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Introduction

After calculus was invented by Newton and Leibniz 300 years ago, the main goal
of mechanics has been to find an analytic solution describing the exact dynamics
of a given mechanical system. If an analytic solution could not be obtained, then
one tried to find a perturbation solution close to an exact solution. Problems which
could not be solved this way were usually left untouched by mathematicians and
physicists. Newton obtained the exact solution of the gravitational two body prob-
lem while for the three body problem he could obtain only perturbation solutions
in some limits. The way we attack these kinds of mechanical problems (and other
dynamical problems) from the chaos-theory point of view is different. We try to
explain the dynamics not as one analytically describable path, but as a collection
of different possible paths from which one can calculate average quantities of the
system. The questions we ask and can answer are closer to the theory of statistical
mechanics and quantum mechanics than to the traditional mechanics.

The first to emphasize that one should study the global dynamics in the phase
space of the system in a qualitative way was Poincaré who introduced several of
the ideas and methods we use today. He discussed stable and unstable manifolds,
defined the surface of section (today called the Poincaré map), and stressed the im-
portance of the periodic orbits. By the end of the 19th century Poincaré and others
proved that the three body problem did not have the analytic solutions which New-
ton hoped to find. The ideas of Poincaré were developed by other mathematicians
in the beginning of the 20th century, but received scant given little attention in
physics and applied mathematics. Birkoff continued Poincaré’s work on discrete
mappings and stable and unstable manifolds. In the middle of this century the dig-
ital computer was developed, and use of computers to numerically solve problems
which do not have analytic solutions became a very important part of the study of
dynamical systems. The interplay between the numerical simulations and develop-
ment of the theory has been fruitful, with many examples of numerical experiments
giving new theoretical insights, such as the Fermi-Pasta-Ulam coupled oscillator
chains, the Lorenz attractor, the integrable Toda lattice, the chaotic Hénon-Heile
problem, the Feigenbaum period doubling, and the Hénon attractor. These results
gave new insights in the structure of the problems without a traditional analytic
solution. Important theoretical results were obtained by mathematicians like Kol-
mogorov, Arnold, Moser, Sinai, Smale, Newhouse, Ruelle and many others. These
“strange” problems are now usually referred to as chaotic systems. There is no
agreement on the ultimate definition of a chaotic system, but this may be unimpor-

tant since in practice there is general agreement on what the interesting questions
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are. In the last 20 years there has been a huge interest in chaotic systems and many
new results have been obtained. The work giving the background for this thesis
will be discussed in the text where we use these results. We build on the results
concerning symbolic dynamics obtained by Sharkovskii, Smale, Metropolis, Stein,

Stein, Milnor, Thurston, Grassberger, Cvitanovi¢ and many others.

“Quantum-chaos” is the youngest of the theories in the “chaos family” and
at the moment maybe the one with fastest progress. The problem of quantum
mechanics and chaos is discussed from many different points of view, all the way
from philosophical discussions to the real experiments. The semi-classical theory
of chaotic systems is of most interest to us since this theory gives a close relation
between the study of a classical system and the corresponding quantum systems,
and for both the quantum system and the classical systems description of periodic

orbits of the classical system plays an essential role.

In this thesis we will study the structure of orbits in classical chaotic systems
and a major tool will be the concept of symbolic dynamics. As much of the work
in chaos theory, this work is a mix of theoretical results, computer simulations and
applications to physical systems. We do not claim that the theoretical results here
are rigorously proven; they are mostly based on numerics and conjectures. Some of
the theoretical results may easily be turned into theorems while other conjectures
will need a lot of work to be proven, falsified or improved. We have obtained
descriptions of the orbits existing in chaotic systems and these descriptions can be
used in calculations of quantities like the energy levels of a quantum system. In
this thesis we work out a method for obtaining this description. Most applications

of this are left as future work.

A number of new results connected to the symbolic description of chaotic systems
are presented here. Bifurcation diagrams for three-modal one-dimensional maps are
drawn in a symbolic parameter plane, topologically equivalent to a usual parameter
plane. A global bifurcation diagram for this map has not been shown before. We
obtain similar bifurcation diagrams for the general once-folding two-dimensional
maps; the Hénon map is one two-parameter realization of such once-folding map.
These bifurcation diagrams are obtained by an approximation procedure which or-
ders the infinite-dimensional parameter space in a hierarchical manner. This yields
in a rather complicated description of bifurcations which agrees with numerics for
the Hénon map worked out in detail by Mira [153] and with other numerical exam-
ples of once-folding maps. We think that this description presented here for the first
time is the correct way to describe these bifurcations. There are many questions

not yet settled concerning the correctness of the assumptions underlying this theory.
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The important question of a unique partition of the folding map is addressed and
we propose a method that should yield a unique partition. Generalization of these
results to an n-folding two-dimensional map is also discussed. For a number of bil-
liard systems; 3-disk, 4-disk, 7-disk, hyperbola billiard, stadium billiard and wedge
billiard, we define a well ordered symbolic dynamics description and obtain a prun-
ing front. The pruning front distinguishes between symbol strings corresponding to
the admissible and the forbidden orbits. This can be used to construct an approxi-
mate Markov partition. Finding the topological entropy is the simplest application
of the theory. These results are the first systematical description of admissible or-
bits for the billiard systems and this is the first implementation of a construction
of approximate Markov partitions in billiard systems. We also investigate in some
detail the bifurcation of orbits in billiard systems as the parameters change. This
yield singular bifurcations which we show can be described by symbolic dynamics.
We compare the singular bifurcations of billiards with bifurcations found in smooth
Hamiltonian potentials, and find families of orbits bifurcating together described
by the same symbolic dynamics in both systems. This relation between symbolic
description of orbits in billiards and in smooth systems, apparantly not investigated
before, offers a better understanding of bifurcation of orbits in smooth Hamiltonian
systems.

