 =
∑n

i=1 α
(1)
i ei will converge

to the first Floquet vector e1 after normalization under power iteration of J(0),

lim
`→∞

(J(0))`q̃1

|| · || → q1 = e1 .

Here || · || denotes the Euclidean norm of the numerator (||x|| =
√
x>x). Let 〈a, b, · · · , c〉

represent the space spanned by vector a, b, · · · , c in Rn. Another arbitrary vector q̃2

is then chosen orthogonal to subspace 〈q1〉 by Gram-Schmidt orthonormalization, q̃2 =∑n
i=2 α

(2)
i [ei − (q>1 ei)q1]. Note that the index starts from i = 2 because 〈q1〉 = 〈e1〉. The

strategy now is to apply power iteration of J(0) followed by orthonormalization in each
iteration.

J(0)q̃2 =

n∑
i=2

α
(2)
i [Λiei − Λ1(q>1 ei)q1] =

n∑
i=2

α
(2)
i Λi[ei − (q>1 ei)q1] +

n∑
i=2

α
(2)
i (Λi − Λ1)(q>1 ei)q1 .

The second term in the above expression will disappear after performing Gram-Schmidt
orthonormalization to 〈q1〉, and the first term will converge to q2 = e2 − (q>1 e2)q1 (not
normalized) after a sufficient number of iterations because of the descending magnitudes
of Λi, and we also note that 〈e1, e2〉 = 〈q1, q2〉. The same argument can be applied to
q̃i, i = 3, 4, · · · , n as well. In this way, after a sufficient number of iterations,

lim
`→∞

(J(0))`[q̃1, q̃2, · · · , q̃n]→ [q1, q2 · · · , qn] ,

where

q1 = e1 , q2 =
e2 − (e>2 q1)q1

|| · || , · · · , qn =
en −

∑n−1
i=1 (e>n qi)qi
|| · || .

Let matrix Q0 = [q1, q2, · · · , qn]; then we have J(0)Q0 = Q0R
(0) with R(0) an upper trian-

gular matrix because of 〈q1, q2, · · · , qi〉 = 〈e1, e2, · · · , ei〉, which is just J(0) = Q0R
(0)Q>0

(the Schur decomposition of J(0)). The diagonal elements of R(0) are the eigenvalues of J(0)

in decreasing order. Numerically, the process described above can be implemented on an
arbitrary initial full rank matrix Q̃0 followed by QR decomposition at each step

JsQ̃s−1 = Q̃sR̃s (164)

with s = 1, 2, 3, · · · and Js+m = Js. For a sufficient number of iterations, Q̃s and R̃s
converge to Qs and Rs in (161) for s = 1, 2, · · · ,m, so we achieve (162) the periodic Schur
decomposition of J(k).
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We have thus demonstrated that simultaneous iteration converges to PRSF for real non-
degenerate eigenvalues. For complex eigenvalue pairs, the algorithm converges in the sense
that the subspace spanned by a complex conjugate vector pair converges. So,

J(0)Q0 = Q
′
0R

(0) = Q0DR(0) , (165)

where D is a block-diagonal matrix with diagonal elements ±1 (corresponding to real eigen-
values) or [2×2] blocks (corresponding to complex eigenvalue pairs). Absorb D into Rm,
then Rm becomes a quasi-upper triangular matrix, and (161) still holds. Here, we focus on
Q0 instead of Q1, · · · , Qm−1 because we assume Rm is quasi-upper triangular in (161).

5.3 Stage 2 : eigenvector algorithms

Upon achieving PRSF, the eigenvectors of J(k) are related to the eigenvectors of R(k) by
orthogonal matrix Qk from (161), and the eigenvector matrix of R(k) has the same quasi-
upper triangular structure as Rm. In addition, if we follow the simultaneous iteration
method or implement periodic Schur decomposition without shift, eigenvalues are ordered
by their magnitudes on the diagonal. Power iteration utilizing this property could be easily
implemented to generate the eigenvector matrix. This is the basic idea of the first algorithm
for generating eigenvectors of R(k), corresponding to the 3rd and 4th stage in covariant
vector algorithm in Figure 3. Alternatively, observation that the first eigenvector of R(k) is
trivial if it is real, v1 = (1, 0, · · · , 0)>, inspires us to reorder the eigenvalues so that the jth
eigenvalue is in the first diagonal place of R(k); in this way, the jth eigenvector is obtained.
For both methods, attention should be paid to the complex conjugate eigenvector pairs. In

this section, v
(k)
i denotes the ith eigenvector of R(k), contrast to e

(k)
i the eigenvectors of

J(k), and for most cases, the upper indices are dropped if no confusion occurs.

