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Introduction

After calculus was invented by Newton and Leibniz 
�� years ago� the main goal

of mechanics has been to �nd an analytic solution describing the exact dynamics

of a given mechanical system� If an analytic solution could not be obtained� then

one tried to �nd a perturbation solution close to an exact solution� Problems which

could not be solved this way were usually left untouched by mathematicians and

physicists� Newton obtained the exact solution of the gravitational two body prob


lem while for the three body problem he could obtain only perturbation solutions

in some limits� The way we attack these kinds of mechanical problems �and other

dynamical problems� from the chaos
theory point of view is di�erent� We try to

explain the dynamics not as one analytically describable path� but as a collection

of di�erent possible paths from which one can calculate average quantities of the

system� The questions we ask and can answer are closer to the theory of statistical

mechanics and quantum mechanics than to the traditional mechanics�

The �rst to emphasize that one should study the global dynamics in the phase

space of the system in a qualitative way was Poincar�e who introduced several of

the ideas and methods we use today� He discussed stable and unstable manifolds�

de�ned the surface of section �today called the Poincar�e map�� and stressed the im


portance of the periodic orbits� By the end of the ��th century Poincar�e and others

proved that the three body problem did not have the analytic solutions which New


ton hoped to �nd� The ideas of Poincar�e were developed by other mathematicians

in the beginning of the ��th century� but received scant given little attention in

physics and applied mathematics� Birko� continued Poincar�e�s work on discrete

mappings and stable and unstable manifolds� In the middle of this century the dig


ital computer was developed� and use of computers to numerically solve problems

which do not have analytic solutions became a very important part of the study of

dynamical systems� The interplay between the numerical simulations and develop


ment of the theory has been fruitful� with many examples of numerical experiments

giving new theoretical insights� such as the Fermi
Pasta
Ulam coupled oscillator

chains� the Lorenz attractor� the integrable Toda lattice� the chaotic H�enon
Heile

problem� the Feigenbaum period doubling� and the H�enon attractor� These results

gave new insights in the structure of the problems without a traditional analytic

solution� Important theoretical results were obtained by mathematicians like Kol


mogorov� Arnold� Moser� Sinai� Smale� Newhouse� Ruelle and many others� These

�strange� problems are now usually referred to as chaotic systems� There is no

agreement on the ultimate de�nition of a chaotic system� but this may be unimpor


tant since in practice there is general agreement on what the interesting questions
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are� In the last �� years there has been a huge interest in chaotic systems and many

new results have been obtained� The work giving the background for this thesis

will be discussed in the text where we use these results� We build on the results

concerning symbolic dynamics obtained by Sharkovskii� Smale� Metropolis� Stein�

Stein� Milnor� Thurston� Grassberger� Cvitanovi�c and many others�

�Quantum
chaos� is the youngest of the theories in the �chaos family� and

at the moment maybe the one with fastest progress� The problem of quantum

mechanics and chaos is discussed from many di�erent points of view� all the way

from philosophical discussions to the real experiments� The semi
classical theory

of chaotic systems is of most interest to us since this theory gives a close relation

between the study of a classical system and the corresponding quantum systems�

and for both the quantum system and the classical systems description of periodic

orbits of the classical system plays an essential role�

In this thesis we will study the structure of orbits in classical chaotic systems

and a major tool will be the concept of symbolic dynamics� As much of the work

in chaos theory� this work is a mix of theoretical results� computer simulations and

applications to physical systems� We do not claim that the theoretical results here

are rigorously proven� they are mostly based on numerics and conjectures� Some of

the theoretical results may easily be turned into theorems while other conjectures

will need a lot of work to be proven� falsi�ed or improved� We have obtained

descriptions of the orbits existing in chaotic systems and these descriptions can be

used in calculations of quantities like the energy levels of a quantum system� In

this thesis we work out a method for obtaining this description� Most applications

of this are left as future work�

A number of new results connected to the symbolic description of chaotic systems

are presented here� Bifurcation diagrams for three
modal one
dimensional maps are

drawn in a symbolic parameter plane� topologically equivalent to a usual parameter

plane� A global bifurcation diagram for this map has not been shown before� We

obtain similar bifurcation diagrams for the general once
folding two
dimensional

maps� the H�enon map is one two
parameter realization of such once
folding map�

These bifurcation diagrams are obtained by an approximation procedure which or


ders the in�nite
dimensional parameter space in a hierarchical manner� This yields

in a rather complicated description of bifurcations which agrees with numerics for

the H�enon map worked out in detail by Mira ���
� and with other numerical exam


ples of once
folding maps� We think that this description presented here for the �rst

time is the correct way to describe these bifurcations� There are many questions

not yet settled concerning the correctness of the assumptions underlying this theory�
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The important question of a unique partition of the folding map is addressed and

we propose a method that should yield a unique partition� Generalization of these

results to an n
folding two
dimensional map is also discussed� For a number of bil


liard systems� 

disk� �
disk� �
disk� hyperbola billiard� stadium billiard and wedge

billiard� we de�ne a well ordered symbolic dynamics description and obtain a prun


ing front� The pruning front distinguishes between symbol strings corresponding to

the admissible and the forbidden orbits� This can be used to construct an approxi


mate Markov partition� Finding the topological entropy is the simplest application

of the theory� These results are the �rst systematical description of admissible or


bits for the billiard systems and this is the �rst implementation of a construction

of approximate Markov partitions in billiard systems� We also investigate in some

detail the bifurcation of orbits in billiard systems as the parameters change� This

yield singular bifurcations which we show can be described by symbolic dynamics�

We compare the singular bifurcations of billiards with bifurcations found in smooth