The pruning front for dispersive billiards and some of the results for bifurcations
in billiards and smooth potentials are published in refs. [108, 109, 110]. One result
concerning the change of symbolic description of unstable orbits in the Hénon map
is also published in ref. [107].



Part 1

One-dimensional maps






Chapter 1

Unimodal map

1.1 Bifurcations in the unimodal map

A curious feature of chaotic systems is that the description of most phenomena
observed in many different chaotic systems is greatly aided by a proper understand-
ing of the simple one-dimensional unimodal map, so we will devote a considerable
amount of space to the review of this well known and much studied map.

A unimodal map is a continuous one-dimensional function R — R with a
monotonously increasing (or decreasing) branch, a critical point x. as the maximum
(minimum) point, and a monotonously decreasing (respectively increasing) branch.
We assume in this section that the critical point is a maximum point. The dynamics

of the point x is given by the iteration

T = f(ar,a) (1.1)
and some simple examples of unimodal maps are the logistic map
i1 = axy (1 — xy) (1.2)

drawn in figure 1.1 for @ = 3.92 and the tent map

<1/2
Tpp1 = o <l : (1.3)
a(l—x) x >1/2

drawn in figure 1.2 for a = 1.75. For convenience we assume a > 0, because a < 0
gives a function with a minimum point and with the same dynamics. Both the
logistic map and the tent map are unimodal and have similar topological properties,
while metric properties are very different. The tent map is a singular map, while

the logistic map is typical for smooth maps with a critical point f'(z.) = 0 with

11
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Figure 1.1: The logistic map f(z) = Figure 1.2: The tent map f(z) = ax if
az(l — x) with a = 3.92 and the orbit r<0.5and f(z) =a(l —x)ifx > 0.5
starting at the point x = 0.5. and the orbit starting at the point x =
0.5.

f"(x.) # 0. We will find that two-dimensional systems often have bifurcations
similar to those we find in one of these two simple maps.

The iteration of points z is illustrated graphically in the figures 1.1 and 1.2. We
draw a horizontal line from the point x = x; on the function f to a point on the
diagonal y = x and then we draw a vertical line from this point on the diagonal to

a point on the function f. This point has x = x;,; and we find the time series
T1T2T3 ... (]_4)

from the starting point xy. It is this time series we want to study — its convergence
to an asymptotic attractor and the transient dynamics.

The first numerical experiment we do on the computer is to find the attractor
lim;_, z; and plot the attractor as a function of the parameter a. This picture is
the well known bifurcation tree for the logistic map in figure 1.3 [144, 72]. The tent
map also has an attractor, and the bifurcation tree for the tent map is drawn in
figure 1.4.

The symbolic sequence of an orbit given by the time series (1.4) is defined as
follows. In a smooth map the critical point z. is the z-value giving f'(z) = 0 and
for the logistic map z. = 1/2. The tent map has a special point which we also
may call a critical point at x. = 1/2 where f(x) has a maximum point and f'(z) is

discontinuous. Let [152] the binary symbols be defined as

1 if
5 = > e (1.5)
0 if Ty < Te
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Figure 1.3: The bifurcation tree of the logistic map. a) The whole tree, b) magnification

around the period 3 resonance.

Figure 1.4: The bifurcation tree of the tent map. b) magnification around the creation

of the fixed point.
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The symbol string S = s1s3s3... with s, € {0,1} is the forward itinerary of point
xo. Symbols L and R are often used [147] instead of 0 and 1 so the symbols indicate
if the point x; is on the left side (L) or the right side (R) of the critical point. If
xy = x. the symbol s, = C' is often used but we will investigate separately these
special orbit.

Figure 1.1 shows the trajectory of the point o = x. = 0.5 in the logistic map

and we read the symbol sequence from the figure
5159253545586 ... — 100111... (]_6)

The tent map in figure 1.2 gives the same first 6 symbols when we start with
x9 = . = 0.5. The symbol string obtained by choosing xy = xz. is of special
interest and this string is called the kneading sequence of the unimodal map.

A periodic orbit of length n is a real solution of

fOx) = f(f(. fl2)..)) = (1.7)

The unimodal map, eq. (1.7), has 2" solutions in the complex plane, and we will
therefore have 2" or less period n orbits for the map.
A periodic orbit of length n is described by an infinite repetition of a length n

symbol string, indicated by the line over the string:

S = (515983 ...5,)™ = 515283 .- Sn, (1.8)

Each point z; in a periodic orbit can be associated with one of the 2" possible

symbolic strings $153...5,. A cyclic permutation of the symbolic string 5755 ...5,

to a new string SgSgpi1..-5,51 ---5k_1 is the description of the point z;,, | in the
same periodic orbit.

A periodic orbit is stable if

&)
dx

=[f"(@)- f'(f (@) - S fl@) ) < L (1.9)

If we draw the function f(™(x) then for a stable periodic orbit the slope of this
function at the fixed point is between —1 and 1. The interval on the parameter axis

where a periodic orbit is stable is called the stable window of the periodic orbit.

1.1.1 Fixed point and period doubling

Both fixed points (period 1 orbits) z = 0, x = 1 — 1/a of the logistic map (1.2)
exist for all @ > 0. The first solution z = 0 is stable for 0 < ¢ < 1 and unstable for

a > 1. This solution has z < x. for all parameter values and we denote this orbit
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as 0 and the point as xy where the index gives the symbolic description of the orbit.
To avoid a too cumbersome notation we don’t use the line over the symbols if it is
clear from the context that we refer to a periodic orbit. We then write x5 and 0
which should be understood as zg and 0.