5.3.1 Iteration method

The prerequisite for iteration method is that all the eigenvalues are ordered in an ascending
or descending way by their magnitude on the diagonal of R(k). Assume that they are in
descending order, which is the outcome of simultaneous iteration; therefore, the diagonal
elements of R(k) are Λ1,Λ2, · · · ,Λn, with magnitudes from large to small. If the ith eigen-
vector of R(k) is real, then it has form vi = (a1, a2, · · · , ai, 0, · · · , 0)>. An arbitrary vector
whose first i elements are non-zero x = (b1, b2, · · · , bi, 0, · · · , 0)> is a linear combination of
the first i eigenvectors: x =

∑i
j=1 αjvj . Use it as the initial condition for the power iteration

by (R(k))−1 = R−1
k+1 · · ·R−1

m R−1
1 R−1

2 · · ·R−1
k and after a sufficient number of iterations,

lim
`→∞

(R(k))−`x

|| · || = vi . (166)

The property we used here is that (R(k))−1 and R(k) have the same eigenvectors but inverse
eigenvalues. Moreover, matrix sequence R−1

k+1 · · ·R−1
m R−1

1 R−1
2 · · ·R−1

k is applied sequentially

in (166), so if the ith eigenvector v
(k)
i of (R(k))−1 converges, then the ith eigenvector of

(R(k−1))−1 is obtained by v
(k−1)
i = R−1

k v
(k)
i (need to be normalized). Therefore, the ith

eigenvectors of (R(k)) for k = 0, 1, · · · ,m are obtained almost simultaneously. Note, there
is no numerical instability here as in (163) because (166) finds the most expanding direction
in the subspace that only the first i elements are non-zero.
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For a [2×2] block on the diagonal of R(k), the corresponding conjugate complex eigen-
vectors form a two-dimensional subspace. Any real vector selected from this subspace will
rotate under power iteration. In this case, power iteration still converges in the sense that
the subspace spanned by the complex conjugate eigenvector pair converges. Suppose the
ith and (i + 1)th eigenvectors of R(k) form a complex pair. Two arbitrary vectors x1 and
x2 whose first i + 1 elements are non zero can be written as the linear superposition of

the first i+ 1 eigenvectors, x1,2 = (
∑i−1

j=1 α
(1,2)
j vj) + α

(1,2)
i vi + (α

(1,2)
i vi)

∗, where (∗) denotes
the complex conjugate. As for the real case, the first i−1 components will vanish after a
sufficient number of iterations. Denote the two vectors at this instance to be X1,2 and form
matrix X = [X1, X2]. The subspace spanned by X1,2 does not change and X will be rotated
after another iteration,

(R(k))−1X = X
′

= XC , (167)

where C is a [2×2] matrix which has two complex conjugate eigenvectors vC and (vC)∗.
Transformation (167) relates the eigenvectors of R(k) with those of C: [vi, (vi)

∗] = X[vC , (vC)∗].
In practice, matrix C can be computed by QR decomposition; let X = QXRX be the QR
decomposition of X, then C = R−1

X Q>XX
′
. On the other hand, complex eigenvectors are

not uniquely determined in the sense that eiθvi is also an eigenvector with the same eigen-
value as vi for an arbitrary phase θ, so when comparing results from different eigenvector
algorithms, we need a constraint to fix the phase of a complex eigenvector, such as letting
the first element be real.

We should note that the performance of power iteration depends on the ratios of mag-
nitudes of eigenvalues, so performance is poor for systems with clustered eigenvalues. We
anticipate that proper modifications, such as shifted iteration or inverse iteration [84], may
help improve the performance. Such techniques are beyond the scope of this paper.

5.3.2 Reordering method

There exists a direct algorithm to obtain the eigenvectors of every R(k) at once without it-
eration. The idea is very simple: the eigenvector corresponding to the first diagonal element
of an upper-triangular matrix is v1 = (1, 0, · · · , 0)>. By reordering the diagonal elements
(or [2×2] blocks) of R(0), we can find any eigenvector by positioning the corresponding
eigenvalue in the first diagonal position. Although in our application only reordering of
[1×1] and [2×2] blocks is needed, we recapitulate here the general case of reordering two
adjacent blocks of a quasi-upper triangular matrix following Granat et al. [44]. Partition
Ri as

Ri =


R00
i ∗ ∗ ∗
0 R11

i R12
i ∗

0 0 R22
i ∗

0 0 0 R33
i

 ,
where R00

i , R
11
i , R

22
i , R

33
i have size [p0×p0], [p1×p1], [p2×p2] and [p3×p3] respectively, and

p0 + p1 + p2 + p3 = n. In order to exchange the middle two blocks (R11
i and R22

i ), we
construct a non-singular periodic matrix sequence: Ŝi, i = 0, 1, 2, · · · ,m with Ŝ0 = Ŝm,

Ŝi =

 Ip0 0 0

0 Si 0

0 0 Ip3

 ,
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where Si is a [(p1 + p2)×(p1 + p2)] matrix, such that Ŝi transforms Ri as follows:

Ŝ−1
i RiŜi−1 = R̃i =


R00
i ∗ ∗ ∗
0 R22

i 0 ∗
0 0 R11

i ∗
0 0 0 R33

i

 , (168)

which is

S−1
i

[
R11
i R12

i

0 R22
i

]
Si−1 =

[
R22
i 0
0 R11

i

]
.

The problem is to find the appropriate matrices Si which satisfy the above condition.
Assume Si has form

Si =

[
Xi Ip1
Ip2 0

]
,

where matrix Xi has dimension [p1×p2]. We obtain periodic Sylvester equation [44]

R11
i Xi−1 −XiR

22
i = −R12

i , i = 0, 1, 2, · · · ,m . (169)

The algorithm to find eigenvectors is based on (169). If the ith eigenvalue of R(k) is
real, we only need to exchange the leading [(i−1)×(i−1)] block of Rk , k = 1, 2, · · · ,m with
its ith diagonal element. If the ith and (i+1)th eigenvalues form a complex conjugate pair,
then the leading [(i− 1)×(i− 1)] block and the following [2×2] block should be exchanged.
Therefore Xi in (169) has dimension [p1×1] or [p1×2]. In both cases, p0 = 0.