Hamiltonian potentials� and �nd families of orbits bifurcating together described

by the same symbolic dynamics in both systems� This relation between symbolic

description of orbits in billiards and in smooth systems� apparantly not investigated

before� o�ers a better understanding of bifurcation of orbits in smooth Hamiltonian

systems�

The pruning front for dispersive billiards and some of the results for bifurcations

in billiards and smooth potentials are published in refs� ����� ���� ����� One result

concerning the change of symbolic description of unstable orbits in the H�enon map

is also published in ref� ������
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One�dimensional maps
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Chapter �

Unimodal map

��� Bifurcations in the unimodal map

A curious feature of chaotic systems is that the description of most phenomena

observed in many di�erent chaotic systems is greatly aided by a proper understand


ing of the simple one
dimensional unimodal map� so we will devote a considerable

amount of space to the review of this well known and much studied map�

A unimodal map is a continuous one
dimensional function R � R with a

monotonously increasing �or decreasing� branch� a critical point xc as the maximum

�minimum� point� and a monotonously decreasing �respectively increasing� branch�

We assume in this section that the critical point is a maximum point� The dynamics

of the point x is given by the iteration

xt�� � f�xt� a� �����

and some simple examples of unimodal maps are the logistic map

xt�� � axt��� xt� �����

drawn in �gure ��� for a � 
��� and the tent map

xt�� �

��
� axt xt � ���

a��� xt� xt � ���
� ���
�

drawn in �gure ��� for a � ����� For convenience we assume a � �� because a � �

gives a function with a minimum point and with the same dynamics� Both the

logistic map and the tent map are unimodal and have similar topological properties�

while metric properties are very di�erent� The tent map is a singular map� while

the logistic map is typical for smooth maps with a critical point f ��xc� � � with

��
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Figure ���� The logistic map f�x� �

ax�� � x� with a � 
��� and the orbit

starting at the point x � ����

Figure ���� The tent map f�x� � ax if

x � ��� and f�x� � a��� x� if x � ���

and the orbit starting at the point x �

����

f ���xc� �� �� We will �nd that two
dimensional systems often have bifurcations

similar to those we �nd in one of these two simple maps�

The iteration of points x is illustrated graphically in the �gures ��� and ���� We

draw a horizontal line from the point x � xt on the function f to a point on the

diagonal y � x and then we draw a vertical line from this point on the diagonal to

a point on the function f � This point has x � xt�� and we �nd the time series

x�x�x� � � � �����

from the starting point x�� It is this time series we want to study � its convergence

to an asymptotic attractor and the transient dynamics�

The �rst numerical experiment we do on the computer is to �nd the attractor

limt�� xt and plot the attractor as a function of the parameter a� This picture is

the well known bifurcation tree for the logistic map in �gure ��
 ����� ���� The tent

map also has an attractor� and the bifurcation tree for the tent map is drawn in

�gure ����

The symbolic sequence of an orbit given by the time series ����� is de�ned as

follows� In a smooth map the critical point xc is the x
value giving f ��x� � � and

for the logistic map xc � ���� The tent map has a special point which we also

may call a critical point at xc � ��� where f�x� has a maximum point and f ��x� is

discontinuous� Let ����� the binary symbols be de�ned as

st �

��
� � if xt � xc

� if xt � xc
� �����
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Figure ��
� The bifurcation tree of the logistic map� a� The whole tree� b� magni�cation

around the period � resonance�

Figure ���� The bifurcation tree of the tent map� b� magni�cation around the creation

of the �xed point�
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The symbol string S � s�s�s� � � � with st � f�� �g is the forward itinerary of point

x�� Symbols L and R are often used ����� instead of � and � so the symbols indicate

if the point xt is on the left side �L� or the right side �R� of the critical point� If

xt � xc the symbol st � C is often used but we will investigate separately these

special orbit�

Figure ��� shows the trajectory of the point x� � xc � ��� in the logistic map

and we read the symbol sequence from the �gure

s�s�s�s�s�s� � � � � ������ � � � ���	�

The tent map in �gure ��� gives the same �rst 	 symbols when we start with

x� � xc � ���� The symbol string obtained by choosing x� � xc is of special

interest and this string is called the kneading sequence of the unimodal map�

A periodic orbit of length n is a real solution of

f 	n
�x� � f�f�� � � f�x� � � ��� � x �����

The unimodal map� eq� ������ has �n solutions in the complex plane� and we will

therefore have �n or less period n orbits for the map�

A periodic orbit of length n is described by an in�nite repetition of a length n

symbol string� indicated by the line over the string�

S � �s�s�s� � � � sn�� � s�s�s� � � � sn �����

Each point xt in a periodic orbit can be associated with one of the �n possible

symbolic strings s�s� � � � sn� A cyclic permutation of the symbolic string s�s� � � � sn

to a new string sksk�� � � � sns� � � � sk�� is the description of the point xt�k�� in the

same periodic orbit�

A periodic orbit is stable if�����df
	n
�x�

dx

����� � jf ��x� � f ��f�x�� � � � � � f ��f�f�� � � f�x� � � ����j � � �����

If we draw the function f 	n
�x� then for a stable periodic orbit the slope of this

function at the �xed point is between �� and �� The interval on the parameter axis

where a periodic orbit is stable is called the stable window of the periodic orbit�

����� Fixed point and period doubling

Both �xed points �period � orbits� x � �� x � � � ��a of the logistic map �����

exist for all a � �� The �rst solution x � � is stable for � � a � � and unstable for

a � �� This solution has x � xc for all parameter values and we denote this orbit
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as � and the point as x� where the index gives the symbolic description of the orbit�

To avoid a too cumbersome notation we don�t use the line over the symbols if it is

clear from the context that we refer to a periodic orbit� We then write x� and �

which should be understood as x� and ��

The other �xed point x � ����a is unstable for � � a � �� stable for � � a � 


and unstable for a � 
� This �xed point has x � xc for � � a � � and x � xc

for a � �� As the interesting dynamics take place for a � � it is tempting to

identify this orbit by � and denote the point x� for all values of the parameter a�

but this has to be done with care� It is typical that a stable orbit change symbolic

description somewhere within the stable window� In one
dimensional smooth maps

this is always at the parameter value where the orbit is super
stable df 	n
�x��dx � ��

i�e� where one of the points in the orbit is identical to xc� In a unimodal map there

is only one of the n points in a period n orbit that can cross the critical point and

the symbolic description of the orbit can only change in one symbol

s�s� � � � sn��sn � s�s� � � � sn����� sn� ������

In the multimodal maps discussed in chapter � there are several points in the

periodic orbit that can cross a critical point and the symbolic description can change

in di�erent ways� We choose to call this second �xed point � but we should always

remember that when an orbit is stable � its symbolic dynamics may change and is not

unique� In the unimodal map an unstable orbit has a unique symbolic description�

The stability of the �xed point � changes from f ��x�� � � at a � � to f ��x�� � �

at a � � and to f ��x�� � �� at a � 
� When f ��x�� � � the �xed point has the

unique symbolic description �� The interval a � ��� 
� is the stable window for the

�xed point�

The tent map has a �xed point x� � � for all a � � and a �xed point x� �

a��a � �� that exists for a � � and this �xed point is unstable for all a � �� The

�xed point x� does not have any stable window such as the �xed point in the logistic

map and the �xed point is uniquely described by the symbolic description ��

At a � 
 the �xed point x� of the logistic map has a period doubling bifurcation

where the �xed point becomes unstable and a period � orbit

x�� �
a � �

�a
�

�

�a

q
�a � ���a� 
� ������

x�� �
a � �

�a
� �

�a

q
�a � ���a� 
� ������

is created and exists for all a � 
� The stability df 	�
�x��dx is � at a � 
� it is �

at a � � �
p

� � 
��
	� and it is �� at a � � �
p

	 � 
������ For larger values of

a the orbit is unstable� Close to the bifurcation point at a � 
 both points in the
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Figure ���� The second iterated function f 	�
�x� for a � 
��� The four �xed points of

this function is the two �xed point � and � and the two points in the orbit ���

period � orbit are close to the �xed point on the right side of xc� but for a � ��p�

there is one point on each side of xc� We denote the orbit by �� and its points x��
and x�� �x�� � x���� In �gure ��� the function f 	�
�x� is drawn and the period �

orbit appears as two �xed points in this drawing�

At a � � �
p

	 the period � orbit becomes unstable and a period � orbit is born�

After this orbit has passed the super
stable point its symbolic description is ����

with the four points x���� � x���� � x���� � x����� Notice that the map of one

of this points give another of the points where the index is a cyclic permutation

of the symbolic string x���� � f�x������ x���� � f�x������ x���� � f�x����� and

x���� � f�x������

We can generalize the period doubling bifurcations� Each periodic orbit bifur


cates into an orbit with twice the length and for one parameter value a� � 
����� � � �

there is an accumulation point where the length of the orbit goes to in�nity� It has

been shown by Feigenbaum ���� �
� ��� that there is a universal scaling law for

all maps which have a quadratic critical point� The universality follows from the

Cvitanovi�c�Feigenbaum functional equation g�x� � ��g�g��x�����

The symbolic description of the period doubling orbits is given by Metropolis�

Stein and Stein �MSS� ������ The symbolic description of the new orbit is obtained
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Figure ��	� The bifurcations of the �xed point and the symbolic description of the

periodic orbits�

by writing the old symbol sequence twice and changing the last symbol�

s�s� � � � sn � s�s� � � � sns�s� � � � sn����� sn� ����
�

which is called a harmonic by MSS� The period � orbit ���� bifurcates to the

period � orbit �������� etc� Figure ��	 shows the bifurcation of the �xed point

and the symbolic description of the orbits� We should also observe that the number

of symbols � in these symbol strings is always odd because only orbits with an

odd number of �s can have stability �� and become unstable in a period doubling

bifurcation�

At a parameter a � a� the attractor is a period n orbit and the repellor is

the union of shorter unstable periodic orbits� A point x is a non�wandering point

if for any neighborhood U of x there is a time t such that U 	 f 	t
�U� �� 
� The

union of all non
wandering points are the non�wandering set of the map� For such

a parameter the non
wandering set is the union of the periodic orbits�

The periodic orbits have preimages on the x
axis� In �gure ��� the preimages

of the stable �xed point � are drawn as a function of the parameter a� For a � �

there is one preimage of the �xed point while for a � � there is a in�nite number

of preimages� In �gure ��� the preimages of the �xed point are drawn as horizontal

lines in the �xt� xt��� plane� The preimages converge geometrically to the �xed

point x� � � and its preimage x � ��
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Figure ���� The stable �xed point � and

