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School of Physics
Georgia Institute of Technology

Professor Brian Kennedy
School of Physics
Georgia Institute of Technology

Date Approved: 1 April 2014



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . v

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Informal Overview of Our Process . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II FROM CONTINUOUS TO DISCRETE TIME . . . . . . . . . . . 8

2.1 Linear Flow and White Noise . . . . . . . . . . . . . . . . . . . . . . 8
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SUMMARY

The finest resolution that can be achieved in any real chaotic system is limited by

the presence of noise. This noise can be used to define neighborhoods of the deter-

ministic periodic orbits using the local eigenfunctions of the Fokker-Planck operator

and its adjoint. We extend the work of Domenico Lippolis [4, 7] to include hyperbolic

periodic orbits. The dynamics along the stable and unstable directions are separated.

The neighborhoods on the stable and unstable manifolds can be defined in the same

way as the neighborhoods for entirely stable or entirely unstable orbits. The neigh-

borhoods are then returned to the original coordinates. The Fokker-Planck evolution

can be described as a finite Markov transition graph between these neighborhoods.

Its spectral determinant is used to calculate the time averages of observables. We

apply this technique to calculate long time observables of the Lozi map.

vi



CHAPTER I

INTRODUCTION

1.1 Informal Overview of Our Process

Suppose in the course of your research you happen upon a deterministic system whose
behavior is highly erratic. Although you can write down the equations of motion that
the system should follow, its long-term behavior proves elusive. It continually returns
to states similar to where it starts, although never exactly the same and it has sensitive
dependence on initial conditions. In short, your system is deterministically chaotic.

What do you do? Since you have the equations of motion, a first guess is that you
should put them on a computer and tell the computer to solve them. This works as
long as you are only interested in short times. For longer times, the sensitive depen-
dence on initial conditions defeats you. Any error in your initial conditions, noise in
the physical system, or numerical imprecision is amplified until the uncertainty is as
large as the system itself.

You need to use a different technique to approach the problem. The key to un-
raveling the dynamics lies in its recurrence: the system approximately repeats itself.
This recurrence suggests that there are periodic solutions, but they are unstable, so
you never see them in practice. If you look for these periodic solutions, you find
that there are infinitely many of them, with arbitrarily long periods. The number of
periodic solutions with a given period is roughly the exponential of that period. The
behavior of a periodic solution is known for all time – it simply repeats itself – so the
periodic orbits are the key to understanding the long-time behavior of the system.

Although these periodic orbits can never be seen directly, they form the skeleton
of the rest of the dynamical system. A typical trajectory, although not periodic itself,
can be described in terms of these periodic orbits. The trajectory starts close to one
periodic orbit. Since there is continuity in the equations of motion, it will follow the
periodic orbit for a ways. However, the neighborhood of the periodic orbit is unstable,
so your trajectory will eventually leave the neighborhood the periodic orbit. It then
finds itself in the neighborhood of another periodic orbit. The process repeats. Instead
of calculating individual trajectories, we instead think of the behavior of a trajectory
as the list of periodic orbits it follows and how long it follows each of them. [3]

There is an ambiguity in this approach: there is no notion of what it means for
a trajectory to be close to another trajectory. In the deterministic system, the state
space can be resolved to an arbitrary precision. All of the periodic orbits must be
considered in order to get a complete description of the dynamics. Since there are
infinitely many periodic orbits, and they are not completely trivial to calculate, this
process would take infinite time.

To resolve this crisis, we return to the noise inherent to any physical system. When
calculating individual trajectories, the noise was troublesome; it prevented us from
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following any trajectory for a long time. In this new framework, the noise becomes
essential because it imposes finite resolution to the state space. Trajectories separated
by a short distance are indistinguishable because the noise can transfer a trajectory
between them. The noise can be used to define what it means to be close to a periodic
orbit.

We define the neighborhood of a periodic orbit using the local competition be-
tween the noise and the expansion or contraction of the dynamics. The deterministic
dynamics will either make nearby trajectories contract onto or expand away from the
periodic orbit. The noise smears out the trajectories. The neighborhood of a periodic
orbit is a distribution for which the strength of the noise exactly balances the strength
of the deterministic dynamics. This notion of a stationary distribution depends on
whether the deterministic dynamics is contracting or expanding. [4, 7]

In this thesis, we consider the case when the deterministic dynamics is contracting
in some directions and expanding in other directions. This is necessary for almost
all physical applications. The dynamics must be separated into the expanding and
contracting directions, the separate notions of stationary distributions are applied
on each manifold, and then the resulting distributions are recombined to form the
neighborhood in the full state space.

Shorter periodic orbits are more important. The noise has had less time to dis-
rupt the deterministic dynamics. This suggests a systematic way to develop these
neighborhoods. Start with the shortest periodic orbits and find their neighborhoods,
then find the neighborhoods of increasingly longer periods. The finest possible reso-
lution of the system is when the neighborhoods are just starting to overlap. These
neighborhoods cover the attractor, the set of all of long-term behaviors of the system.
We have created a finite partition of the attractor.

Once we have these neighborhoods, we are able to think of the dynamics in differ-
ent terms. Instead of thinking of individual trajectories, we can think of the dynamics
in terms of the probability of transferring between one neighborhood and another.
The result is a finite Markov graph.

All of the techniques developed for Markov graphs can now be applied to your
dynamical system. In particular, there is a theorem which states that ergodic systems
– systems for which all of the long-time behavior looks the same – have a unique global
stationary distribution, which corresponds to the leading eigenvector of the transition
probability matrix. The global stationary distribution describes the probability of
finding your system at a certain point on the attractor after the system has been
allowed to evolve for a long time.

This global stationary distribution allows you to calculate long-time observables
for your system. The long-time average of any variable which you are trying to
measure is the sum of the value of the variable on each neighborhood weighted by the
probability of being in the neighborhood given by the global stationary distribution.

In this thesis, we apply this technique to the Lozi map, a simple chaotic system
in 2-dimensions. However, the technique is general and can be applied to any chaotic
system. If your system is in discrete time, the formalism developed here is directly
applicable. If your system is in continuous time, you have to first transfer the problem
to a Poincaré section before applying this technique. We begin by describing how to
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do this continuous to discrete time transformation before describing how to apply this
technique in discrete time.

1.2 Literature Review

Our research focuses on the interplay between chaotic deterministic dynamics and
weak stochastic variables. In a chaotic system, the long-term behavior of a typical
trajectory neither approaches a fixed point nor a periodic orbit. Individual trajectories
are difficult to follow because nearby trajectories separate at an exponential rate. Any
numerical error in the calculation or initial uncertainty in the data gets magnified
exponentially, making these orbits useless for long-time calculations. The individual
trajectories approach and explore a set in the state space with dimension greater than
one. This set is called the strange attractor of the system and is dense with unstable
periodic orbits. Although these periodic orbits cannot be seen directly in a physical
realization of the system, they provide the basis for the theoretical description of the
dynamics. A typical trajectory will come close to a periodic orbit and follow it for a
while. Since the periodic orbit is unstable, the trajectory will eventually move away
from it. The trajectory then approaches another periodic orbit. The strange attractor
is dense with periodic orbits, so the behavior of the trajectory can be well described
by the series of periodic orbits that it follows. Long time expectation values of any
observables are calculated in terms of these periodic orbits. Periodic orbit theory is
discussed in depth in Chaosbook.org [3]. In order for this description to be made
rigorous, there must be a precise definition of what it means for a trajectory to be
close to a periodic orbit. To make this definition, we add a stochastic process to the
chaotic system. This random noise smears the dynamics and introduces a minimum
resolution below which the chaotic dynamics cannot be observed.