Real eigenvectors In this case, matrix Xi is just a column vector, so (169) is equivalent
to 

R11
1 −R22

1 Ip1

R11
2 −R22

2 Ip1

R11
3 −R22

3 Ip1

. . . · · ·

−R22
m Ip1 R11

m





X0

X1

X2

· · ·

Xm−1


=



−R12
1

−R12
2

−R12
3

· · ·

−R12
m


, (170)

where R22
i is the (p1 + 1)th diagonal element of Ri. The accuracy of eigenvectors is deter-

mined by the accuracy of solving sparse linear equation (170). In our application to periodic
orbits in the one-dimensional Kuramoto-Sivashinsky equation, Gaussian elimination with
partial pivoting is enough. For a more technical treatment, such as cyclic reduction or
preconditioned conjugate gradients, to name a few, please see [1, 30, 45].

Now we get all vectors Xi by solving periodic Sylvester equation, but how are they
related to the eigenvectors? In analogy to R(0), defining R̃0 = R̃mR̃m−1 · · · R̃1, we get
Ŝ−1
m R(0)Ŝm = R̃0 by (168). Since p0 = 0 and p2 = 1 in (168), the first eigenvector of R̃0,

the one corresponding to eigenvalue Λp1+1 is ẽ = (1, 0, · · · , 0)>. Apart from normalization,
the corresponding eigenvector of R(0) is

v
(0)
p1+1 = Ŝmẽ =

[
X>0 , 1, 0, 0, · · · , 0

]>
.
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This is the eigenvector of matrix R(0) = RmRm−1 · · ·R1 in (162) for k = 0. For R(1) =
R1Rm · · ·R2, the corresponding periodic Sylvester equation will be cyclically rotated one
row up in (170), which means X1 will be shifted to the first place, and thus the corre-

sponding eigenvector of R(1) is v
(1)
p1+1 = [X>1 , 1, 0, · · · , 0]>. The same argument goes for

all the remaining R(k). In conclusion, solution of (170) contains the eigenvectors for all
R(k) , k = 0, 1, · · · ,m − 1. Another benefit of reordering method is that we can selectively
get the eigenvectors corresponding to some specific eigenvalues. This merit is important in
high-dimensional nonlinear systems for which only a subset of Floquet vectors suffices to
characterize the dynamics in tangent space, and thus we avoid wasting time in calculating
the remaining unimportant subset.

Complex eigenvector pairs As in the real eigenvalue case, we have p0 = 0, but now
p2 = 2, so matrix Xi has dimension [p1×2]. Using the same notation as ref. [44], let v(Xi)
denote the vector representation of Xi with the columns of Xi stacked on top of each other,
and let A⊗B denote the Kronecker product of two matrices, with the (i, j)-block element
be aijB.

Now, the periodic Sylvester equation (169) is equivalent to

I2 ⊗R11
1 −(R22

1 )> ⊗ Ip1

I2 ⊗R11
2 −(R22

2 )> ⊗ Ip1

I2 ⊗R11
3 −(R22

3 )> ⊗ Ip1
. . . · · ·

−(R22
m )> ⊗ Ip1 I2 ⊗R11

m





v(X0)

v(X1)

v(X2)

· · ·

v(Xm−1)


=



−v(R12
1 )

−v(R12
2 )

−v(R12
3 )

· · ·

−v(R12
m )


.

(171)
After switching R11

i and R22
i , we can get the first two eigenvectors of R̃0 by multiplying the

first [2×2] diagonal blocks of R̃i: R
22 = R22

mR
22
m−1 · · ·R22

1 . Let the eigenvectors of R22 be v

and v∗ of size [2×1], then the corresponding eigenvectors of R̃0 are ẽ1 = (v>, 0, 0, · · · , 0)>

and ẽ2 = (ẽ1)∗ (the additional zeros make the length of the eigenvectors be n). Therefore,
the corresponding eigenvectors of R(0) are

[
v

(0)
p1+1, v

(0)
p1+2

]
= Ŝm[ẽ1, ẽ2] =



X0

I2

0 0
0 0

...
0 0


[v, v∗] .

For other R(k), the same argument in the real case applies here too, so we obtain all the
complex eigenvector pairs for R(k) , k = 1, 2, · · · ,m.

5.4 Computational complexity and convergence analysis

In this section, we make no attempt at conducting a strict error analysis of the algorithms
presented. However, for practical applications, it is important to understand their compu-
tational costs. Periodic eigendecomposition is conducted in two stages: (1) PRSF, and (2)
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determination of all eigenvectors. In each stage, there are two candidate algorithms, so the
efficiency of periodic eigendecomposition depends on the choice of the specific algorithm
chosen in each stage.