its preimages as a function of the param�

eter for � � a � 
�

Figure ���� The preimages of the stable

�xed point � drawn as horizontal lines in

the �xt� xt��� plane� a � ���

A complete description of the dynamics of the map in the symbolic dynamics

language requires a description of both the repellor and the attractor� This can

be done by the graphs in �gure ��� a�� b� and c� which gives the symbolic future

of any point in the case of the stable orbits �� �� and ����� Moving along a solid

curve in the graph corresponds to a symbol �� while a dashed curve corresponds

to a symbol �� The arrow shows in which direction to move� In �gure ��� a� we

see that there can be an arbitrary number of symbols � but after a symbol � there

can only be symbols �� For example� the sequence ���������� � � � is legal but the

sequence ���������� � � � can not exist in the map for this parameter value� This is

the description of the symbolic future s�s�s� � � � and is valid for all starting points�

even if x� � xc �s� � ���

The graphs are representations of Markov matrixes describing the dynamics in

terms of symbols� The graph in �gure ��� a� represents the matrix

� �

�

�

�
� � �

� �

�
� ������

The rows are the symbol st and the columns are the symbol st��� A number

� in the matrix shows that the string stst�� is legal and a � shows that the string

stst�� is forbidden�
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Figure ���� Graph representation of legal orbits for a parameter value that gives a stable

a� �xed point �� b� period � orbit ��� c� period 	 orbit �����

The graph in �gure ��� b� represents the matrix

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

�
														�

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

�














�

������

A row in this matrix is a 
 symbol string st��st��st and a column is a 
 symbol

string st��stst��� A number � in the corresponding matrix element means that

the combination giving the � symbol string st��st��stst�� is illegal� The graph

representation is much simpler and intuitively understandable that the full matrix�

We show later than the construction of a graph is relatively simple and in addition

it is simple to �nd the characteristic polynomial of the matrix from the graph

representation ����� In the �
function formalism in chapter �� this is shown to be

useful�

If there exists a �nite graph there also exists a corresponding �nite Markov

matrix and a �nite Markov partition of the non
wandering set� A system with a

�nite Markov partition is a system with �nite memory in the sense that we only

have to know a �nite length symbol string of the past to know which choices we
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Figure ����� The logistic map with a �

��� and the remaining intervals after 
�

� and � iterations�

Figure ����� The symbolic graph for the

complete Cantor set repellor and the at�

tractor for a � �� where all symbol se�

quences are legal�

have for the next symbol� It is shown by Grassberger ���� that the size of the

symbolic graph goes to in�nity as we converge to the accumulation point a� of

the period doubling bifurcations� At this point the system has in�nite memory as

de�ned above�

The tent map has a singular bifurcation for a � � where all period doubled orbits

from the �xed point � start to exist and are unstable� The parameter a � � is then

simultaneously the point where the �xed point is borne and the accumulation point

a� for the bifurcations of the �xed point�

����� Unimodal map with complete grammar

If the parameter in the logistic map is a � � then the critical point xc diverges

for t � � and x � �� is the attractor� We will now describe the corresponding

repellor� The repellor is a Cantor set and �gure ���� shows that if we start with

the unit interval ��� �� then at each iteration the middle segment of the remaining

intervals escapes from the unit interval�

In symbolic dynamics the orbits in the repellor can be described by all possible

combinations of the symbols � and �� The symbols � and � are letters in a alphabet

f�� �g ����	�

and the grammar for a string made from this alphabet is simply that any combi


nation of letters gives a legal string� This grammar is given by the simple graph in
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�gure ���� which represents the Markov matrix

� �

�

�

�
� � �

� �

�
� ������

If a � � for the logistic map� xc is mapped to the �xed point x� and we have a

chaotic attractor� The symbolic description of the orbits in the attractor is the

same complete binary alphabet as for the repellor�

The tent map for a � � also has a repellor that is described by the same

binary symbolic alphabet and for a � � there is a chaotic attractor with the same

description�

����� The symbolic interval and the kneading sequence

The description of the dynamics for the logistic map when a� � a � � is com


plicated and the symbolic description is useful in describing these bifurcations� To

make a simple theory for the bifurcations we rede�ne the symbolic description� The

Cantor set in �gure ���� can be mapped onto the real interval ��� �� by associating

a real number� 	 to each in�nite symbolic sequence� To keep the ordering of the

points on the x
axis we have to de�ne new well�ordered symbols wt�

An increasing function �f ��xt� � �� preserves the ordering between two points on

the x
axis such that if �xt � xt then �xt�� � xt��� A decreasing function �f ��xt� � ��

reverses the ordering� if �xt � xt then �xt�� � xt��� The symbol st as de�ned in �����

is � if the function increases and � if the function decreases� We associate with xt

a binary number 	�xt� � ��� �� as follows

w� � s�

wt�� �

��
� wt if st � �

�� wt if st � �

	 � ��w�w�w� � � � �
�X
t��

wt

�t
� ������

The number 	�xt� preserves the ordering of xt in the sense that if �xt�� � xt�� then