Stochastic processes describe systems that are inherently random. The canonical
stochastic problem involves the motion of a particle which is being subject to random
‘kicks’ in different directions. These kicks are collectively called the noise of the
system. The motion of the particle is random, so the best description is statistical.
This behavior can then be combined with other dynamics to model more complicated
random processes.

The interplay between noise and deterministic dynamics has mostly been studied
in electrical engineering as control theory. In control theory, a circuit or other elec-
trical system is described by a linear differential equation. The system is controlled
by some number of inputs and measured by some number of outputs. Electrical en-
gineers would like to be able to both completely measure and completely control the
electrical dynamics of the circuit. This has led them to define Grammians, which
describe how the system will respond to given inputs and measurements.

These Grammians were initially formulated for fully stable or fully unstable linear
electrical systems in continuous time. Similar techniques were developed for hyper-
bolic linear systems in continuous time by Zhou et al. [12]. Varga extended these
techniques for hyperbolic systems in discrete time as well [11]. This research focuses
exclusively on linear systems; no work has been done on control theory for chaotic
systems.
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For our research, the inputs are random, corresponding to the weak noise. We
assume that sufficient outputs are given to fully describe the system at each time; we
are not concerned with the dynamics of the outputs. The Grammians describe the
distributions which are ‘stationary’ under the combined action of the noise and the
dynamics near individual periodic orbits. The definition of ‘stationary’ is different
depending on the stability of the periodic orbit: for entirely contracting system,
a stationary distribution is unchanged under the combined action of the dynamics
and the noise; while for an entirely expanding system, a distribution is stationary
under the adjoint of this process. We use these ‘stationary’ distributions to define
the neighborhoods of the periodic orbits. These neighborhoods can then be used to
partition the state space of the system.

The idea that noise can be used to form a partition of the state space was first put
forward by Crutchfield and Packard [2]. They argue that the most efficient partition
of the state space is the one that maximizes the metric and topological entropy. These
entropies are measurements of how chaotic the system is. By choosing the partition
that maximizes these entropies, the partition captures as much of the underlying
chaos of the system as possible. This technique is an inherently global technique:
the partition is chosen to maximize a global quantity. However, chaotic dynamics
typically have high spatial variability. The balance of the deterministic dynamics and
the background noise thus varies between different locations. The optimum partition
we suggest is computed locally near each periodic orbit. It accurately captures the
spatial variations of the chaotic dynamics.

Once the state space has been partitioned, the dynamics can be described by a
transition matrix. This transition matrix describes the probability that a point in a
given neighborhood makes the transition to another neighborhood. Methods for the
evaluation of these transition matrices in stochastic systems were developed by Bollt
et al. and Froyland [1, 5]. These problems do not attempt to develop an optimum
partition. Instead, they assume a form for the partition and study the techniques for
calculating the transition matrices.

The problem of developing an optimum partition for a stochastic chaotic system
was formulated by Domenico Lippolis for his Ph.D. Thesis [4, 6, 7]. He focused on
studying the neighborhoods of fixed points which are entirely contracting or entirely
repelling. Consider first the situation where the dynamics are entirely contracting.
An initial distribution is allowed to evolve under the action of both the noise and the
dynamics. Since the noise is weak, the distribution remains localized near the periodic
orbit, so the dynamics can be linearized. The distribution spreads out with the noise
and contracts with the dynamics. These two processes counteract each other. After
a long time, any distribution will converge to a Gaussian, with covariance given by
the Lyapunov equation [?].

Q = MQM⊤ +∆ (1)

The covariance can then be used to define the neighborhood of each periodic point.
For entirely expanding dynamics, an initial distribution will not converge since both
the noise and the dynamics cause it to expand. However, there is a similar definition
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of the neighborhood using the adjoint of the Lyapunov equation.

MQM⊤ = Q+∆ (2)

To extend this definition to hyperbolic periodic points, we separate the expanding
and contracting directions and solve the Lyapunov equation or its adjoint on each
subspace. Several theorems about the solutions of matrix equations are necessary
to ensure that this process for finding the covariance matrices always results in well
defined solutions. These theorems were proven by Ostrowski and Schneider [9] in
1962.
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CHAPTER II

FROM CONTINUOUS TO DISCRETE TIME

2.1 Linear Flow and White Noise

In our applications, we assume that the noise is weak, so the deterministic dynamics
dominate the behavior of the system. We focus our analysis on behavior in the vicinity
of an equilibrium point or a periodic orbit, although it is equally valid for any orbit
of the system. First, we will consider the action of the deterministic dynamics in a
neighborhood of the periodic orbit. Then, we consider the action of the noise if the
dynamics were absent. The noise and deterministic dynamics are then combined to
describe the entire behavior.

Consider an initial condition a small displacement δx away from a periodic orbit.
The deterministic dynamics in a locally co-moving frame is linear.

˙δx = A δx (3)

The deterministic solution is simple.

δx(t) = e(t−t0)A δx(t0) (4)

We now add noise to this system. The differential equation becomes

˙δx = A δx+ ξ (5)

The ξ is a random vector which in general depends on the position ξ = ξ(x). This
must be specified in the statement of the problem. This system was first studied by
Ornstein and Uhlenbeck in 1930 [10]. ξ is described by several properties:

⟨ξ⟩ = 0 – the noise does not have any inherent drift.

⟨ξi ξj⊤⟩ = ∆ij – the random numbers are correlated according to a diffusion
matrix.

⟨ξ(t) ξ(t′)⟩ ∝ δ(t − t′) – the noise at each time is independent of the noise at
any other time.

The action of the noise without the dynamics is a diffusion process. Small dis-
placements evolve according to

⟨δxi δxj⟩ = ∆ij(x) δt. (6)

We now consider how a displacement moves in an infinitesimal time step under
the combined action of the noise and the deterministic dynamics.

δxn+1 = Jδt(xn) δxn + ξ(xn) (7)
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The Jacobian for this infinitesimal time step is

Jδt = eδtA = 1+ δt A+O(δt2). (8)

There are many different possible initial displacements δx. Instead of thinking
of each possible displacement, we think of a cloud of initial conditions close to the
periodic orbit. The cloud is described by a covariance matrix:

Qij = ⟨δxi δxj
⊤⟩ (9)

The covariance matrix is calculated by averaging over the different possible initial
displacements. The covariance matrix evolves according to (7).

Qij(tn+1) =
〈(

Jδt(x(tn))δxi(tn) + ξi(x(tn))
)(
Jδt(x(tn))δxi(tn) + ξi(x(tn))

)⊤〉
=

〈(
(1+ δt A)δxi(tn) + ξ(x(tn))

)(
(1+ δt A)δxi(tn) + ξ(x(tn))

)⊤〉
=

〈
δxi(tn) δxj(tn)

⊤ + δt
(
AilQlj(tn) +Qim(tn)Amj +∆ij

)
+O(δt2)

〉
= Qij(tn) + δt

(
AilQlj(tn) +Qim(tn)Amj +∆ij

)
+O(δt2) (10)

We take the difference between the covariances at time tn+1 and time tn, divide by δt,
and take the limit as δt → 0 to get Newton’s definition of the derivative. The result
is a differential equation for the covariance matrix.

Q̇ = AQ+QA⊤ +∆ (11)

This is the Lyapunov equation [?]. Applications of this equation appear frequently
in control theory, although with a different interpretation. In control theory, ∆ is a
matrix of inputs which can be used to influence the dynamics, not a measurement of
the intrinsic noise.