Periodic Schur decomposition algorithm and simultaneous iteration are both effective
to achieve PRSF. We estimate the complexity of periodic Schur decomposition algorithm
in analogy with the single matrix case. For a single [n×n] matrix, O(n3) flops (floating-
point operations) are required [84] to reduce it to upper Hessenberg form. Accordingly,
the first stage in Figure 4 takes O(mn3) flops. Then the implicit QR iteration process
for a single matrix takes O(n2) flops for a single iteration, so each iteration of the second
stage in Figure 4 takes O(mn2) flops. Usually, the number of iterations exceeds by far the
dimension of the matrix. Therefore, the average complexity of one iteration in periodic Schur
decomposition algorithm is O(mn2). For a detailed discussion see [8, 84]. On the other hand,
simultaneous iteration (164) requires m QR decomposition O(mn3) and m matrix-matrix
multiplication O(mn3) in each iteration, giving a total computational cost of O(mn3).
Moreover, the convergence of both algorithms depends linearly on the ratio of adjacent
eigenvalues of R(0): |Λi|/|Λi+1| without shift [37]. Therefore, the ratio of costs between
periodic Schur decomposition algorithm and simultaneous iteration is approximately of
the order O(mn2)/O(mn3) = O(1/n), implying that the periodic Schur decomposition
algorithm is much cheaper than the simultaneous iteration if the dimension of matrices
involved is large.

The second stage of periodic eigendecomposition is to find all the eigenvectors of J(k) via
quasi-upper triangular matrices R(k). The first candidate is power iteration. The computa-
tional cost of one iteration (166) for the ith eigenvector is O(mi2). The second candidate,
reordering method, relies on an effective method to solve periodic Sylvester equation (169).
For example, Gaussian elimination with partial pivoting is suitable for well-conditioned ma-
trix (170) and (171) with a computational cost of O(mi2) for the ith eigenvector. Here, we
have taken account of the sparse structure of (170) and (171). For a detailed discussion,
see ref. [44]. So, the total complexity of reordering method is approximately the same as
that of one iteration in power iteration.

In summary, if we only consider the computational complexity, the combination of
periodic Schur decomposition algorithm and reordering method is preferable for periodic
eigendecomposition.

5.5 Application to Kuramoto-Sivashinsky equation

Our ultimate goal of implementing periodic eigendecomposition is to analyze the stability of
periodic orbits and the associated stable/unstable manifolds in dynamical systems, for the
hope of getting a better understanding of pattern formation and turbulence. As an example,
we focus on the one-dimensional Kuramoto-Sivashinsky equation(134) and its Fourier space
form (135). We follow Sect. 3.1 to integrate this system. For the calculation of Floquet
spectrum and vectors, we use the combination of periodic Schur decomposition algorithm
and reordering algorithm. In addition, Gaussian elimination with partial pivoting is stable
for solving (170) and (171) if the time step in Kuramoto-Sivashinsky integrator is not too
large.

Here we show how well periodic eigendecomposition works by applying it to one repre-
sentative preperiodic orbit ppo10.25 (the 1st subplot in Figure 15) and two relative periodic
orbits rpo16.31 (the 4th subplot in Figure 15) and rpo57.60 which is documented in ref. [21].
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5.5.1 Accuracy

Table 7 shows that the 2nd and 3rd, respectively 3rd and 4th exponents of rpo16.31, re-
spectively ppo10.25, are marginal. Even though the inaccuracy of the closure of the orbit
contributes to the error, we note that the absolute error takes values as low as 10−12. Table 7
and Figure 17 show that periodic Schur decomposition is capable of resolving Floquet mul-
tipliers differing by thousands of orders of magnitude: when using N = 64 Fourier modes,
the smallest Floquet multiplier magnitude for ppo10.25 is |Λ62| ' e−6080.4×10.25 ' 10−27067.
This cannot be achieved if we try to compute a single Jacobian matrix for the whole orbit.

Figure 28: Marginal vectors and the associated errors. (a) ppo10.25 in one period projected
into [b1, c1, b2] subspace (blue curve), and its counterpart (green line) generated by a small
group transformation g(φ) , here arbitrarily set to φ = 0.1. Magenta and black arrows
represent the first and the second marginal Floquet vectors e3(x) and e4(x) along the
prime orbit. (b) The solid red curve is the Euclidean difference between e3(x) and the
velocity field v(x) along the orbit, and the blue dashed curve is the difference between e4(x)
and the group tangent t(x) = Tx.

The two marginal directions have a simple geometrical interpretation and provide a
metric for us to measure the convergence of periodic eigendecomposition. Figure 28 (a)
depicts the two marginal vectors of ppo10.25 projected into the subspace spanned by [b1, c1, b2]
(the real, imaginary parts of the first mode and the real part of the second Fourier mode).
The first marginal direction (the 3rd Floquet vector in Table 7) is aligned with the velocity
field along the orbit, and the second marginal direction (the 4th Floquet vector) is aligned
with the group tangent. The numerical difference between the unit vectors along these two
marginal directions and the corresponding physical directions is shown in Figure 28 (b). The
difference is under 10−9 and 10−11 for these two directions, which demonstrates the accuracy
of the algorithm. As shown in Table 7, for a preperiodic orbit, such as ppo10.25, the velocity
field and the group tangent have eigenvalue +1 and −1 respectively, and are thus distinct.
However, the two marginal directions are degenerate for a relative periodic orbit, such as
rpo16.31. So these two directions are not fixed, but the two-dimensional plane spanned by
them is uniquely determined. Figure 29 shows that the velocity field and group tangent
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along orbit rpo16.31 indeed lie in the subspace spanned by these two marginal directions.