The other fixed point x = 1 —1/a is unstable for 0 < a < 1, stable for 1 < a < 3
and unstable for ¢ > 3. This fixed point has z < z. for 0 < a < 2 and z > =z,
for a > 2. As the interesting dynamics take place for ¢ > 2 it is tempting to
identify this orbit by 1 and denote the point x7 for all values of the parameter a,
but this has to be done with care. It is typical that a stable orbit change symbolic
description somewhere within the stable window. In one-dimensional smooth maps
this is always at the parameter value where the orbit is super-stable df ™ (z)/dz = 0,
i.e. where one of the points in the orbit is identical to z.. In a unimodal map there
is only one of the n points in a period n orbit that can cross the critical point and

the symbolic description of the orbit can only change in one symbol

5152 - Sn_15n — S182 .- Sp_1(1 — $y) (1.10)

In the multimodal maps discussed in chapter 2 there are several points in the
periodic orbit that can cross a critical point and the symbolic description can change
in different ways. We choose to call this second fixed point 1 but we should always
remember that when an orbit is stable , its symbolic dynamics may change and is not
unique. In the unimodal map an unstable orbit has a unique symbolic description.

The stability of the fixed point 1 changes from f'(z7) =1l ata=1to f'(z1) =0
at a = 2 and to f'(x7) = —1 at @ = 3. When f'(z1) < 0 the fixed point has the
unique symbolic description 1. The interval a € (1, 3) is the stable window for the
fixed point.

The tent map has a fixed point xy = 0 for all @ > 0 and a fixed point x; =
a/(a + 1) that exists for ¢ > 1 and this fixed point is unstable for all a > 1. The
fixed point x; does not have any stable window such as the fixed point in the logistic
map and the fixed point is uniquely described by the symbolic description 1.

At a = 3 the fixed point z; of the logistic map has a period doubling bifurcation

where the fixed point becomes unstable and a period 2 orbit

a+1 1

o = oL T =3 (1.12)
2a 2a

is created and exists for all @ > 3. The stability df?(z)/dz is 1 at a = 3, it is 0
at a =1+ 5~ 3.2361 and it is —1 at a = 1 + /6 ~ 3.4495. For larger values of
a the orbit is unstable. Close to the bifurcation point at a = 3 both points in the
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Figure 1.5: The second iterated function f() () for a = 3.4. The four fixed points of
this function is the two fixed point 0 and 1 and the two points in the orbit 10.

period 2 orbit are close to the fixed point on the right side of z., but for a > 1 —+/5
there is one point on each side of z.. We denote the orbit by 10 and its points x5t
and 115 (757 > w75). In figure 1.5 the function f®(z) is drawn and the period 2

orbit appears as two fixed points in this drawing.

At @ = 14 /6 the period 2 orbit becomes unstable and a period 4 orbit is born.
After this orbit has passed the super-stable point its symbolic description is 1011
with the four points z15 < 2157 < @17 < Zgp- Notice that the map of one
of this points give another of the points where the index is a cyclic permutation
of the symbolic string zgrmg = f(2wm), T = f(@emm), Tmor = f(2m) and
o7 = f (T1707)-

We can generalize the period doubling bifurcations. Each periodic orbit bifur-
cates into an orbit with twice the length and for one parameter value a,, = 3.5714 . ..
there is an accumulation point where the length of the orbit goes to infinity. It has
been shown by Feigenbaum [72, 73, 74] that there is a universal scaling law for
all maps which have a quadratic critical point. The universality follows from the

Cvitanovié-Feigenbaum functional equation g(z) = —ag(g(—z/a)).

The symbolic description of the period doubling orbits is given by Metropolis,
Stein and Stein (MSS) [147]. The symbolic description of the new orbit is obtained
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Figure 1.6: The bifurcations of the fixed point and the symbolic description of the

periodic orbits.

by writing the old symbol sequence twice and changing the last symbol:

5152 5n —> S1S2...8,5152 ... Sp_1(1 — Sp) (1.13)

which is called a harmonic by MSS. The period 4 orbit 1011 bifurcates to the
period 8 orbit 10111010 etc. Figure 1.6 shows the bifurcation of the fixed point
and the symbolic description of the orbits. We should also observe that the number
of symbols 1 in these symbol strings is always odd because only orbits with an
odd number of 1s can have stability —1 and become unstable in a period doubling
bifurcation.

At a parameter a < a, the attractor is a period n orbit and the repellor is
the union of shorter unstable periodic orbits. A point = is a non-wandering point
if for any neighborhood U of z there is a time ¢ such that U N f®(U) # (). The
union of all non-wandering points are the non-wandering set of the map. For such
a parameter the non-wandering set is the union of the periodic orbits.

The periodic orbits have preimages on the x-axis. In figure 1.7 the preimages
of the stable fixed point 1 are drawn as a function of the parameter a. For a < 2
there is one preimage of the fixed point while for a > 2 there is a infinite number
of preimages. In figure 1.8 the preimages of the fixed point are drawn as horizontal
lines in the (z;,x441) plane. The preimages converge geometrically to the fixed

point xy = 0 and its preimage x = 1.
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A complete description of the dynamics of the map in the symbolic dynamics
language requires a description of both the repellor and the attractor. This can
be done by the graphs in figure 1.9 a), b) and ¢) which gives the symbolic future
of any point in the case of the stable orbits 1, 10 and 1011. Moving along a solid
curve in the graph corresponds to a symbol 1, while a dashed curve corresponds
to a symbol 0. The arrow shows in which direction to move. In figure 1.9 a) we
see that there can be an arbitrary number of symbols 0 but after a symbol 1 there
can only be symbols 1. For example, the sequence 0001111111... is legal but the
sequence 0001110111 ... can not exist in the map for this parameter value. This is
the description of the symbolic future s;s9s3 ... and is valid for all starting points,

even if xg > z. (s = 1).