When dealing with Lyapunov’s equation, we are given A = A(x(t)) and ∆ =
∆(x(t)) and we want to solve for Q(t) for any Q(t0). An exact solution is available.

Q(t) = J(t, t0)Q(t0)J
⊤(t, t0) +

t∫
t0

dτJ(t, τ)∆(x(τ))J⊤(t, t0) (12)

This can be checked directly by taking derivatives of this expression using J̇ = AJ .

2.2 Reduction to the Poincaré Section

The solution to Lyapunov’s equation (11) applies for any finite time. In particular,
we can take the time to be the time to return to a Poincaré section.

A Poincaré section is a subspace of dimension one less than the dimension of the
state space chosen so the flow crosses it repeatedly. The dynamics can be considered
on the Poincaré section instead of in the entire state space. A initial point on the
Poincaré section will move forward in time through the entire state space until it
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returns to the section. The dynamics can then be considered in discrete time. After
one time step, the initial condition will flow one time around through the state space
and return to another point on the section. This process is then repeated with the
new point as the initial condition.

Shifting to a Poincaré section allows us to use a technique developed in discrete
time to describe systems in continuous time. This is important because most phys-
ical systems are most naturally described using continuous time, while the simplest
descriptions of chaotic dynamics are typically in discrete time.

When we switch to a description of the dynamics based on the Poincaré section,
we must also convert Lyapunov’s equation to discrete time. We want to be able to
evolve a cloud of initial conditions in the neighborhood of a periodic point on the
Poincaré section one step forward in time so it returns to a new neighborhood on
the Poincaré section. This can be done by integrating the solution of the Lyapunov
equation (12) until it returns to the Poincaré section.

The result is the discrete time Lyapunov equation:

Q(tn+1) = J(x(tn)) Q(tn) J
⊤(x(tn)) + ∆(x(tn)), (13)

where ∆(x(tn)) =
1

tn+1 − tn

tn+1∫
tn

dτ J(x(τ)) ∆ J⊤(x(τ)) (14)

Even if ∆ is uniform in the original state space, it will not be uniform on the Poincaré
section because these integrals are carried out over different trajectories. The theory
must deal with nonuniform ∆. If ∆ has explicit x dependence, the only change is in
evaluating the integral for ∆(x(tn)).
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CHAPTER III

LOCAL FORMULATION

Consider a smooth stochastic map in d dimensions.

xn+1 = f(xn) + ξn, (15)

where ξn represents white noise. In general, the noise is anisotropic and characterized
by a symmetric diffusion tensor ∆ ≡ ξ ξ⊤. The eigenvalues of ∆ are strictly positive,
so under one step of noisy dynamics an initial Dirac-δ localized density distribution
is smeared out into a Gaussian ellipsoid whose widths and orientations are controlled
by the eigenvalues and eigenvectors of ∆.

δD(y) =
1

N
e−

1
2
(y−f(x))⊤ 1

∆
(y−f(x)) (16)

The normalization constant is N = (2π)d/2
√
det∆.

3.1 Attractive Fixed Points

Suppose the map has a fixed point at x∗. In a neighborhood, x = x∗ + z, we can
approximate the map by the linear map M ≡ ∂f(x∗) with the fixed point at z = 0.

zn+1 = Mzn (17)

This approximation is valid as long as the distribution is localized near the fixed point.
In order for this assumption to always be true, the noise must be weak. Otherwise, in
one time step, the distribution will diffuse enough to make the approximation invalid.

We start with an initial Gaussian distribution, centered at z = 0.

ρ(z, n) =
1

Cn

e−
1
2
z⊤ 1

Qn
z (18)

Cn is a normalization constant: Cn = (2π)d/2
√
detQn.

If the eigenvalues of Qn are distinct, the distribution is a cigar-shaped ellipsoid,
with the eigenvectors of Qn giving the orientation of various axes. We would like
to translate this one step forward in time. The action of the noisy Fokker-Planck
operator is the convolution of the initial distribution with the action of the noise
(16). Convolution of a Gaussian with a Gaussian is again a Gaussian, so the noisy
Fokker-Planck operator (16) maps the ellipsoid ρ(z, n) into an ellipsoid ρ(y, n + 1)
one time step later.

ρ(y, n+ 1) =
1

NCn

∫
dzde−

1
2
[(y−Mz)⊤ 1

∆
(y−Mz)+z⊤ 1

Qn
z] (19)

=
1

Cn+1

e
− 1

2
y⊤ 1

Qn+1
y
.
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To determine Qn+1, complete the square, integrate over z, and get the initial condition
squished by the dynamics and spread out by the noise:

Let
1

J
≡ M⊤ 1

∆
M +

1

Qn

, k ≡ 2M⊤ 1

∆
y, l ≡ 1

2
Jk,

K ≡ −1

4
k⊤Jk = −y⊤

1

∆
M

(
M

1

∆
M +

1

Qn

)−1

M⊤ 1

∆
y, L ≡ y⊤

1

∆
y .

(y −Mz)⊤
1

∆
(y −Mz) + z⊤

1

Qn

z = y⊤
1

∆
y − y⊤

1

∆
Mz − z⊤M⊤ 1

∆
y + z⊤M⊤ 1

∆
Mz + z⊤

1

Qn

z

= z⊤
(
M⊤ 1

∆
M +

1

Qn

)
z − 2y⊤

1

∆
Mz + y⊤

1

∆
y

= z⊤
1

J
z − k⊤z + L

= (z − l)⊤
1

J
(z − l) +K + L (20)

The first term integrates out and becomes part of the normalization coefficient.

e
− 1

2
y⊤ 1

Qn+1
y ∝ e

− 1
2
y⊤

[
− 1

∆
M(M⊤ 1

∆
M+ 1

Qn
)
−1

M⊤ 1
∆
+ 1

∆

]
y

(21)

Qn+1 =

[
− 1

∆
M

(
M⊤ 1

∆
M +

1

Qn

)−1

M⊤ 1

∆
+

1

∆

]−1

= ∆

[
1−

(
1+

1

M⊤
1

Qn

1

M
∆

)−1
]−1

= ∆

(
1+

1

M⊤
1

Qn

1

M
∆

)(
1+

1

M⊤
1

Qn

1

M
∆− 1

)−1

= ∆

(
1+

1

M⊤
1

Qn

1

M
∆

)
1

∆
MQnM

⊤

= MQnM
⊤ +∆ (22)

This says that the two variances (the noise matrix ∆ and the deterministically trans-
ported Qn → MQnM

⊤) add up as Gaussian variances, i.e., as sums of squares. This
result is identical to the result calculated for the evolution of covariances on a Poincaré
section (13).

If M has all eigenvalues strictly contracting, |Λj| < 1, any initial compact measure
(not only an initial ρ, of Gaussian form) converges to the invariant natural measure
ρ0 whose variance satisfies the stationary condition Qn = Qn+1 = · · · = Q∞ = Q .

Q = MQM⊤ +∆. (23)

We look at Q∞:

Q∞ = ∆+M∆M⊤ +M2∆(M⊤)2 + · · ·+M∞Qn(M
⊤)∞ (24)
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Since M is strictly contracting, the higher terms shrink exponentially, so the series
converges and the initial covariance becomes irrelevant. We conclude

Q = ∆+M∆M⊤ +M2∆(M⊤)2 + · · · (25)

=
∞∑

m,n=0

Mn∆(M⊤)mδmn. (26)

To get rid of the δmn and put the expression in resolvent form, use the Fourier repre-
sentation of Kronecker δ.