Figure 29: Projection of relative periodic orbit rpo16.31 into the Fourier modes subspace
[b2, c2, b3] (red curve). The dotted curve (lime) is the group orbit connecting the initial and
final points. Blue and magenta arrows represent the velocity field and group tangent along
the orbit, respectively. Two-dimensional planes (cyan) are spanned by the two marginal
Floquet vectors at each point (yellow) along the orbit.

5.5.2 The choice of the number of orbit segments

We have noted above that the semi-group property of Jacobian matrix (31) enables us to
factorize J(k) into a product of short-time matrices with matrix elements of comparable
order of magnitude. In practice, caution should be exercised when trying to determine the
optimal number of time increments that the orbit should be divided into. If the number of
time incrementsm is too large, then, according to the estimates of Sect. 5.4, the computation
may be too costly. If m is too small, then the elements of the Jacobian matrix corresponding
to the corresponding time increment may range over too many orders of magnitude, causing
periodic eigendecomposition to fail to resolve the most contracting Floquet vector along the
orbit. One might also vary the time step according to the velocity at a given point on
the orbit. Here we determined satisfactory m’s by numerical experimentation shown in
Figure 30. Since larger time step means fewer time increments of the orbit, a very small
time step (h0 ≈ 0.001) is chosen as the base case, and it is increased to test whether the
corresponding Floquet exponents change substantially or not. As shown in Figure 30 (a),
up to 6h0 the whole Floquet spectrum varies within 10−12 for both ppo10.25 and rp57.60.
These two orbits represent two different types of invariant solutions which have short and
long periods respectively, so we presume that time step 6h0 is good enough for other short or
long orbits too. On the other hand, if only the first few Floquet exponents are desired, the
time step can be increased further to fulfill the job. As shown in Figure 30 (b), if we are only
interested in the first 35 Floquet exponents, then time step 30h0 is small enough. In high-
dimensional nonlinear systems, often we are not interested in very contraction directions
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Figure 30: Relative error of the real part of Floquet exponents associated with different
time steps with which the Floquet matrix is integrated. Two orbits ppo10.25 and rpo57.60

are used as an example with the base case h0 ≈ 0.001. (a) The maximal relative difference
of the whole set of Floquet exponents with increasing time step (decreasing the number of
ingredient segments of the orbit). (b) Only consider the first 35 Floquet exponents.

because dynamics in these directions are transient and shed little insight into the system
properties. Therefore, large time step could be used to save time.

5.6 Conclusion and future work

In this chapter we have used the one-dimensional Kuramoto-Sivashinsky system to illustrate
the effectiveness of periodic eigendecomposition applied to stability analysis in dissipative
nonlinear systems. In future, we hope to apply the method to the study of orbits of much
longer periods, as well as to the study of high-dimensional numerically exact time-recurrent
unstable solutions of the full Navier-Stokes equations. We anticipate the need for optimizing
and parallelizing such algorithms. Also, if periodic eigendecomposition is to be applied to
Hamiltonian systems, additional adjustments will be required to guarantee the preservation
of symmetries of Floquet spectrum imposed by the symplectic structure of Hamiltonian
flows.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we have investigated the dimension of the inertial manifold in the one-
dimensional Kuramoto-Sivashinsky equation and determined that the dimension is 8 for
domain size 22. In order to reach this conclusion, we had to develop a number of the-
oretical and numerical tools. Here, we summarize the contributions of this thesis in two
categories, theoretical and numerical contributions, and discuss open future directions.

6.1 Theoretical contributions

In Sect. 2.2.2, we define the projection operator from full state space to the slice. Also, in
Sect. 2.2.3, we give the precise relation between the in-slice Jacobian and the Jacobian in
the full state space. Therefore, in-slice stability eigenvectors can be obtained easily from
those in the full state space.

In Sect. 3.5.1, we reduce the O(2) symmetry by using the fundamental domain and
argue that defining the 1st mode slice to have vanishing real part of the first Fourier mode
will keep the reflection rule unchanged in the slice. Such a simplification can be adopted in
other systems with O(2) symmetry too, such as complex Ginzburg-Landau equation.

In Sect. 4.2, we use three different numerical approaches, i.e., local Floquet expo-
nents, principal angles obtained by Floquet vectors, and expansion errors of difference
vectors in shadowing incidences, to estimate the dimension of the inertial manifold in one-
dimensional Kuramoto-Sivashinsky equation. The results are consistent among all these
three approaches and with the previous research on covariant Lyapunov vectors conducted
on ergodic trajectories.

6.2 Numerical contributions

In Chapter 5, we provide a detailed description of the periodic eigendecomposition needed to
calculate the stability of periodic orbits of a chaotic system. Its effectiveness and accuracy
are tested in the one-dimensional Kuramoto-Sivashinsky equation in Sect. 5.5. The C++

implementation can be found at my GitHub repository github.com/dingxiong/research.
This repository also contains the C++ implementation of some other algorithms that

are frequently used in the study of chaotic systems, such as GMRES [74] to solve linear
equation Ax = b by Krylov subspace iteration, Levenberg-Marquardt algorithm [59, 62],
inexact Newton backtracking method [77], Newton-GMRES-Hookstep algorithm [15] to find
(relative) periodic orbits, and the integrator for the one-dimensional Kuramoto-Sivashinsky
equation.