The graphs are representations of Markov matrixes describing the dynamics in

terms of symbols. The graph in figure 1.9 a) represents the matrix

0 1
0 |11
X [0 1] (1.14)

The rows are the symbol s; and the columns are the symbol s;; ;. A number
1 in the matrix shows that the string s;s;,; is legal and a 0 shows that the string

s¢S¢41 1s forbidden.



1.1. BIFURCATIONS IN THE UNIMODAL MAP 19

Figure 1.9: Graph representation of legal orbits for a parameter value that gives a stable
a) fixed point 1, b) period 2 orbit 10, ¢) period 4 orbit 1011.

The graph in figure 1.9 b) represents the matrix

000 011 111 001 110 010 101
000 [ 1 0 0 1 0 0 ]
011
111
001
110
010
101 0

(1.15)

o o o o O
o O O = O O
o O O O = =
o O O O o O
o O O O = =
_ o O = O O
S = = O O O O

A row in this matrix is a 3 symbol string s; 55, 15, and a column is a 3 symbol
string s; 15;5¢41- A number 0 in the corresponding matrix element means that
the combination giving the 4 symbol string s;_ss; 15:5.41 is illegal. The graph
representation is much simpler and intuitively understandable that the full matrix.
We show later than the construction of a graph is relatively simple and in addition
it is simple to find the characteristic polynomial of the matrix from the graph
representation [40]. In the (-function formalism in chapter 11 this is shown to be
useful.

If there exists a finite graph there also exists a corresponding finite Markov
matrix and a finite Markov partition of the non-wandering set. A system with a
finite Markov partition is a system with finite memory in the sense that we only

have to know a finite length symbol string of the past to know which choices we
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-
- -

Figure 1.11: The symbolic graph for the
complete Cantor set repellor and the at-

tractor for a = 4, where all symbol se-

quences are legal.

have for the next symbol. It is shown by Grassberger [90] that the size of the
symbolic graph goes to infinity as we converge to the accumulation point a, of
the period doubling bifurcations. At this point the system has infinite memory as
defined above.

The tent map has a singular bifurcation for a = 1 where all period doubled orbits
from the fixed point 1 start to exist and are unstable. The parameter a = 1 is then
simultaneously the point where the fixed point is borne and the accumulation point

G for the bifurcations of the fixed point.

1.1.2 Unimodal map with complete grammar

If the parameter in the logistic map is @ > 4 then the critical point x. diverges
for t — oo and x = —oo is the attractor. We will now describe the corresponding
repellor. The repellor is a Cantor set and figure 1.10 shows that if we start with
the unit interval (0,1) then at each iteration the middle segment of the remaining
intervals escapes from the unit interval.

In symbolic dynamics the orbits in the repellor can be described by all possible

combinations of the symbols 0 and 1. The symbols 0 and 1 are letters in a alphabet
{0,1} (1.16)

and the grammar for a string made from this alphabet is simply that any combi-

nation of letters gives a legal string. This grammar is given by the simple graph in
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figure 1.11 which represents the Markov matrix

01
0 11
] .

If a = 4 for the logistic map, z. is mapped to the fixed point o and we have a
chaotic attractor. The symbolic description of the orbits in the attractor is the
same complete binary alphabet as for the repellor.

The tent map for a > 2 also has a repellor that is described by the same
binary symbolic alphabet and for a = 2 there is a chaotic attractor with the same

description.

1.1.3 The symbolic interval and the kneading sequence

The description of the dynamics for the logistic map when a,, < a < 4 is com-
plicated and the symbolic description is useful in describing these bifurcations. To
make a simple theory for the bifurcations we redefine the symbolic description. The
Cantor set in figure 1.10 can be mapped onto the real interval [0, 1] by associating
a real number, 7 to each infinite symbolic sequence. To keep the ordering of the
points on the z-axis we have to define new well-ordered symbols w;.

An increasing function (f'(z;) > 0) preserves the ordering between two points on
the x-axis such that if £, > x; then &, > x;11. A decreasing function (f’(x;) < 0)
reverses the ordering; if &; > x; then #;,,; < x4,1. The symbol s; as defined in (1.5)
is 0 if the function increases and 1 if the function decreases. We associate with z;

a binary number 7(x;) € [0, 1] as follows

wr = 51

Wt ifStZO
w =
i 1—w, ifs =1

7 = 0wwws...= o
t=1

(1.18)

The number 7(x;) preserves the ordering of x; in the sense that if Z;;; > 24,1 then
7(2) > 7(x¢). We call the symbols w + ¢ the well-ordered symbols and 7(z;) the
well-ordered symbolic future value of z; or for brevity; the symbolic value.

Aslong as a > 4 for the logistic map any real number 0 < 7 < 1 corresponds to a
symbolic description of an orbit in the non-wandering set of the map. If a < 4 there
is only a subset of the points in the interval 7 € [0, 1] of the interval that corresponds

to the symbolic description of an orbit and the forbidden symbolic values can be
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found using the following observation [152]. The largest possible x; value (except a
starting point xp) is the image of the critical point Zy,.x = f(2.). An orbit described
by a symbolic sequence S will have a point x > f(z.) if 7(S) > 7(x.) and cannot
be an admissible orbit. We define

k=T1(x.) (1.19)
to be the kneading value [152] of the unimodal map and the interval
(K, 1] (1.20)

its primary pruned interval.

For the symbolic sequence S, the dynamics is a shift operation

S(f*(x0)) = 0*S = {sp115k 425843 - .} (1.21)

and the orbit S is not admissible if 7 of any shifted sequence of S falls into the
primary pruned interval. For any orbit S there exists a supremum value 7% of the
orbit and its images
T (S) = sup 7(a*S) (1.22)
k

From this it follows

Theorem 1[175, 147, 99, 152]: Let x be the kneading value of the critical point
as defined in (1.19) and 7™#(S) be the supremum symbolic value of the orbit S as
defined in (1.22). Then the orbit S is admissible if and only if 7*(S) < k.

1.1.4 Bifurcations and symbolic parameter space

We can make use of the kneading value when describing the bifurcations in the
unimodal map.

The kneading value k can be considered as a new topological parameter of the
map. In figures 1.12 and 1.13 the value of x is drawn as a function of a for the
logistic map and the tent map. The plot is a staircase-like monotone increasing
function. The jumps in k correspond to symbolic values that are not allowed. Each
jump in k has a one to one correspondence to one window on the parameter axis
with a stable periodic orbit for the smooth unimodal map. We can consider the
kneading interval x € [0, 1] to be a parameter space for the unimodal map and we
will denote k the symbolic parameter value when we take this point of view.

The tent map has larger jumps in k in figure 1.13 than in the logistic map
because the tent map does not have any windows, but if these two maps have the

same kneading value then the same orbits exist for the parameter values a.
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Figure 1.12: The kneading value « as a Figure 1.13: The kneading value « as a
function of the parameter a for the logis- function of the parameter a for the tent

tic map. map.

1.1.5 Band merging bifurcations

One bifurcation in figure 1.3 is the band merging bifurcation where n - 2™*! of
chaotic bands merge into n - 2™ of chaotic bands. Between two chaotic bands there
is an unstable period n - 2™ orbit with df(™ /dz < —1 which is an isolated part of
the repellor. At the band merging bifurcation this points starts to belong to the
attractor when two and two of the n-2™"! bands join each other at the n-2™ points
of the periodic orbit. The boundaries of the chaotic bands are images of the critical
point and the kneading sequence is preperiodic to the symbolic description of the
unstable period n orbit.

The simplest example of a band merging bifurcation is the point where two
bands merge into one band and the joining point is the fixed point 1. The kneading

sequence is here
K =101

giving the kneading value

k =0.110 = 0.11010101010...=5/6 (1.23)

which is the symbolic parameter value for the two band merging bifurcation for all
unimodal maps. No orbits with 77#(S) > 0.110 exist for this parameter value.
In the logistic map the parameter value a = 3.6785... gives this band merging
bifurcation and in figure 1.14 the map and the preimages of the fixed point is
drawn showing that at this point the parabola is tangent to the closest of the
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Figure 1.14: The logistic map at the Figure 1.15: The symbolic graph for the
band merging point when two bands band merging point x = 0.110.

merge to one band a = 3.6785 and the

preimages of the fixed point drawn as

horizontal lines.

horizontal lines. There exists a finite grammar describing the non-wandering set
and the Markov graph in figure 1.15 shows the rules giving the admissible symbol
strings. Comparing with the graphs in figure 1.9 b) and c) we find that the fixed
point 1 that used to be a transient orbit now is included in the last, attracting
part of the graph. The attractor part of the Markov graph in figure 1.15 can be
described by the new two letter alphabet

{01,11}

All combinations of the two letters 01 and 11 give a symbol string which corresponds
to an orbit in the chaotic attractor.

To each period doubling bifurcation there is a corresponding band merging bi-
furcation. The kneading sequence at a period doubling bifurcation is given by (1.13)

and is

K=3515""5, > K =5159...5,5152...5,1(1 — $y) (1.24)

The band merging bifurcation which corresponds to this is located at the the knead-

ing sequence
K =5189...5,8182...8,1(1 — 5,)5152 .-~ Sy, (1.25)

with the same symbol string s;s5...s,. The band merging bifurcations for the fixed
point in the logistic map also converge to the accumulation parameter a., with the

same Feigenbaum scaling factor but with a > ay.



1.1. BIFURCATIONS IN THE UNIMODAL MAP 25

The two kinds of bifurcations have the same kneading sequence at the accumu-

lation point:
1011101010111011 ...
and this gives the topological parameter value
Koo = 0.1101001100101101 . .. (1.26)

There are similarities between the period doubling and the band merging bi-
furcation but there are also important differences. The period doubling bifurca-
tion is a local bifurcation depending only on the stability of one orbit. The band
merging bifurcation is a global bifurcation involving the critical point and a large
non-wandering set. We find that in the discussion of the two dimensional maps in
chapter 5 this is analogue to a creation of a homoclinic tangency. Also the similar
scaling property of the two kind of bifurcations that exists for the logistic map is not
true for all unimodal maps. The tent map has a singular creation of periodic orbits
but figure 1.4 shows that there are band merging bifurcations converging to a,, = 1.
The description of the allowed symbol strings changes very differently around the
two different bifurcations. The period doubling bifurcations create a new structure
in the Markov graph which is a new attractor, leaving the old attractor as a tran-
sient loop. The Markov graph does not change from one period doubling bifurcation
to the next. The Markov graph for the band merging bifurcation is valid only for

this parameter value.

1.1.6 Resonances

In a chaotic band there are resonances where new orbits are created and there is a
window with a stable orbit that goes through period doublings and band merging
bifurcations and finally in a crisis bifurcation again gives a band attractor. We look
in some detail at the simplest of these resonances which is the period 3 resonance
in figure 1.3 b).

One stable and one unstable period 3 orbit are created at a tangent bifurcation
in the logistic map at a = 3.8284.... The symbolic description of both the two
orbits are S = 101 at the parameter where they are created. At the super-stable
point a = 3.8319... the stable orbit changes symbolic dynamics to S = 100. The

symbolic parameter value of the bifurcation creating the two orbits is

k= 7"*(T01) = 0.110 = 6,7 (1.27)
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The symbolic parameter value where the stable orbit crosses the super-stable point

is

K = 7*(T00) = 0.TT1000 = 8/9. (1.28)

The orbit 100 undergoes period doubling bifurcations to orbits with a symbolic
description given by eq. (1.24) with the initial string s;ses3 = 100 and also band
merging bifurcations with the kneading sequence given by eq. (1.25).

The crisis bifurcation of the period 3 resonance is the parameter value where the
attractor changes from 3 chaotic bands to one chaotic band. This is the bifurcation
when the critical point maps into the unstable period 3 orbit 101 which for the
logistic map occurs for a = 3.8568 . ... This bifurcation has the kneading sequence

100101 and the symbolic parameter value
% = 0.111001 = 25/28. (1.29)

In the general description of a resonance two orbits 5753 ...5, and

$182-..5p-1(1 — s,) are born at a tangent bifurcation at the the symbolic parameter

value

k="T(s152...8-1(1 — sp)). (1.30)

The string syss...s, giving a resonance can not be of the form

s159(1 — S(n/Z))8182 ... 8(n/2) since this orbit would be born at a period doubling, the
number of symbols ‘1’ in s185...5, is odd and the cyclic permutation (5753.--5,)
is the permutation giving the largest value of 7. The resonance has period doubling
and band merging bifurcations with $755 ..., as the generating string and the crisis

bifurcation takes place at

K = Tma.x(

$182. .. 88182 ... Sp—1(1 — sp)). (1.31)
The ordering of resonances along the parameter axis follows the size of 7™#*(S) and
this ordering of orbits is often called the MSS (Metropolis, Stein, Stein) sequence.

We can mark the values 7(S) on the x axis for different periodic orbits S and
this gives a picture analog to the bifurcation tree in figure 1.3. In figure 1.16 a) we
have marked the symbolic value of some periodic orbits orbits and in figure 1.16 b)
we have also drawn some of the intervals that corresponds to stable windows in the
smooth unimodal map. The k-axis may be considered as a topologic or symbolic
parameter axis. The ordering of bifurcations is the same along x as along the
parameter a and therefore are these two axis topological equivalent but the metric

properties (scaling etc.) is different.
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Figure 1.16: The bifurcation points of periodic orbits plotted at the symbolic parameter

axis K.

Figure 1.17: Graph representation of legal orbits for a parameter value that gives the
stable period 3 orbit. a) The whole automaton. b) The Cantor set part of the automaton
that follows after the O-loop.
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Figure 1.18: Graph representation of legal orbits for a parameter value that gives the

crisis bifurcation of the period 3 resonance.

0 1

Figure 1.19: Graph representation for the kneading sequence 1001011,
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The symbolic automaton graphs for the stable period 3 orbit 100 is drawn in
figure 1.17 and the automaton at the band merging point is drawn in figure 1.18. In
figure 1.17 a) the rightmost part of the graph is the stable orbit but of more interest
is the middle part describing the fractal repellor. When removing the 0—loop to the
left and the 100 attractor to the right, the remaining part is drawn in figure 1.17 b).
This automaton gives the symbolic description of the Cantor set repellor consisting
of all orbits created for a smaller parameter value except the isolated 0 fixed point.
It can also be described by the alphabet

{1,01} (1.32)

The automaton for the kneading sequence 100101 in figure 1.19 shows that the
fractal repellor {1,01} is still isolated and the attractor is the chaotic bands that
can be described bye the alphabet

{100,101} (1.33)

with all combinations of symbols allowed. For any parameter value larger than
the crisis bifurcation the {1,01} part is connected to the attractor giving one band
attractor again. One example is given in figure 1.19 where the diagram for the

kneading sequence 1001011 is drawn.

1.1.7 Resonances in the tent map

The tent map (1.3) has discontinuous f’(x) and for a > 1 then |f'(z)| =a > 1 and
there can not be a stable orbit as attractor. The fixed point x5 = 0 is stable for
a < 1 and unstable for ¢ > 1. This does not prevent the map from having chaotic
bands an in figure 1.4 we find that there are bands close to the bifurcation of the
fixed point at ¢ = 1 but no bands in a period 3 resonance or in any other resonance.

The band merging from 2n bands to n bands in figure 1.4 takes place when the
slope of f(?)(z) has absolute value 2. We have |df ") (z)/dz| = a*" which gives a
band merging for

a=92"m (1.34)

These values converges to a = 1 from above, not as a geometric series but much
slower.

There exists no other band structure than the bands generated by the fixed
point and a chaotic band has no internal resonance structure. This is easily shown
because in the one band region /2 < a < 2 the orbits of length n have slope
|df?™)(x) /dz| = a®" and this is larger than 2 for all orbits n > 2 and then there are
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no bands other than the period 1 band. The period 3 orbit is born, goes through all
period doublings, band mergings and the crisis bifurcation at one singular parameter
value @ = (1 + /5)/2 = 1.6180.... This is one large jump in the plot of x as a
function of @ in figure 1.13.

From the self similarity it follows that also the 2" bands are without internal
structure of bands. The slope is squared for each bifurcation and the shortest orbit
born in the bands is twice as long and cannot have bands.

The plot of k as a function of a in figure 1.13 has fewer steps and larger jumps
for the tent map than for the logistic map because of the singular bifurcation points

in the parameter a.

1.2 Construction of a finite automaton

There is a simple procedure giving the Markov graph or an automaton for the uni-
modal map when we know the kneading sequence K. We can also use the procedure
to generate a Markov graph for other systems given a finite list of forbidden symbol
strings.

In general there is no guarantee that the Markov graph for the unimodal map
is finite. One example where the automaton is infinite is the accumulation point
of the period doubling bifurcation [90]. If there exists a stable periodic orbit the
automaton is finite and ends in a cycle with the symbols of the stable orbit. We
may approximate the automaton for most parameter values with an automaton
for a stable orbit at a parameter value close to the exact parameter value. We
conjecture that the automaton converges to the correct automaton as we choose
parameter values giving stable orbits closer and closer to the parameter value. The
eigenvalue from the automatons converges to the limit also when the attractor is a
chaotic orbit.

A different way to approximate the automaton is to approximate the kneading
sequence by a string that after a finite number of symbols ends in a periodic orbit.
This may be e.g. a band merging or a crisis bifurcations. This choice also gives
a rational kneading value and a finite graph and we expect the eigenvalues will
converge. The calculations are however more complicated and it is not so clear
which part of the graph gives the largest eigenvalues.

The part of the automata which gives the eigenvalues we are interested in when
there exist a stable orbit is a Cantor set repellor. We show how to find the topolog-
ical entropy and other statistical measures from the automaton below. The repellor

is the first loop structure that follows after the transient 0 loop and if they exist as
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isolated transient loops, also after the 1 loop, 10 loop, 1011 loop, .... This is the
period doubled loops of the fixed point. If the stable orbit is in the one-band region
only 0 is a transient. If the stable orbit is in the two band region 0 is a transient
followed by 1 as a transient and then followed by the repellor giving the largest
eigenvalues. The four band region gives three transient loops etc.

One example is the stable orbit 100 in the one-band region for which the whole
automaton is drawn in figure 1.17 a) while the Cantor set part is drawn in fig-
ure 1.17 b). We find in figure 1.18 that this Cantor set part is the same automaton
also at the crisis bifurcation and it is the same graph all along the period 3 reso-
nance.

The topological entropy (see section 1.3) for the transient repellor is here

h=ln (\[2_ 1) — In(1.618...) (1.35)

which is larger than the topological entropy for the three chaotic bands at the crisis

bifurcation
h=1In(2"%) =In(1.260...). (1.36)

The topological entropy for the chaotic bands at the crisis of a period n resonance
is 1/n-th of the topological entropy for the complete binary repellor h = In2. The
bands at the crisis of the period 3 resonance has the largest entropy in any resonance
of the one band regime. The topological entropy at the band merging is given by
the graph in figure 1.15 and gives h = In+/2. The topological entropy is for the
part of the graph following the 0 loop in the one band regime

Inv2<h<In2 (1.37)

which is larger than any topological entropy in a resonance. By self similarity is the
same true for the 2,4,8,...band regimes. We expect that the part of the Markov
graph giving the largest topological entropy also gives the leading eigenvalues for
other measures.

Since the repellor is constant from a tangent bifurcation to the crisis bifurcation
we restrict ourself to choose stable periodic orbits born at a tangent bifurcation as
other stable orbits inside a resonance do not give different leading eigenvalues.

The symbolic description of the possible orbits from a point x( in the unimodal
map can be drawn as a path down a binary tree as drawn in figure 1.20. We refer
to a node in the binary tree with the preceding symbol string and we refer to the
top node as (). We first draw the kneading sequence K = s;s953 ... for the chosen

parameter value as a path in the tree. From each node along this path there is a
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Figure 1.20: A binary tree.
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Figure 1.21: The construction of the stable period 3 automaton. In a) the forbidden
side branches ends in a cross, and in b) the legal side branches are reconnected to the

graph.

side branch and we have to decide if this is a legal branch. The side branch after

the n—-th node is s155...5,(1 — s,41) and this branch is legal if
T(8iSiv1-+-Sn(l = Spy1)) < K (1.38)

for all i € {1,2,...n}. A side branch that is legal is connected to the node with

the symbolic description s;5;...s; where the symbol string is

$182 .. .Sk = Sp_kt2---Sn(1 — Spy1) (1.39)

for the largest possible integer k. This procedure prevents that a legal side branch
is followed by an illegal string. The automaton we obtain by this procedure can
then be minimalized.

We give a few examples how to use this procedure. Figure 1.21 a) shows the
path in the binary tree for the kneading sequence K = 100 with x = 0.111000. We
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find the following legal side branches of the path

0 = 7(0) =0 < K

11 = 7(11) = 0.10 < &

101 = 7(101) = 0.110 < &

7(01) = 0.01 < &

(1) = 01 < &

and the forbidden branches

1000 = 7(1000) = 0.1111 > K
10011 = 7(10011) = 0.11101 > K
100101 = 7(100101) = 0.111001 > &
1001000 = 7(1001000) = 0.1110000 < &
7(001000) = 0.001111 < &
7(01000) = 0.01111 < K
7(1000) = 0.1111 > K

The forbidden side branches is marked by a cross in figure 1.21. The reconnection

of the legal branches to a node following (1.39) gives

0 — 0
11 — 1
101 — 1

and are drawn in figure 1.21 b). In figure 1.21 b) we see that the node 100100 has
the same infinite future as the node 100 and we identify these two nodes and then
we have the finite automaton of figure 1.17.

In figure 1.22 the construction of the automaton for the kneading sequence
K = 1001011 is shown.

These rules except the final reduction of the graph are implemented on a com-
puter and given a stable periodic orbit by its symbolic string it gives the automata.
On the computer the stable period n orbit loop is removed by letting also the string
S1S2...8, be forbidden. This procedure for constructing a Markov graph is easily
generalized to a construction of a n-ary tree where the forbidden strings are given
as a finite list of strings. We than draw the paths of all forbidden strings in the
tree. Then all side branches are checked, not by (1.38) but with the list of forbid-
den strings and the side branch is marked illegal if the string s;8;11 ... 5,(1 — Sp41),
i €{1,...,n} is in the list. The reconnection of side branches is done by (1.39). A

finite list of forbidden strings gives a finite automaton.
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Figure 1.22: The construction of the automaton for kneading sequence K = 1001011.
In a) the forbidden side branches ends in a cross, and in b) the legal side branches are

reconnected to the graph.



36 CHAPTER 1. UNIMODAL MAP

1.3 Topological entropy

The topological entropy h is a measure of the exponential growth of the number of
periodic orbits with the length. This is the simplest of the average values one can
find and it is the simplest application of the zeta-function formulation discussed in
chapter 11 Let N(n) be the number of periodic orbits of length n, then

N(n) ~ e (1.40)

in the limit n — co. The number h can be obtained by calculating and counting pe-
riodic orbits, but if we know the symbolic description of the map h can be obtained
in a much more effective way [45, 162, 40, 14].

The topological entropy is the negative logarithm of the leading (smallest and
real) eigenvalue of the characteristic polynomial of the Markov matrix h = —1In 2.

This polynomial
p(z) =14+ a1z +a2* +azz® +--=0 (1.41)

is obtained from the automaton by the following rules: a; is initially 0; a; — a; — 1
for each non self intersecting loop in the graph with ¢ nodes; a; — a; £ 1 for each
combination of non self intersecting loops that have no node in common and where
the sum of the nodes is ¢. The sign + is chosen when the number of loops in the
combination is even and the sign — if the number of loops is odd. This is applied
for each part of the graph that is recursive; that is the part of the graph where one
can get from any node in this part to any other node in the same part by some path.
Each recursive part of the graph gives a eigenvalue and the smallest real eigenvalue

gives the topological entropy.
h=—1Inz (1.42)

The simplest example is the complete binary map where the symbolic description
of the repellor or the attractor is given by the automaton in figure 1.11. The
automaton has two loops with length 1 and the loops can not be combined as they

have one node in common. This give the polynomial
p(z) =1—-22=0
and from this z = 1/2 and

h=1n2
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This result is of course easily obtained by just observe that since all combinations
of the two symbols 0 and 1 are legal and most strings are not a repetition of shorter

strings, then the number of periodic orbits grows as
N(n) ~ 2"

The repellor in the period 3 resonance window in figure 1.17 b) gives one length

1 loop and one length 2 loop and topological entropy is then

1—2—-2=0
1+V5
2

u(2)

A more interesting example is to choose a parameter value a that numerically

gives a chaotic attractor and look at the convergence of h. If we choose a = 3.8 in

the logistic map we find the kneading sequence
K =1011011110110111101011110111110. ..

and we may e.g. find the automaton describing the repellor of the period 29 reso-
nance close to the chaotic attractor. This gives a automaton with 29 nodes and the

characteristic polynomial

p(z) = 1—2t—22423 28 — 28 426 — 2T +28 - 29— 210
QM 12 13 4 15 16 AT I8 4 19 4 20

L2y 22 23y 24y 95 26 4 2T 8
and solving p(z) = 0 gives the smallest real root
z = 0.62616120. ..

The error can be estimated to be of order 22° ~ 107% because going from length 29
to a longer string typically for the unimodal map graphs or combination of loops

29 and of higher order in the polynomial.

with 29 and more nodes giving terms 4z
Describing resonances of increasing length and with a < 3.8 we find polynomials
with a better estimate for the topological entropy. For the closest stable period 90

orbit we find the topological entropy

h = —1In0.62616130424685. ..
= In1.59703257486152. .. (1.43)
= 0.46814726655867 . . ..
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Figure 1.23: The logarithm of the difference between the leading zero of the charac-
teristical polynomial and our best estimate as a function of the length for the logistic
map a = 3.8.
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Figure 1.24: The zeroes of the characteristical polynomial for the logistic map a = 3.8
approximated up to length 90 symbolic strings.
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We can find how fast this converges to our best estimate (1.43). In figure
1.23 is the logarithm of the difference between the zero of a polynomial and our
best estimate plotted as a function of the length of the stable periodic orbit. The
convergence is approximately linear with a slope of —0.47 ~ h.

We can find all real and complex zeroes of the characteristical polynomial and in
figure 1.24 the zeroes of the polynomial obtained by including the forbidden strings
of length 90 and less are plotted in the complex plane. The leading zero giving the
topological entropy is the point closest to the origin while most of the other zeroes
are close to the unit circle. This circle gives the radius of convergence.

All automatons for the unimodal map are simple because the automaton consists

only of one long path of nodes and pointers back from a node to an earlier node.