δmn =

∫ 2π

0

dθ

2π
eiθ(m−n) (27)

Q =

∫ 2π

0

dθ

2π

∞∑
m,n=0

(e−iθM)n∆(eiθM⊤)m (28)

=

∫ 2π

0

dθ

2π

1

1− e−iθM
∆

1

1− eiθM⊤ (29)

This gives an integral expression for Q in a d-dimensional map, provided M is strictly
contracting.

3.2 Repelling Fixed Points

In order to find the stationary condition when M is strictly expanding, we need to use
the adjoint Fokker-Planck operator. After one time step, the adjoint Fokker-Planck
operator maps the ellipsoid ρ(y, n+ 1) into a new ellipsoid ρ(z, n).

ρ(z, n) =
1

NCn+1

∫
dyde

− 1
2

[
(y−Mz)⊤ 1

∆
(y−Mz)+y⊤ 1

Qn+1
y
]

(30)

=
1

Cn

e−
1
2
z⊤ 1

Qn
z (31)

Complete the square, integrate over y as in (20), and get the initial condition squished
by the reverse flow and spread out by the noise:

MQn−1M
⊤ = Qn +∆ . (32)

The stationary condition is Qn = Qn+1 = Q.

MQM⊤ = Q+∆ (33)

This says that the stationary distribution in expanding dynamics is the distribution
for which the effect of the deterministic dynamics is the same as the effect of the
noise, if each acts on the distribution independently.

Since this is a stationary condition,

Qn+1 = Qn = Qn−1 = · · · = Q−∞ = Q .

11



We look at Q−∞:

MQ−∞M⊤ = ∆+
1

M
∆

1

M⊤ +
1

M2
∆

1

(M⊤)2
+ · · ·+ 1

M∞Qn
1

(M⊤)∞
. (34)

Since M is strictly expanding, the higher terms shrink exponentially, so the series
converges and the initial covariance becomes irrelevant. We conclude

MQM⊤ = ∆+
1

M
∆

1

M⊤ +
1

M2
∆

1

(M⊤)2
+ · · · (35)

=
∞∑

m,n=0

1

Mn
∆

1

(M⊤)m
δmn (36)

To get rid of δmn and put the expression in resolvent form, use the Fourier repre-
sentation of Kronecker δ:

δmn =

∫ 2π

0

dθ

2π
eiθ(n−m) (37)

MQM⊤ =

∫ 2π

0

dθ

2π

∞∑
m,n=0

(
eiθ/M

)n
∆
(
e−iθ/M⊤)m

=

∫ 2π

0

dθ

2π

1

1− eiθ/M
∆

1

1− e−iθ/M⊤

Q =

∫ 2π

0

dθ

2π

−e−iθ

1− e−iθM
∆

−eiθ

1− eiθM⊤

=

∫ 2π

0

dθ

2π

1

1− e−iθM
∆

1

1− eiθM⊤ (38)

This gives us an integral expression for Q in a d-dimensional map, provided M is
strictly expanding. While the forward (23) and the adjoint (33) stationarity conditions
differ, this is the same expression we found for M strictly contracting.

3.3 Hyperbolic Fixed Points

We now consider the case when M has both expanding and contracting (but no
marginal) eigenvalues. Neither the Fokker-Planck operator nor its adjoint can be
used to derive an expression for the stationary covariance Q. Instead, we define Q as
the integral expression which we found in both the expanding and contracting case.

Q ≡
∫ 2π

0

dθ

2π

1

1− e−iθM
∆

1

1− eiθM⊤ (39)

We would like to show that this is equivalent to separating out the expanding and
contracting parts of M with a similarity transform, finding the stationary covariances
for the expanding and contracting parts separately, and then recombining them and
doing the inverse transformation to return to the original coordinates.

12



Let S be the transformation which brings M to Jordan form so the expanding
and contracting subspaces are clearly separated.

Λ ≡ S−1MS =

[
Λe 0
0 Λc

]
. (40)

Here Λe and Λc are the expanding and contracting portions of the monodromy matrix,
respectively.

To determine how the diffusion tensor transforms, we have to look at how the
stochastic variables ξ transform. The original equation of the map transforms under
this similarity transformation as

zn+1 = Mzn + ξn (41)

S−1zn+1 = S−1MSS−1zn + S−1ξn (42)

Since ∆ = ξξ⊤, we conclude that ∆ transforms according to

∆̂ ≡ S−1∆(S−1)⊤ =

[
∆ee ∆ec

∆ce ∆cc

]
. (43)

Let Qe > 0, Qc > 0 be solutions of

Qe =

∫ 2π

0

dθ

2π

1

1− e−iθΛe

∆ee
1

1− eiθΛe
⊤ , (44)

Qc =

∫ 2π

0

dθ

2π

1

1− e−iθΛc

∆cc
1

1− eiθΛc
⊤ . (45)

This is equivalent to saying that Qe satisfies ΛeQeΛe
⊤ = Qe + ∆ee, the stationary

condition for expanding M , and Qc satisfies Qc = ΛcQcΛc
⊤ + ∆cc, the stationary

condition for contracting M .
We would like to prove for the hyperbolic case that

Q = S

[
Qe 0
0 Qc

]
S⊤. (46)

The stationary Q for hyperbolic M is equivalent to a contour integral around the
unit circle in the complex plane.

Q =

∮
Γ

ds

2π
(1− s−1M)−1∆(1− sM)−1 (47)

We do our similarity transform to make M → Λ be block diagonal. We can then
express this contour integral in terms of the four blocks.

Q =
1

2π

∮
Γ

ds(SS−1 − Ss−1ΛS−1)−1∆((S−1)⊤S⊤ − (S−1)⊤sΛ⊤S⊤)−1

=
1

2π

∮
Γ

dsS(1− s−1Λ)−1∆̂(1− sΛ⊤)−1S⊤ (48)
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(1− s−1Λ)−1∆̂(1− sΛ⊤)−1

=

[
1− s−1Λe 0

0 1− s−1Λc

]−1 [
∆ee ∆ec

∆ce ∆cc

] [
1− sΛ⊤

e 0
0 1− sΛ⊤

c

]−1

=

[
(1− s−1Λe)

−1 0
0 (1− s−1Λc)

−1

] [
∆ee ∆ec

∆ce ∆cc

] [
(1− sΛ⊤

e )
−1 0

0 (1− sΛ⊤
c )

−1

]
=

[
(1− s−1Λe)

−1∆ee(1− sΛ⊤
e )

−1 (1− s−1Λe)
−1∆ec(1− sΛ⊤

c )
−1

(1− s−1Λc)
−1∆ce(1− sΛ⊤

e )
−1 (1− s−1Λc)

−1∆cc(1− sΛ⊤
c )

−1

]
(49)

Q = S

∮
Γ

ds

2π

[
(1− s−1Λe)

−1∆ee(1− sΛ⊤
e )

−1 (1− s−1Λe)
−1∆ec(1− sΛ⊤

c )
−1

(1− s−1Λc)
−1∆ce(1− sΛ⊤

e )
−1 (1− s−1Λc)

−1∆cc(1− sΛ⊤
c )

−1

]
S⊤

(50)
The upper and lower blocks are Qe and Qc, respectively. We can show that the off-
diagonal blocks are 0 using Cauchy’s Residue Theorem.
All the poles of (1− s−1Λe)

−1 lie outside the unit circle.
All the poles of (1− s−1Λc)

−1 lie inside the unit circle.
All the poles of (1− sΛ⊤

e )
−1 lie inside the unit circle.

All the poles of (1− sΛ⊤
c )

−1 lie outside the unit circle.
(1 − s−1Λe)

−1∆ec(1 − sΛ⊤
c )

−1 has poles only outside of the unit circle, so you can
integrate around Γ counterclockwise to get 0.
(1 − s−1Λc)

−1∆ce(1 − sΛ⊤
e )

−1 has poles only inside of the unit circle, so you can
integrate around Γ clockwise to get 0.

∴ Q = S

[
Qe 0
0 Qc

]
S⊤ (51)

Notice that we can deform Γ in any way which doesn’t cross the eigenvalues of M
and still get the same result.

This technique was developed for linear hyperbolic systems in continuous time by
Zhou, et al. [12] and in discrete time by Varga [11].

If we are interested in the stationary expanding and contracting covariances indi-
vidually, we can separate Q:

Qe ≡ S

[
Qe 0
0 0

]
S⊤ (52)

Qc ≡ S

[
0 0
0 Qc

]
S⊤ (53)

This gives us two stationary distributions, one in the expanding manifold and the
other in the contracting manifold.

Thus far, we have taken the problem of finding stationary distributions at hyper-
bolic points and converted it into a sequence of simpler linear problems:

1. Linear the map at the fixed point.

2. Find a similarity transform S which takes M to Jordan form. M → S−1MS =
Λ.
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3. Apply the transform to diffusion tensor ∆ → S−1∆(S−1)⊤ = ∆̂.

4. For the expanding parts of Λ, solve the stationarity condition ΛeQeΛe
⊤ = ∆ee+

Qe for Qe.

5. For the contracting parts of Λ, solve the stationarity condition Qc = ΛcQcΛc
⊤+

∆cc for Qc.

6. Return to the original coordinates to find the stationary distributions along the
stable and unstable manifolds.

For the special case in which Λ is diagonal, we have explicit expressions for Qe

and Qc:

(Qe)ij =
1

ΛiΛj − 1
(∆ee)ij (54)

(Qc)ij =
1

1− ΛiΛj

(∆cc)ij (55)

Note that they are both positive definite, as covariance matrices should be.

3.4 Periodic Points

Now consider a point xa on a periodic orbit p of period np. This point is a fixed point
of the np

th iterate of the map, so we can treat it using the same method developed for
fixed points, provided we use the proper effective monodromy matrix and diffusion
tensor.

In order to deal with periodic orbits, we need to be able to calculate how a
Gaussian distribution evolves along a non-stationary orbit {· · · , xa−1, xa, xa+1, · · · }
under the action of the Fokker-Planck operator and its adjoint. Since M and ∆ vary
along the orbit in general, we denote M and ∆ at point xa as Ma and ∆a, respectively.

We have already found the result for one time step. The action of the Fokker-
Planck operator is equivalent to acting on the distribution’s covariance matrix:

Qa+1 = MaQaM
⊤
a +∆a (56)

The action of the inverse adjoint Fokker-Planck operator is equivalent to acting on
the distributions covariance matrix:

Qa+1 = MaQaM
⊤
a −∆a (57)

In both cases, the new distribution has covariance Qa+1 and is centered at point xa+1.
Introduce some new notation for the monodromy matrix after n steps along a

non-stationary orbit.

Mn
a ≡ Ma+n−1 · · ·Ma+2Ma+1Ma =

n∏
i=1

Ma+n−i (58)
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We can iterate the action of the Fokker-Planck operator and its inverse adjoint to
find how the covariance evolves after multiple time steps.

After two time steps, the Fokker-Planck operator is equivalent to

Qa+2 = Ma+1Qa+1Ma+1
⊤ + ∆a+1 (59)

= Ma+1

(
MaQaMa

⊤ + ∆a

)
Ma+1

⊤ + ∆a+1 (60)

= M2
aQaM

2
a
⊤ + Ma+1∆aMa+1

⊤ + ∆a+1. (61)

Similarly, the inverse adjoint Fokker-Planck operator is equivalent to

Qa+1 = M2
aQaM

2
a
⊤ − Ma+1∆aMa+1

⊤ − ∆a+1. (62)

After three time steps, the Fokker-Planck operator is equivalent to

Qa+3 = Ma+2Qa+2Ma+2
⊤ + ∆a+2 (63)

= M3
aQaM

3
a
⊤ + M2

a+1∆aM
2
a+1

⊤ + Ma+2∆a+1Ma+2
⊤ + ∆a+2. (64)

Similarly, the inverse adjoint Fokker-Planck operator is equivalent to

Qa+3 = M3
aQaM

3
a
⊤ − M2

a+1∆aM
2
a+1

⊤ − Ma+2∆a+1Ma+2
⊤ − ∆a+2. (65)

After n time steps, the Fokker-Planck operator is equivalent to

Qa+n = Ma+n−1Qa+n−1Ma+n−1
⊤ + ∆a+n−1 (66)

= Mn
aQaM

n
a
⊤ + Mn−1

a+1∆aM
n−1
a+1

⊤ + · · · + Ma+n−1∆a+n−2Ma+n−1
⊤

+ ∆a+n−1 (67)

Similarly, the inverse adjoint Fokker-Planck operator is equivalent to

Qa+n = Mn
aQaM

n
a
⊤ − Mn−1

a+1∆aM
n−1
a+1

⊤ − · · · − Ma+n−1∆a+n−2Ma+n−1
⊤

− ∆a+n−1 (68)

Since we are primarily interested in periodic orbits, xa+np = xa, we can introduce
the monodromy matrix for the periodic orbit,

Mp,a ≡ Mnp
a (69)

and the total accumulated noise for the periodic orbit.

∆p,a ≡ M
np−1
a+1 ∆aM

np−1
a+1

⊤ + · · · + Ma+np−1∆a+np−2Ma+np−1
⊤

+ ∆a+np−1 (70)

=

np∑
i=1

M
np−i
a+i ∆a+i−1 M

np−i
a+i

⊤ (71)

The stationary distribution occurs when Qa+np = Qa = Q.
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For the Fokker-Planck operator, the stationary condition is

Q = Mp,a Q Mp,a
⊤ + ∆p,a. (72)

For the inverse adjoint Fokker-Planck operator, the stationary condition is

Q = Mp,a Q Mp,a
⊤ − ∆p,a. (73)

This looks identical to the stationary conditions for fixed points, provided we
replace Ma by Mp,a and ∆a by ∆p,a. We can therefore use the same techniques to
find Q that we developed for fixed points.
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CHAPTER IV

GOING GLOBAL

4.1 Partitioning the Attractor

The neighborhoods that we have just defined for each periodic point can be used to
partition the attractor. Each neighborhood defines a finite resolution in the vicinity of
its periodic point. Any details smaller than this are quickly smeared out by the noise.
We can thus keep adding neighborhoods to the partition until they completely cover
the attractor. Once the neighborhoods start to overlap, adding more neighborhoods
will not give you any more information. The information that you get from the extra
neighborhoods is completely smeared out by the noise.

Shorter periodic orbits are less affected by the noise than longer periodic orbits.
For a longer periodic orbit, the noise has more time to push a trajectory off of the
deterministic path. This implies that if there are two neighborhoods that overlap, the
one with the shorter periodic orbit is more important to understanding the dynamics.
The longer one is more likely to be disrupted by the noise before it returns to its initial
condition.

The definition of the partition can be somewhat arbitrary, as long as it completely
covers the attractor. Other partitions that also cover the attractor differ in the
amount of overlap that exists between neighborhoods. Our technique for calculating
the Markov graph takes into account these overlaps. The technique is robust to
changes in the partition. The different amounts of overlap between neighborhoods
may result in different representations of the global stationary distribution in terms
of the partition, but they all correspond to the same global stationary distribution
when we return to the coordinates of the state space.