6.3 Future work

In this section, I list two potential directions for the future research in this field.
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6.3.1 Spatiotemporal averages in Kuramoto-Sivashinsky equation

We have gained valuable intuition about the geometrical structure of the global attractor by
the experience of working with these shadowing cases in Sect. 3.5. We observe that the global
attractor has a very thin structure. Orbits can shadow the unstable manifold of E2 and
different orbits can shadow each other. Experience with such shadowing incidences helps
us choose appropriate Poincaré sections to capture the transition rules between different
subregions. One is in a position to investigate the symbolic dynamics of the system. Namely,
one can try to partition the fundamental domain into several subregions and figure out the
transition rule between different subregions. This transition rule, also called the symbolic
dynamics, helps us classify the over 60 000 pre/relative periodic orbits by their topological
lengths. Then the spectral determinant (73) could be accurately approximated by the
shortest pre/relative periodic orbits. If this is implemented, spatiotemporal averages could
be obtained efficiently, without longtime simulations.

6.3.2 The dimensions of inertial manifolds of other systems

We believe that the numerical techniques developed in Chapter 4 can be used to determine
the dimensions of inertial manifolds for other nonlinear dissipative dynamical systems. The
previous studies [79, 89, 90], based on covariant vectors, have estimated the dimension of
the inertial manifold of the one-dimensional complex Ginzburg-Landau equation,

At = A+ (1 + iα)Axx − (1 + iβ)|A|2A ,

where A(x, t) is a complex field, and α and β are real parameters. As shown in Figure 31,
one-dimensional complex Ginzburg-Landau equation exhibits spatiotemporal chaos similar
to the Kuramoto-Sivashinsky Figure 11. We believe (but have not carried out the requisite
computations) that the analysis based on relative periodic orbits will also in this case
determine the dimension of inertial manifold. Similar to the one-dimensional Kuramoto-
Sivashinsky equation, this equation has a spatial reflection symmetry A(x, t) → A(−x, t)
and SO(2)×SO(2) spatial and phase translational symmetries A(x, t)→ eiφA(x+`, t). Thus
the symmetry-reduction techniques discussed in Sect. 2.2 can also be applied here, and one
can restrict the analysis to a fundamental domain in a slice, as we did in Sect. 3.5.1. In two
pubications not reported in detail in this thesis [25, 26], we have constructed a “minimal”
spatial domain and have determined a variety of equilibria, relative equilibria, and relative
periodic orbits for this system. This sets the stage for application of methods discussed in
Sect. 4.2, i.e., evaluation of local Floquet exponents, principal angles among sets of Floquet
vectors, and expansion errors of difference vectors during close shadowing episodes, in order
to estimate dimensions of the inertial manifold in system of complex Ginzburg-Landau type.

80



Figure 31: Spatiotemporal plots of complex Ginzburg-Landau equation with α = 2 and
β = −2 for two different domain sizes L = 100 and 200. The color represents the magnitude
of the field |A(x, t)|. Random initial condition is used, with the initial transient discarded.
Compare with Figure 11.
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APPENDIX A

FLOQUET THEOREM AND PERIODIC ORBITS

A linear ordinary differential equation with periodic coefficients is an old topic. Solutions
of such type of equations can be decomposed into the product of a time-exponential part
and a bounded periodic part. The rigorous statement is given by

Theorem A.1 [32] If Φ(t) is a fundamental matrix solution of linear system ẋ = A(t)x
with periodic coefficients A(t+ T ) = A(t), T being the period, then Φ(t) can be decomposed
as

Φ(t) = P (t)etB with P (t) = P (t+ T ) .

Here P (t) is called monodromy matrix, and B is a constant matrix. Eigenvalues of B are
called Floquet exponents. The eigenvectors are called Floquet vectors.

The proof of this theorem is very simple. First, it is easy to see that if Φ(t) is solution
matrix, so is Φ(t+ T ). Their relation is given by Φ(t+ T ) = Φ(t)C(t, T ), where C(t, T ) =
Φ−1(t)Φ(t+T ). Second, C(t, T ) is independent of time which can be shown by taking time
derivative at both sides of Φ(t)C(t, T ) = Φ(t+ T ),

Φ̇(t)C(t, T ) + Φ(t)Ċ(t, T ) = Φ̇(t+ T )

=⇒ A(t)Φ(t)C(t, T ) + Φ(t)Ċ(t, T ) = A(t+ T )Φ(t+ T )

=⇒ Ċ(t, T ) = 0 .

So matrix C(T ) is only parametrized by the period. Furthermore,

C(nT ) =
n−1∏
k=0

(
Φ−1(t+ kT ) Φ(t+ (k + 1)T )

)
= C(T )n ;

thus C(T ) has form eTB, where B is a constant matrix. So Φ(t + T ) = Φ(t)eTB. Last, If
we define a new matrix P (t) = Φ(t)e−tB, then

P (t+ T ) = Φ(t+ T )e−TB−tB = Φ(t)e−tB = P (t) .

In this way, we decompose the fundamental matrix solution into a periodic part P (t) and
a time exponential part etB, even though we do not know the explicit form of P (t).

Floquet theorem in condensed matter physics is under another name: Bloch theorem,

which states that wave function in a periodic potential can be written as ψ(~r) = ei
~k·~ru(~r).

Here u(~r) is a periodic function with the same potential period. Eigenstates are classified
into different bands by different profiles of u(~r).

For our interest, dynamics in the tangent space in a nonlinear dynamical system is
governed by J̇ = AJ . Especially, for periodic orbits, A is periodic, and if we start with
J(t0) = I, then Jacobian corresponding to one period Jp is just the exponential part eTB in
theorem A.1. This is the theoretical basis of periodic eigendecomposition algorithm, which
tries to calculate the eigenvalues and eigenvectors of Jp. On the other hand, the periodic
part P (t) in theorem A.1 evolves Floquet vectors along the periodic orbit, and returns to
the initial value after one period. This information is revealed in the reordering stage of
periodic eigendecomposition algorithm.
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APPENDIX B

PROOF OF PROPOSITION 4.2

The proof of proposition 4.2 provided by Collet et al. [17] concerns the calculation in the
Fourier space. Let

v(x, t) = i

∞∑
n=−∞

vn(t)einqx , Φx(x) = −
∞∑

n=−∞
ψne

inqx

with q = 2π/L. Here, we modify the form of Fourier transform by taking into consideration
the fact that both v(x, t) and Φ(x) are antisymmetric. Therefore, vn and ψn are all real
numbers and we have relations

vn = −v−n , ψn = ψ−n . (172)

We also impose ψ0 = 0. Note that we define the Fourier mode for Φx(x) not Φ(x). With
this setup, now we try to prove (148). We first calculate

∫
v2Φx(x) and

∫
v(∂2

x + ∂4
x)v.∫

v2Φx(x) =
∑
k,l,m

∫
vkvlψme

i(k+l+m)qx

= L
∑

k+l+m=0

vkvlψm = L
∑
k,l

vkvlψ−k−l = L
∑
k,l

vkvlψ|k+l| .

∫
v(∂2

x + ∂4
x)v =

∑
k,l

∫
vk(−n2q2 + n4q4)vle

i(k+l)qx

= L
∑
k

(−n2q2 + n4q4)v2
k .

In the above derivation, we have used relation (172) and ψ0 = 0. Then

(v, v)γΦ =

∫
v(∂2

x + ∂4
x + γΦx)v

= L
∑
k

(−n2q2 + n4q4)v2
k + γL

∑
k,l

vkvlψ|k+l|

= 2L
∑
k>0

(−n2q2 + n4q4)v2
k + γL

∑
k,l>0

vkvl(ψ|k+l| + ψ|−k−l| − ψ|k−l| − ψ|−k+l|)

= 2L

∑
k>0

(−n2q2 + n4q4)v2
k + γ

∑
k,l>0

vkvl(ψ|k+l| − ψ|k−l|)



= 2L

∑
k>0

(−n2q2 + n4q4 + γψ2k)v
2
k + γ

∑
k,l>0
k 6=m

vkvl(ψ|k+l| − ψ|k−l|)


= 2L

(∑
k>0

(−n2q2 + n4q4 + γψ2k)v
2
k + 2γ

∑
k>l>0

vkvl(ψk+l − ψ|k−l|)
)

(173)
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and

1

4

∫
(v2
xx + v2) = −1

4

∑
k,l

∫
vk(n

4q4 + 1)vle
i(k+l)qx

=
L

4

∑
k

(n4q4 + 1)v2
k

=
L

2

∑
k>0

(n4q4 + 1)v2
k . (174)

In order to show (v, v)γΦ ≥ 1
4

∫
(v2
xx + v2), we choose as ψn as follows

ψn =


0, for n odd{

4, when 1 ≤ |n| ≤ 2M

4f(|n|/2M − 1), when 2M ≤ |n|
, for n even

. (175)

Here f(n) is a non-increasing function whose first-order derivative is continuous. It satisfies
f(0) = 1, f ′(0) = 0 and

f ≥ 0 , sup |f ′| < 1 ,

∫ ∞
0

dk(1 + k)2|f(k)|2 <∞ . (176)

Integer M satisfies

M ≥ 2

q
(177)

and its exact value will be determined later. Therefore

−n2q2 + n4q4 + γψ2k =
1

2
(n2q2 − 1)2 +

1

2
(n4q4 + 1) + γψ2k − 1

≥ 1

2
(n4q4 + 1) .

Here, we have used the fact that ψ2k > 0 when nq > 2 and ψ2k > 4 when nq ≤ 2 together
with γ ∈ [1/4, 1]. With this inequality, we try to give lower bound of (173). Before that,
for notation convenience, we define

τn =

√
q4n4 + 1

2
, ωn = τnvn . (178)

Then from (173) we have

(v, v)γΦ ≥ 2L

(∑
k>0

ω2
k + 2γ

∑
k>l>0

ωk
ψk+l − ψ|k−l|

τkτl
ωl

)
.

and (174) becomes
1

4

∫
(v2
xx + v2) = L

∑
k>0

ω2
k .

In order to make (v, v)γΦ ≥ 1
4

∫
(v2
xx + v2), we need to prove∑

k>0

ω2
k + 4γ

∑
k>l>0

ωk
ψk+l − ψ|k−l|

τkτl
ωl > 0
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for γ ∈ [1/4, 1]. One sufficient but not necessary condition is∑
k>l>0

∣∣∣∣ψk+l − ψ|k−l|
τkτl

∣∣∣∣2 < 1

16
.

Now, we show that the above relation is valid given the choice of ψk in (175).

∑
k>l>0

∣∣∣∣ψk+l − ψ|k−l|
τkτl

∣∣∣∣2
=

∞∑
m=1

τ−2
m

∞∑
k=m+1

(ψk+m − ψk−m)2τ−2
k

≤ 16

M2

M∑
m=1

m2τ−2
m

∞∑
k=2M−m+1

τ−2
k +

16

M2

∞∑
m=M+1

m2τ−2
m

∞∑
k=m+1

τ−2
k

≤ 16

M2

M∑
m=1

m2τ−2
m

∫ ∞
2M−m

τ−2
k dk +

16

M2

∞∑
m=M+1

m2τ−2
m

∫ ∞
m

τ−2
k dk

=
32

M2

M∑
m=1

m2τ−2
m

∫ ∞
2M−m

1

q4k4 + 1
dk +

32

M2

∞∑
m=M+1

m2τ−2
m

∫ ∞
m

1

q4k4 + 1
dk

≤ 32

M2

M∑
m=1

m2τ−2
m

∫ ∞
2M−m

1

q4k4
dk +

32

M2

∞∑
m=M+1

m2τ−2
m

∫ ∞
m

1

q4k4
dk

=
32

3M2q4

M∑
m=1

m2τ−2
m

1

(2M −m)3
+

32

3M2q4

∞∑
m=M+1

m2τ−2
m

1

m3

≤ 32

3M5q4

M∑
m=1

m2τ−2
m +

32

3M2q4

∞∑
m=M+1

m−1τ−2
m

≤ 64

3M5q4

∫ ∞
0

m2

q4m4 + 1
dm+

64

3M2q4

∫ ∞
M

1

m(q4m4 + 1)
dm

≤ 64

3M5q4

∫ ∞
0

m2

(q4m4 + 1)1/2(q4m4)1/2
dm+

64

3M2q4

∫ ∞
M

1

m(q4m4)
dm

≤ 64

3M5q6

∫ ∞
0

1

(q4m4 + 1)1/2
dm+

16

3M6q8

=
64

3M5q6

4Γ(5
4)2

√
πq

+
16

3M6q8

<
128

3M5q7
+

16

3M6q8
.

We choose M to be the smallest integer larger than 4q−7/5 = 4(L/2π)7/5, then

128

3M5q7
+

16

3M6q8
<

128

3 · 45
+

16

3 · 46q−2/5
<

11

256
<

1

16
.

In the above derivation, we have used the fact that q = 2π/L < 1. Also, note that the choice
of M here satisfies the requirement (177). Therefore, (148) in proposition 4.2 is validated.
Now we turn to the proof of (149).
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(Φ,Φ)γΦ =

∫ L

0
Φ(∂2

x + ∂4
x)Φdx

= −
∫ L

0
Φx(∂x + ∂3

x)Φdx

= −
∫ L

0

∑
m,n

ψm(1− n2q2)ψne
i(m+n)qxdx

= 2L

∞∑
n=1

(n2q2 − 1)ψ2
n

= 2L

(
2M∑
n=1

(n2q2 − 1)16 +

∞∑
n=2M+1

(n2q2 − 1)16f2(
n

2M
− 1)

)

≤ 32L

(
2M(2M)2q2 +

∫ ∞
2M+1

dn(n2q2 − 1)f2(
n

2M
− 1)

)
≤ 32L

(
8M3q2 +

∫ ∞
0

dn2M((n+ 1)24M2q2 − 1)f2(n)

)
≤ 256LM3q2

(
1 +

∫ ∞
0

dn(n+ 1)2f2(n)

)
= 256L

(
4(

2π

L
)−7/5

)3(2π

L

)2(
1 +

∫ ∞
0

dn(n+ 1)2f2(n)

)
= KL16/5

(
1 +

∫ ∞
0

dn(n+ 1)2f2(n)

)
.

From (176), we know that (149) is verified. Thus, we finish the proof of proposition 4.2.

86



References

[1] P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G.
L. Kraut, and M. Paprzycki, “Almost block diagonal linear systems: sequential and
parallel solution techniques, and applications”, Numer. Linear Algebra Appl. 7, 275–
317 (2000).

[2] I. S. Aranson and L. Kramer, “The world of complex Ginzburg-Landau equation”,
Rev. Mod. Phys. 74, 99–143 (2002).
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[14] N. B. Budanur, P. Cvitanović, R. L. Davidchack, and E. Siminos, “Reduction of the
SO(2) symmetry for spatially extended dynamical systems”, Phys. Rev. Lett. 114,
084102 (2015).

[15] G. J. Chandler and R. R. Kerswell, “Invariant recurrent solutions embedded in a
turbulent two-dimensional Kolmogorov flow”, J. Fluid Mech. 722, 554–595 (2013).
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[25] X. Ding and P. Cvitanović, Exploding relative periodic orbits in cubic-quintic complex
Ginzburg–Landau equation, In preparation, 2017.

[26] X. Ding and S. H. Kang, Adaptive time-stepping exponential integrators for cubic-
quintic complex Ginzburg–Landau equations, 2017.
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in plane Couette flow”, J. Fluid Mech. 611, 107–130 (2008).

[41] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, “Characterizing
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