	��xt� � 	�xt�� We call the symbols w � t the well�ordered symbols and 	�xt� the

well�ordered symbolic future value of xt or for brevity� the symbolic value�

As long as a � � for the logistic map any real number � � 	 � � corresponds to a

symbolic description of an orbit in the non
wandering set of the map� If a � � there

is only a subset of the points in the interval 	 � ��� �� of the interval that corresponds

to the symbolic description of an orbit and the forbidden symbolic values can be
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found using the following observation ������ The largest possible xt value �except a

starting point x�� is the image of the critical point xmax � f�xc�� An orbit described

by a symbolic sequence S will have a point x � f�xc� if 	�S� � 	�xc� and cannot

be an admissible orbit� We de�ne


 � 	�xc� ������

to be the kneading value ����� of the unimodal map and the interval

�
� �� ������

its primary pruned interval�

For the symbolic sequence S� the dynamics is a shift operation

S�fk�x��� � �kS � fsk��sk��sk�� � � �g ������

and the orbit S is not admissible if 	 of any shifted sequence of S falls into the

primary pruned interval� For any orbit S there exists a supremum value 	max of the

orbit and its images

	max�S� � sup
k

	��kS� ������

From this it follows

Theorem ������ ���� ��� ����� Let 
 be the kneading value of the critical point

as de�ned in ������ and 	max�S� be the supremum symbolic value of the orbit S as

de�ned in ������� Then the orbit S is admissible if and only if 	max�S� � 
�

����� Bifurcations and symbolic parameter space

We can make use of the kneading value when describing the bifurcations in the

unimodal map�

The kneading value 
 can be considered as a new topological parameter of the

map� In �gures ���� and ���
 the value of 
 is drawn as a function of a for the

logistic map and the tent map� The plot is a staircase
like monotone increasing

function� The jumps in 
 correspond to symbolic values that are not allowed� Each

jump in 
 has a one to one correspondence to one window on the parameter axis

with a stable periodic orbit for the smooth unimodal map� We can consider the

kneading interval 
 � ��� �� to be a parameter space for the unimodal map and we

will denote 
 the symbolic parameter value when we take this point of view�

The tent map has larger jumps in 
 in �gure ���
 than in the logistic map

because the tent map does not have any windows� but if these two maps have the

same kneading value then the same orbits exist for the parameter values a�
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Figure ����� The kneading value 
 as a

function of the parameter a for the logis�

tic map�

Figure ���
� The kneading value 
 as a

function of the parameter a for the tent

map�

����� Band merging bifurcations

One bifurcation in �gure ��
 is the band merging bifurcation where n � �m�� of

chaotic bands merge into n � �m of chaotic bands� Between two chaotic bands there

is an unstable period n � �m orbit with df 	n
�dx � �� which is an isolated part of

the repellor� At the band merging bifurcation this points starts to belong to the

attractor when two and two of the n ��m�� bands join each other at the n ��m points

of the periodic orbit� The boundaries of the chaotic bands are images of the critical

point and the kneading sequence is preperiodic to the symbolic description of the

unstable period n orbit�

The simplest example of a band merging bifurcation is the point where two

bands merge into one band and the joining point is the �xed point �� The kneading

sequence is here

K � ���

giving the kneading value


 � ����� � ������������� � � � � ��	 ����
�

which is the symbolic parameter value for the two band merging bifurcation for all

unimodal maps� No orbits with 	max�S� � ����� exist for this parameter value�

In the logistic map the parameter value a � 
�	��� � � � gives this band merging

bifurcation and in �gure ���� the map and the preimages of the �xed point is

drawn showing that at this point the parabola is tangent to the closest of the
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Figure ����� The logistic map at the

band merging point when two bands

merge to one band a � 
�	��� and the

preimages of the �xed point drawn as

horizontal lines�

Figure ����� The symbolic graph for the

band merging point 
 � ������

horizontal lines� There exists a �nite grammar describing the non
wandering set

and the Markov graph in �gure ���� shows the rules giving the admissible symbol

strings� Comparing with the graphs in �gure ��� b� and c� we �nd that the �xed

point � that used to be a transient orbit now is included in the last� attracting

part of the graph� The attractor part of the Markov graph in �gure ���� can be

described by the new two letter alphabet

f��� ��g
All combinations of the two letters �� and �� give a symbol string which corresponds

to an orbit in the chaotic attractor�

To each period doubling bifurcation there is a corresponding band merging bi


furcation� The kneading sequence at a period doubling bifurcation is given by ����
�

and is

K � s�s� � � � sn � K � s�s� � � � sns�s� � � � sn����� sn� ������

The band merging bifurcation which corresponds to this is located at the the knead


ing sequence

K � s�s� � � � sns�s� � � � sn����� sn�s�s� � � � sn ������

with the same symbol string s�s� � � � sn� The band merging bifurcations for the �xed

point in the logistic map also converge to the accumulation parameter a� with the

same Feigenbaum scaling factor but with a � a��
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The two kinds of bifurcations have the same kneading sequence at the accumu


lation point�

���������������� � � �

and this gives the topological parameter value


� � ������������������ � � � ����	�

There are similarities between the period doubling and the band merging bi


furcation but there are also important di�erences� The period doubling bifurca


tion is a local bifurcation depending only on the stability of one orbit� The band

merging bifurcation is a global bifurcation involving the critical point and a large

non
wandering set� We �nd that in the discussion of the two dimensional maps in

chapter � this is analogue to a creation of a homoclinic tangency� Also the similar

scaling property of the two kind of bifurcations that exists for the logistic map is not

true for all unimodal maps� The tent map has a singular creation of periodic orbits

but �gure ��� shows that there are band merging bifurcations converging to a� � ��

The description of the allowed symbol strings changes very di�erently around the

two di�erent bifurcations� The period doubling bifurcations create a new structure

in the Markov graph which is a new attractor� leaving the old attractor as a tran


sient loop� The Markov graph does not change from one period doubling bifurcation

to the next� The Markov graph for the band merging bifurcation is valid only for

this parameter value�

����� Resonances

In a chaotic band there are resonances where new orbits are created and there is a

window with a stable orbit that goes through period doublings and band merging

bifurcations and �nally in a crisis bifurcation again gives a band attractor� We look

in some detail at the simplest of these resonances which is the period 
 resonance

in �gure ��
 b��

One stable and one unstable period 
 orbit are created at a tangent bifurcation

in the logistic map at a � 
����� � � �� The symbolic description of both the two

orbits are S � ��� at the parameter where they are created� At the super
stable

point a � 
��
�� � � � the stable orbit changes symbolic dynamics to S � ���� The

symbolic parameter value of the bifurcation creating the two orbits is


 � 	max����� � ����� � 	�� ������
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The symbolic parameter value where the stable orbit crosses the super
stable point

is


 � 	max����� � �������� � ���� ������

The orbit ��� undergoes period doubling bifurcations to orbits with a symbolic

description given by eq� ������ with the initial string s�s�s� � ��� and also band

merging bifurcations with the kneading sequence given by eq� �������

The crisis bifurcation of the period 
 resonance is the parameter value where the

attractor changes from 
 chaotic bands to one chaotic band� This is the bifurcation

when the critical point maps into the unstable period 
 orbit ��� which for the

logistic map occurs for a � 
���	� � � �� This bifurcation has the kneading sequence

������ and the symbolic parameter value


 � �������� � ������ ������

In the general description of a resonance two orbits s�s� � � � sn and

s�s� � � � sn����� sn� are born at a tangent bifurcation at the the symbolic parameter

value


 � 	�s�s� � � � sn����� sn��� ���
��

The string s�s� � � � sn giving a resonance can not be of the form

s�s����s	n��
�s�s� � � � s	n��
 since this orbit would be born at a period doubling� the

number of symbols  �� in s�s� � � � sn is odd and the cyclic permutation �s�s� � � � sn�

is the permutation giving the largest value of 	 � The resonance has period doubling

and band merging bifurcations with s�s� � � � sn as the generating string and the crisis

bifurcation takes place at


 � 	max�s�s� � � � sns�s� � � � sn����� sn��� ���
��

The ordering of resonances along the parameter axis follows the size of 	max�S� and

this ordering of orbits is often called the MSS �Metropolis� Stein� Stein� sequence�

We can mark the values 	�S� on the 
 axis for di�erent periodic orbits S and

this gives a picture analog to the bifurcation tree in �gure ��
� In �gure ���	 a� we

have marked the symbolic value of some periodic orbits orbits and in �gure ���	 b�

we have also drawn some of the intervals that corresponds to stable windows in the

smooth unimodal map� The 

axis may be considered as a topologic or symbolic

parameter axis� The ordering of bifurcations is the same along 
 as along the

parameter a and therefore are these two axis topological equivalent but the metric

properties �scaling etc�� is di�erent�
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Figure ���	� The bifurcation points of periodic orbits plotted at the symbolic parameter

axis 
�

Figure ����� Graph representation of legal orbits for a parameter value that gives the

stable period � orbit� a� The whole automaton� b� The Cantor set part of the automaton

that follows after the ��loop�
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Figure ����� Graph representation of legal orbits for a parameter value that gives the

crisis bifurcation of the period � resonance�

Figure ����� Graph representation for the kneading sequence ��������



���� BIFURCATIONS IN THE UNIMODAL MAP ��

The symbolic automaton graphs for the stable period 
 orbit ��� is drawn in

�gure ���� and the automaton at the band merging point is drawn in �gure ����� In

�gure ���� a� the rightmost part of the graph is the stable orbit but of more interest

is the middle part describing the fractal repellor� When removing the ��loop to the

left and the ��� attractor to the right� the remaining part is drawn in �gure ���� b��

This automaton gives the symbolic description of the Cantor set repellor consisting

of all orbits created for a smaller parameter value except the isolated � �xed point�

It can also be described by the alphabet

f�� ��g ���
��

The automaton for the kneading sequence ������ in �gure ���� shows that the

fractal repellor f�� ��g is still isolated and the attractor is the chaotic bands that

can be described bye the alphabet

f���� ���g ���

�

with all combinations of symbols allowed� For any parameter value larger than

the crisis bifurcation the f�� ��g part is connected to the attractor giving one band

attractor again� One example is given in �gure ���� where the diagram for the

kneading sequence ������� is drawn�

����� Resonances in the tent map

The tent map ���
� has discontinuous f ��x� and for a � � then jf ��x�j � a � � and

there can not be a stable orbit as attractor� The �xed point x� � � is stable for

a � � and unstable for a � �� This does not prevent the map from having chaotic

bands an in �gure ��� we �nd that there are bands close to the bifurcation of the

�xed point at a � � but no bands in a period 
 resonance or in any other resonance�

The band merging from �n bands to n bands in �gure ��� takes place when the

slope of f 	�n
�x� has absolute value �� We have jdf 	�n
�x��dxj � a�n which gives a

band merging for

a � �
�

��n ���
��

These values converges to a � � from above� not as a geometric series but much

slower�

There exists no other band structure than the bands generated by the �xed

point and a chaotic band has no internal resonance structure� This is easily shown

because in the one band region
p

� � a � � the orbits of length n have slope

jdf 	�n
�x��dxj � a�n and this is larger than � for all orbits n � � and then there are
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no bands other than the period � band� The period 
 orbit is born� goes through all

period doublings� band mergings and the crisis bifurcation at one singular parameter

value a � �� �
p

���� � ��	��� � � �� This is one large jump in the plot of 
 as a

function of a in �gure ���
�

From the self similarity it follows that also the �n bands are without internal

structure of bands� The slope is squared for each bifurcation and the shortest orbit

born in the bands is twice as long and cannot have bands�

The plot of 
 as a function of a in �gure ���
 has fewer steps and larger jumps

for the tent map than for the logistic map because of the singular bifurcation points

in the parameter a�

��� Construction of a �nite automaton

There is a simple procedure giving the Markov graph or an automaton for the uni


modal map when we know the kneading sequence K� We can also use the procedure

to generate a Markov graph for other systems given a �nite list of forbidden symbol

strings�

In general there is no guarantee that the Markov graph for the unimodal map

is �nite� One example where the automaton is in�nite is the accumulation point

of the period doubling bifurcation ����� If there exists a stable periodic orbit the

automaton is �nite and ends in a cycle with the symbols of the stable orbit� We

may approximate the automaton for most parameter values with an automaton

for a stable orbit at a parameter value close to the exact parameter value� We

conjecture that the automaton converges to the correct automaton as we choose

parameter values giving stable orbits closer and closer to the parameter value� The

eigenvalue from the automatons converges to the limit also when the attractor is a

chaotic orbit�

A di�erent way to approximate the automaton is to approximate the kneading

sequence by a string that after a �nite number of symbols ends in a periodic orbit�

This may be e�g� a band merging or a crisis bifurcations� This choice also gives

a rational kneading value and a �nite graph and we expect the eigenvalues will

converge� The calculations are however more complicated and it is not so clear

which part of the graph gives the largest eigenvalues�

The part of the automata which gives the eigenvalues we are interested in when

there exist a stable orbit is a Cantor set repellor� We show how to �nd the topolog


ical entropy and other statistical measures from the automaton below� The repellor

is the �rst loop structure that follows after the transient � loop and if they exist as
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isolated transient loops� also after the � loop� �� loop� ���� loop� � � � � This is the

period doubled loops of the �xed point� If the stable orbit is in the one
band region

only � is a transient� If the stable orbit is in the two band region � is a transient

followed by � as a transient and then followed by the repellor giving the largest

eigenvalues� The four band region gives three transient loops etc�

One example is the stable orbit ��� in the one
band region for which the whole

automaton is drawn in �gure ���� a� while the Cantor set part is drawn in �g


ure ���� b�� We �nd in �gure ���� that this Cantor set part is the same automaton

also at the crisis bifurcation and it is the same graph all along the period 
 reso


nance�

The topological entropy �see section ��
� for the transient repellor is here

h � ln

�
�p

�� �

�
� ln���	�� � � �� ���
��

which is larger than the topological entropy for the three chaotic bands at the crisis

bifurcation

h � ln


����

�
� ln����	� � � ��� ���
	�

The topological entropy for the chaotic bands at the crisis of a period n resonance

is ��n
th of the topological entropy for the complete binary repellor h � ln �� The

bands at the crisis of the period 
 resonance has the largest entropy in any resonance

of the one band regime� The topological entropy at the band merging is given by

the graph in �gure ���� and gives h � ln
p

�� The topological entropy is for the

part of the graph following the � loop in the one band regime

ln
p

� � h � ln � ���
��

which is larger than any topological entropy in a resonance� By self similarity is the

same true for the ������� � �band regimes� We expect that the part of the Markov

graph giving the largest topological entropy also gives the leading eigenvalues for

other measures�

Since the repellor is constant from a tangent bifurcation to the crisis bifurcation

we restrict ourself to choose stable periodic orbits born at a tangent bifurcation as

other stable orbits inside a resonance do not give di�erent leading eigenvalues�

The symbolic description of the possible orbits from a point x� in the unimodal

map can be drawn as a path down a binary tree as drawn in �gure ����� We refer

to a node in the binary tree with the preceding symbol string and we refer to the

top node as 
� We �rst draw the kneading sequence K � s�s�s� � � � for the chosen

parameter value as a path in the tree� From each node along this path there is a
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Figure ����� A binary tree�
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Figure ����� The construction of the stable period � automaton� In a� the forbidden

side branches ends in a cross� and in b� the legal side branches are reconnected to the

graph�

side branch and we have to decide if this is a legal branch� The side branch after

the n�th node is s�s� � � � sn��� sn��� and this branch is legal if

	�sisi�� � � � sn��� sn���� � 
 ���
��

for all i � f�� �� � � � ng� A side branch that is legal is connected to the node with

the symbolic description s�s� � � � sk where the symbol string is

s�s� � � � sk � sn�k�� � � � sn��� sn��� ���
��

for the largest possible integer k� This procedure prevents that a legal side branch

is followed by an illegal string� The automaton we obtain by this procedure can

then be minimalized�

We give a few examples how to use this procedure� Figure ���� a� shows the

path in the binary tree for the kneading sequence K � ��� with 
 � ��������� We
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�nd the following legal side branches of the path