4.2 Markov Graph on the Attractor

We have a set of N Gaussians which cover the noisy attractor, each of which takes
the form

ρi(x) =
1√

(2π)ddetQi

e
− 1

2
(x−µi)

⊤ 1
Qi

(x−µi) . (74)

Suppose there is another normalized function f(x) defined on the noisy attractor. We
would like to find {fj}, the coefficients of f in our Gaussian basis. We write

f(x) =
N∑
i=1

fi ρi(x) . (75)

In order to maintain normalization, the coefficients must satisfy

1 =

∫
f(x)dx =

∫ N∑
i=1

fi ρi(x)dx =
N∑
i=1

fi

∫
ρi(x)dx =

N∑
i=1

fi = 1. (76)
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We are interested in finding the fi.
The fi should be chosen so that the distance between the actual f(x) and its

representation in our basis is minimized. To measure the distance, we use the L2

norm defined over the entire space.
We minimize

1

2

∫ (
f(x)−

N∑
i=1

fi ρi(x)

)2

dx (77)

subject to the constraint that the coefficients form a probability distribution:∑
i fi = 1 and fi ≥ 0.
In particular, we can choose f(x) to be one of the basis distributions that has been

evolved one step forward in time. In order to evolve a distribution forward in time,
we apply the Fokker-Planck operator (19). This is equivalent to moving the center of
the Gaussian one step forward in time with the deterministic Lozi map and replacing
the covariance matrix with Qn+1 = MQnM

⊤ +∆. The resulting distribution will be
referred to as

ρk,1(x) = L1
FP ρk(x) , (78)

where L1
FP is the one time step Fokker-Planck operator.

The Fokker-Planck operator is used for the entire distribution. We do not have
to separate the expanding and contracting directions and apply different operators
to each of them. Although this was necessary to determine a stationary distribution,
any physical realization of our system only moves forward in time. Because of this, we
are only interested in how the distributions move forward in time. Moving exclusively
forward in time is necessary to ensure that distributions approach the attractor and
that motion on the attractor is ergodic.

We write the coefficients of the basis elements moved one step forward in time
in terms of their own basis as Ti;k,1. These coefficients determine a transition ma-
trix. This matrix contains the probability of transitioning between each pair of basis
elements in one time step.

The time evolution of any distribution expressed in terms of the basis {ρi(x)} can
be written in terms of this transition basis.

L1
FPf(x) = L1

FP

N∑
k=1

fk ρk(x) =
N∑
k=1

fk L1
FPρk(x) =

N∑
i=1

(
N∑
k=1

Ti;k,1 fk

)
ρi(x) (79)

The one time step evolution of the coefficients of some distribution in our Gaussian
basis can be found by applying the transition matrix on the original coefficients.
Longer time dynamics can be found by repeated action of this transition matrix.

4.3 Stationary Distribution and Long-Time Observables

We now have a stochastic transition matrix. Its elements are the probability of
transitioning between the neighborhoods of the periodic points in our partition in
one time step. The original chaotic system has been reduced to a Markov graph.
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We would like to apply the Perron-Frobenius Theorem to this system. In order
to apply this theorem, we need the further condition that this system is ergodic.
Here, the noise helps us again. Because the tails of the Gaussian neighborhoods
extend to infinity, the noise gives us a nonzero transition probability between any two
neighborhoods. Some of these probabilities may be extremely small, so they would
be indistinguishable from numerical error. The chaotic system that this technique is
applied to should at least be ergodic at length scales above the length scale of the
noise. Any non-ergodic features smaller than this will be smeared out by the noise.
If the system is not ergodic on a larger scale, our formalism can be applied to each
attractor individually.

The Perron-Frobenius Theorem declares that the leading eigenvalue of a nonneg-
ative ergodic matrix is isolated and the corresponding eigenvector consists of positive
entries. The second eigenvalue is also real and isolated. The corresponding eigenvec-
tor can contain positive and negative real entries.

For a globally attracting chaotic system, the leading eigenvalue is one because
the system is probability conserving. The leading eigenvector corresponds to the
global stationary distribution. This distribution is unchanged under the action of
the transition matrix. Any other initial distribution will converge to this. The sec-
ond eigenvalue measures the exponential rate at which this convergence occurs. Its
eigenvector represents how an initial distribution approaches the global stationary
distribution. The last variations away from the global stationary distribution will
take the form of this second distribution.

Any initial distribution in the full state space can be projected onto our basis of
Gaussians and then evolved forward in time. The distribution will converge to the
stationary distribution on our basis. If we take the stationary distribution on our basis
and return it to the original coordinates, we find the global stationary distribution on
the entire state space. Any initial distribution will converge to it under the repeated
action of the Fokker-Planck operator.

This distribution can be used to calculate expectation values of long-time ob-
servables. The long-time average of the observable is equal to the average of the
observable distributed on the state space according to the global stationary distribu-
tion. These averages can be calculate and then compared to the measured averages
from experimental data.

For a chaotic repeller, the leading eigenvalue is less than one and measures the
escape rate. Long-time observables are less relevant in these systems because the
dynamics do not stay localized for long times. Instead, the measurable quantity that
we are interested in is the escape rate.

4.4 Finding the Global Stationary Distribution Directly

The Markov process discussed above yields a complete characterization of dynamics
of distributions on the partition. However, if we are interested in finding the long-
time expectation values of long-time observables, we do not need to know the entire
transition matrix. Instead, we can use a similar variational calculation to directly
calculate the global stationary distribution.
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The global stationary distribution h(x) satisfies

L1
FP h(x)− h(x) = 0. (80)

We can write h(x) in terms of our Gaussian basis (75). The resulting distribution
will not satisfy (80) exactly. Instead, we choose normalized coefficients {hi} so that
the difference between the one time step evolution of the distribution and the original
distribution is minimized. The difference between the functions is calculated using
the L2 norm and is called the error of our approximation.

E2 =
1

2

∫ (
L1

FP

(
N∑
i=1

hiρi(x)

)
−

(
N∑
i=1

hiρi(x)

))2

dx (81)

=
1

2

∫ ( N∑
i=1

hi

(
L1

FPρi(x)− ρi(x)
))2

dx (82)

We also want to satisfy the constraint that the hi are a probability distribution.

4.4.1 Constrained Gradient Descent

In order to find this minimum, we use a constrained gradient descent. We begin with
the initial guess that the distribution is uniform over the partition: hi = 1/N . We
follow the direction of fastest decrease of the error function subject to the constraint∑

i hi = 1. The minimum of E2 might occur with all of the hi positive. If this is the
case, the procedure is finished. Otherwise, one of the hi is zero before the minimum
is reached. If this occurs, we enforce this additional constraint and then continue
the gradient descent. Iterating this process finds the probability distribution with
minimum error.

For this process, the gradient is linear in the coefficients.

∂(E2)

∂hj

=
N∑
i=1

hi

∫ (
L1

FPρi(x)− ρi(x)
) (

L1
FPρj(x)− ρj(x)

)
dx (83)

We consider the coefficients hj to be dynamical variables that move in the direction
of fastest decrease of E2. There is also the constraint that

∑
j ḣj = 0. This can be

accomplished by subtracting out the component of the gradient of E2 which is normal
to the surface of constraint.

Let Lij = Lji =

∫ (
L1

FPρi(x)− ρi(x)
) (

L1
FPρj(x)− ρj(x)

)
dx (84)

ḣj = −
N∑
i=1

hiLij +
1

N

N∑
i,j=1

hiLij = −
N∑
i=1

hi

(
Lij −

1

N

N∑
j=1

Lij

)
(85)

The dynamical process is linear, so there is a unique minimum. If this minimum
has all coefficients positive, then it is the optimum probability distribution. Other-
wise, we follow the solution until the first of the hj is zero. The index of this coefficient
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is k1. At this point, we also enforce the constraint hk1 = 0. The dynamical equations
then become:

ḣj ̸=k1 = −
N∑

i=1, i̸=k1

hi

(
Lij −

1

N − 1

N∑
j=1, j ̸=k1

Lij

)
(86)

ḣk1 = 0 (87)

This new linear system evolves until it reaches a minimum or until another of the
hj = 0. We repeat the same procedure. After m of the coefficients are zero, the
dynamical system satisfies m additional non-negativity constraints. The indices of
the constrained variables are given by {k1, · · · , km}.

ḣj /∈{k} = −
N∑

i=1, i/∈{k}

hi

Lij −
1

N −m

N∑
j=1, j /∈{k}

Lij


ḣk1 = 0

...

ḣkm = 0 (88)

After iterating this procedure several times, we obtain the probability distribution
which minimizes the error. This procedure is applicable to optimizing any other
quadratic function of the coefficients of a probability distribution. In particular, it
could be used to determine the transition probabilities between neighborhoods which
appear in the stochastic transition matrix.

4.4.2 Gaussian Overlap Integrals

In order to calculate the gradient, we have to perform the overlap integrals between
two Gaussians. The integrals take the form:

1

NaNb

∫
e−

1
2
(x−µa)⊤

1
Qa

(x−µa)e
− 1

2
(x−µb)

⊤ 1
Qb

(x−µb)dx. (89)

This integral is solved by completing the square. A similar procedure is described in
(20).

Let
1

J
≡ 1

Qa

+
1

Qb

k ≡ 2

(
1

Qa

µa +
1

Qb

µb

)
K ≡ −1

4
k⊤Jk

L ≡ µ⊤
a

1

Qa

µa + µ⊤
b

1

Qb

µb
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The value for the overlap integral between two Gaussians is in terms of these quan-
tities. √

det J

(2π)d detQa detQb

e−
1
2
(K+L) (90)

4.5 Other Eigenfunctions of the Evolution Operator

The one time step Fokker-Planck operator, L1
FP , also has other eigenfunctions. These

could have been found from the stochastic transition matrix. We can also use the
technique developed for the global stationary distributions to find these eigenfunctions
directly.

The eigenfunctions of L1
FP satisfy

L1
FPh(x)− esh(x) = 0 (91)

for some constants s. We again express h(x) is terms of our basis and minimize the
error. The error is now defined according to

E2 =
1

2

∫ ( N∑
i=1

hi

(
L1

FPρi(x)− esρi(x)
))2

dx. (92)

We can again use a constrained gradient descent to find the minimum error. The
eigenvalue s is also an unknown. It must therefore also be included as one of the
dynamical variables in the gradient descent. The resulting differential equation for s
is nonlinear. It has an attracting equilibrium for each eigenvalue of L1

FP . These are
local minima of the error function. Which eigenvalue you arrive at as a result of the
constrained normalization procedure depends on your initial guess of the parameters.

Since the other eigenfunctions do not have the interpretation that they are global
probability distributions, we do not have to enforce the constraints that the hi are al-
ways positive. We do maintain the constraint that these eigenvectors are normalized.
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CHAPTER V

LOZI MAP

We now apply our procedure to the Lozi map,

xn+1 = 1− a|xn|+ byn

yn+1 = xn (93)

In our calculations the noise is isotropic, ∆ = 0.1 1 or 0.01 1, and the Lozi parameters
are set to the values a = 1.85, b = 0.3 , unless noted otherwise. For these values of
the parameters, the noiseless Lozi map is chaotic [8].

We also include white noise characterized by a diffusion tensor ∆. For this exam-
ple, we will use isotropic noise.

5.1 Deterministic Attractor

First, we numerically find the attractor of the Lozi map in the absence of noise. This
can be accomplished using the following steps:

1. Pick an initial point that is not a fixed or periodic point. We used (0.1, 0.1).

2. Calculate the action of the map for 1,000 iterations. This removes the effects
of transient behavior.

3. Calculate the action of the map for the next 100,000 iterations. Store these
data points. They are close to the strange attractor.

4. Plot these last 100,000 points. They trace out the noiseless attractor.

5.2 Periodic Points

Next, we need to be able to find all the periodic points of the Lozi attractor of a given
period n. This is easier for the Lozi map than for most other dynamical systems since
the Lozi map is piecewise linear. The most efficient method for finding the periodic
points of the Lozi map is pruning.

The Lozi map can be written as either of the two linear maps, xn+1 = fs(xn),

xn+1 = 1∓ axn + byn

yn+1 = xn ,

where s = 1 if x > 0, and s = 0 if x < 0. Each iteration of the Lozi map is the action
of either f0 or f1 (depending on whether x > 0 or x < 0). The Lozi map is thus a set
of two linear maps. Which map to use depends on whether there is a 0 or 1 in the
itinerary of the periodic point.
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Instead of searching for all period-n periodic points, we first compute the set of
2n possible periodic points, and then prune the points that are not periodic solutions
of the Lozi map.

There are 2n possible ways the Lozi map could act after n time steps, correspond-
ing to all the possible sequences of n 0’s and 1’s. Each sequence corresponds to a
different linear map, so each has exactly one fixed point. These points give us the
possible locations of periodic points.

To prune the points down to only the admissible periodic points, we need to check
whether each step has the proper 0 or 1 for its current location. To do this, we need to
calculate the orbit for each possible periodic point. Since we are already calculating
the periodic orbit, there is an easier way to prune. Simply calculate the orbit and
check to see whether the orbit returns to itself after n steps. Any orbit that does
not return to itself is pruned from the list, and we are left with only the admissible
periodic points.

The periodic points of short periods are plotted in figure 1. They are all located
on the attractor and, as the period increases, gradually cover it. If we were to include
periodic orbits of all lengths, they would be dense on the attractor.

5.3 Local Stationary Distributions

We can now find the stationary covariances at the fixed points.
The one-time step Jacobian matrix for the Lozi map is given by

M =

[
−a sign(x) b

1 0

]
.

We then diagonalize M as in (40). ∆ is transformed according to (43). We can then
solve for Q directly in each one-dimensional subspace.

We separate out the expanding and contracting directions and return to original
coordinates (53). We now have two covariance matrices, Qe and Qc. Each has one
singular direction with 0 variance and one singular direction with positive variance.
We have two oriented Gaussian distributions at each fixed point. These distributions
are the stationary distributions in the stable (unstable) manifold under the Fokker-
Planck (adjoint Fokker-Planck) operator.

The Lozi map has two fixed points, both of which are hyperbolic for our parameter
values. The stationary distributions at each are shown in figure 2.

The stationary covariances at the periodic points can be calculated in a similar
way to the stationary covariance at the fixed points. We calculate the periodic orbit
monodromy matrix Mp,a and the total accumulated noise for the periodic orbit ∆p,a,
as given in (69) and (70), respectively. We use the same code to calculate Q for the
periodic orbits. We plot each neighborhood as a parallelogram, with their widths
given by the standard deviations of the covariance matrices and their axis given by
the corresponding singular vectors. The neighborhoods for all periods up to period
6, are shown in figure 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Lozi periodic points of all periods up to period n = 7. The color of a
periodic point represents its period. The longest ones are red; the shortest ones are
green. The noiseless Lozi attractor is plotted in yellow in the background. (a) The
fixed points, n = 1. (b) n = 2. There are no periodic orbits of period 3. (c) n = 4.
(d) n = 5. (e) n = 6. (f) n = 7.
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Figure 2: Stationary distributions at the fixed points of the Lozi map, with ∆ = 0.1 1.
The Lozi attractor is shown in yellow in the xn−yn plane. The fixed points are marked
in red. Extending from the fixed point and in the same plane are the eigenvectors of
M and the singular vectors of Q. The expanding eigenvector is shown in blue and the
contracting eigenvector is shown in cyan. The lengths are given by the magnitudes
of the corresponding eigenvectors. The expanding singular vector is magenta and
the contracting singular vector is red. The lengths are given by the corresponding
variances. The distributions are shown above the singular vectors in the corresponding
colors.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Neighborhoods of all periodic points in the Lozi map for periods up to n.
For this figure, we used ∆ = 0.01 1. (a) n = 1. (b) n = 2. (c) n = 4. (d) n = 5. (e)
n = 6 (f) n = 7.
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5.4 Partitioning the Attractor

We choose a particular technique for forming the optimum partition of this attractor.
We begin with the fixed points of the maps. These are the periodic points with the
shortest possible orbit, so they are least effected by the noise. They are automatically
included in the partition.

We then consider all points of period one longer than the previous period. If any
of their neighborhoods overlap with the neighborhoods of points in the partition of
lesser period, they are automatically discarded.

In general, there will also be some points of the same period with overlapping
neighborhoods. For each set of these equal period overlapping points, remove the
points one at a time until there is no more overlap. There will typically be more than
one way to do this. Compare the different ways of removing points from this set and
choose the one that covers the most possible volume of the state space. This ensures
that there will be no overlap while still covering as much area of the attractor with
these points as possible.

This process is repeated from each subsequent period until the entire attractor
is covered by neighborhoods of periodic points. Including any more points will only
cause overlap between the neighborhoods.

There is still the question of what it means that two neighborhoods ‘overlap’ and
thus should be discarded. Each neighborhood is characterized by a Gaussian, with
tails that extend to infinity. We are drawing each neighborhood as a parallelogram
with widths given the standard deviations of the stationary covariances and the axes
pointing along the expanding and contracting manifolds. Excessive overlap occurs
when at least 50% of one of the parallelograms is contained within another parallel-
ogram.

The resulting partitions found using this technique for two different noise strengths
are shown in figure 4.

5.5 Global Stationary Distribution

Rather than calculating the entire transition matrix, we calculate the global stationary
distribution directly using the constrained gradient descent procedure described in
section 4.4. The resulting distributions for two different strengths of the noise are
shown in figure 5.

These distributions are not entirely satisfying. Both of them had to enforce non-
negativity constraints on some the coefficients. The corresponding Gaussians are thus
not used in the global stationary distribution. We do not understand why some of
the elements of the partition are automatically pruned from the global stationary
distribution.

We also calculated the distributions using a brute force method, shown in figure 6.
Because of this self-pruning, the global stationary distributions are more lumpy than
they should be. For the weaker value of noise, our calculation misses one of the lower
branches of the attractor that can be seen in the brute force calculation.
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(a) (b)

Figure 4: Optimum partition of the Lozi map with the noise strength given by (a)
∆ = 0.1 1 and (b) ∆ = 0.01 1.

(a) (b)

Figure 5: The global stationary distribution of the Lozi map calculated on our
partition. The strength of the noise is different in the two images. In (a), ∆ = 0.1 1.
In (b), ∆ = 0.01 1. The red regions are the regions where the probability of finding
the particle is largest. The dark blue regions are the regions where the probability of
finding the particle is almost zero.
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The problems arise in our techniques because the Lozi map is not globally attract-
ing. The stable manifold of the fixed point in the lower left corner of the attractor
divides two basins of attraction. On one side of the manifold, the dynamics approach
the deterministic attractor that we have been investigating. On the other side of the
manifold, any initial condition approaches (−∞,−∞).

The deterministic attractor is unaffected by the other basis of attraction. However,
the noise can bump a trajectory across the stable manifold of the fixed point. There
is thus a nonzero probability of escaping from the noisy attractor. Although the
deterministic distribution is attracting, the noisy distribution is a repeller.

The leading eigenfunction of the one time step Fokker-Planck operator is thus less
than one because the global stationary distribution does not conserve probability. In
future work, we will use the technique of section 4.5 to determine both the escape
rate from the repeller and the corresponding distribution. This should match more
closely with the distribution observed in figure 6.

5.6 Brute Force Method

In order to assess the accuracy of the above technique, we compare it to a direct
numerical calculation of the global stationary distribution of the Lozi attractor. The
global stationary distribution, or natural measure, of a typical chaotic map is difficult
to calculate numerically because it is everywhere singular. The noise smears out the
singularities of the attractor and makes it amenable to numerical calculations.

We compare our results against a purely numerical calculation of the global sta-
tionary distribution of the noisy Lozi map. The algorithm proceeds a follows:

1. Choose the arbitrary initial condition (0.1,0.1).

2. Iterate the Lozi map for 100 iterations to remove transient behavior. This brings
the trajectory close to the attractor, so we can begin the simulation of the noisy
Lozi map.

3. Iterate the Lozi map for 108 time steps. At each time step, add a random
number distributed according to a Gaussian with diffusion matrix ∆. Record
the location of each point along the trajectory.

4. If the noise happens to kick the trajectory off of the attractor, choose another
random initial condition, remove the transients again, and then continue iter-
ating the noisy Lozi map.

5. Introduce an external finite resolution to the state space. Place square bins of
side length 0.01 uniformly across the region of the state space containing the
attractor. For the Lozi map, this is the box [−1.5, 1.5]× [−1.5, 1.5].

6. Count the number of points in each bin.

7. Normalize the distribution so the total sum over the entire attractor is one.
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(a) (b)

Figure 6: The global stationary distribution of the Lozi map calculated using brute
force. The strength of the noise is different in the two images. In (a), ∆ = 0.1 1.
In (b), ∆ = 0.01 1. The red regions are the regions where the probability of finding
the particle is largest. The dark blue regions are the regions where the probability of
finding the particle is almost zero.

8. Plot the resulting distribution.

Since the system is ergodic, after a long time, any trajectory will be distributed
according to the global stationary distribution. This provides a direct technique
for calculating the global stationary distribution of the Lozi map. The resulting
distributions are shown in figure 6.

This technique is not easily generalized to systems which much larger dimensions.
The number of bins that you need to use to cover the attractor increases as the
exponential of the dimension of the state space. For two dimensions, this is not a
problem. However, for models of fluid mechanics and other continuous systems which
are typically described using state spaces with thousands of dimensions this brute
force method is unfeasible.

Our technique of using a local description of the noise to partition the state space
of a chaotic map depends primarily on the number of periodic orbits used to cover
the attractor. Although it is more difficult to find periodic orbits in other systems,
once the periodic orbits are found, the procedure described here is the same.

Considering the noise also gives a condition for when to stop looking for more
periodic orbits. In a completely deterministic system, all of the periodic orbits are
needed in order to calculate long-time averages of the observables of the state. The
noise defines neighborhoods of each periodic point. Once these neighborhoods begin
overlapping, finding more neighborhoods in that region will not improve the descrip-
tion of the dynamics. We only need to look for periodic orbits until their neighbor-
hoods completely cover the attractor for the system. The presence of noise gives a
condition that allows us to get a complete understanding of a chaotic system after
finite computation time.
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