� � 	��� � � � 


�� � 	���� � ���� � 


��� � 	����� � ����� � 


	���� � ���� � 


	��� � ��� � 


and the forbidden branches

���� � 	������ � ������ � 


����� � 	������� � ������� � 


������ � 	�������� � �������� � 


������� � 	��������� � ��������� � 


	�������� � �������� � 


	������� � ������� � 


	������ � ������ � 

���

The forbidden side branches is marked by a cross in �gure ����� The reconnection

of the legal branches to a node following ���
�� gives

� � 

�� � �

��� � �

and are drawn in �gure ���� b�� In �gure ���� b� we see that the node ������ has

the same in�nite future as the node ��� and we identify these two nodes and then

we have the �nite automaton of �gure �����

In �gure ���� the construction of the automaton for the kneading sequence

K � ������� is shown�

These rules except the �nal reduction of the graph are implemented on a com


puter and given a stable periodic orbit by its symbolic string it gives the automata�

On the computer the stable period n orbit loop is removed by letting also the string

s�s� � � � sn be forbidden� This procedure for constructing a Markov graph is easily

generalized to a construction of a n
ary tree where the forbidden strings are given

as a �nite list of strings� We than draw the paths of all forbidden strings in the

tree� Then all side branches are checked� not by ���
�� but with the list of forbid


den strings and the side branch is marked illegal if the string sisi�� � � � sn��� sn����

i � f�� � � � � ng is in the list� The reconnection of side branches is done by ���
��� A

�nite list of forbidden strings gives a �nite automaton�
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Figure ����� The construction of the automaton for kneading sequence K � ��������

In a� the forbidden side branches ends in a cross� and in b� the legal side branches are

reconnected to the graph�
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��� Topological entropy

The topological entropy h is a measure of the exponential growth of the number of

periodic orbits with the length� This is the simplest of the average values one can

�nd and it is the simplest application of the zeta
function formulation discussed in

chapter �� Let N�n� be the number of periodic orbits of length n� then

N�n� 
 ehn ������

in the limit n��� The number h can be obtained by calculating and counting pe


riodic orbits� but if we know the symbolic description of the map h can be obtained

in a much more e�ective way ���� �	�� ��� ����

The topological entropy is the negative logarithm of the leading �smallest and

real� eigenvalue of the characteristic polynomial of the Markov matrix h � � ln z�

This polynomial

p�z� � � � a�z � a�z
� � a�z

� � � � � � � ������

is obtained from the automaton by the following rules� ai is initially �� ai � ai � �

for each non self intersecting loop in the graph with i nodes� ai � ai � � for each

combination of non self intersecting loops that have no node in common and where

the sum of the nodes is i� The sign � is chosen when the number of loops in the

combination is even and the sign � if the number of loops is odd� This is applied

for each part of the graph that is recursive� that is the part of the graph where one

can get from any node in this part to any other node in the same part by some path�

Each recursive part of the graph gives a eigenvalue and the smallest real eigenvalue

gives the topological entropy�

h � � ln z� ������

The simplest example is the complete binary map where the symbolic description

of the repellor or the attractor is given by the automaton in �gure ����� The

automaton has two loops with length � and the loops can not be combined as they

have one node in common� This give the polynomial

p�z� � �� �z � �

and from this z � ��� and

h � ln �
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This result is of course easily obtained by just observe that since all combinations

of the two symbols � and � are legal and most strings are not a repetition of shorter

strings� then the number of periodic orbits grows as

N�n� 
 �n

The repellor in the period 
 resonance window in �gure ���� b� gives one length

� loop and one length � loop and topological entropy is then

�� z � z� � �

z �
� �

p
�

�

h � ln

�
�

� �
p

�

�

A more interesting example is to choose a parameter value a that numerically

gives a chaotic attractor and look at the convergence of h� If we choose a � 
�� in

the logistic map we �nd the kneading sequence

K � ������������������������������� � � �

and we may e�g� �nd the automaton describing the repellor of the period �� reso


nance close to the chaotic attractor� This gives a automaton with �� nodes and the

characteristic polynomial

p�z� � �� z� � z� � z� � z� � z� � z� � z� � z
 � z� � z��

�z�� � z�� � z�� � z�� � z�� � z�� � z�� � z�
 � z�� � z��

�z�� � z�� � z�� � z�� � z�� � z�� � z�� � z�


and solving p�z� � � gives the smallest real root

z � ��	�	�	��� � � �

The error can be estimated to be of order z�� � ���� because going from length ��

to a longer string typically for the unimodal map graphs or combination of loops

with �� and more nodes giving terms �z�� and of higher order in the polynomial�

Describing resonances of increasing length and with a � 
�� we �nd polynomials

with a better estimate for the topological entropy� For the closest stable period ��

orbit we �nd the topological entropy

h � � ln ��	�	�	�
����	�� � � �

� ln ������
�����	��� � � �

� ���	�����		���	� � � � �

����
�
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Figure ���
� The logarithm of the di
erence between the leading zero of the charac�

teristical polynomial and our best estimate as a function of the length for the logistic

map a � 
���
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Figure ����� The zeroes of the characteristical polynomial for the logistic map a � 
��

approximated up to length �� symbolic strings�
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We can �nd how fast this converges to our best estimate ����
�� In �gure

���
 is the logarithm of the di�erence between the zero of a polynomial and our

best estimate plotted as a function of the length of the stable periodic orbit� The

convergence is approximately linear with a slope of ����� � h�

We can �nd all real and complex zeroes of the characteristical polynomial and in

�gure ���� the zeroes of the polynomial obtained by including the forbidden strings

of length �� and less are plotted in the complex plane� The leading zero giving the

topological entropy is the point closest to the origin while most of the other zeroes

are close to the unit circle� This circle gives the radius of convergence�

All automatons for the unimodal map are simple because the automaton consists

only of one long path of nodes and pointers back from a node to an earlier node�


