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SO fal‘ next
trajectory of a Single initial pOin'[ transport a neighborhood




flow transports displacement x(t) + dx(t) along trajectory x(t)
an infinitesimal neighborhood evolves by

Xi + 0xj = Vi(x + 0x) ~ vi(x) + Z L5x;
2

together with equations of motion this yields:

equations of variations

avj(x)

Ajji(x) = o

is the instantaneous rate of shearing of x(t) neighborhood



infinitesimal neighborhood after a finite time:

fl(xo + 0x) = fl(xo +Z 6/
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linearized neighborhood is transported by

Jacobian matrix

8X,'(t)

5x(t) = J'(%0)0x(0),  Jj(x) = 9x;(0)




exponential of a constant matrix

t m
e = lim (1 + A> :
m—o0 m
tax-accountant’s discrete step definition of an exponential

local rate of neighborhood distortion A(x) depends on x(t)

1
JU= dim T (1+6tA(xn))

m—o0
n=m

— lim eétA(xn)eétA(xm_1)
m—soo

e(;tA(Xg)e(;tA(X])’
ot=(t—ty)/m, Xn = X(fp + not)

take the 5t — 0 limit:



Ji(x0) = |Telo drA()

P

ij
where T stands for time-ordered integration

Jacobian matrices are multiplicative along the flow,

JH(x) = I (XY (x),  where x' = f(x)

Ak = kth stability multiplier, finite time Jacobian matrix M!
Ak = kth stability exponent







d? matrix elements of Jacobian matrix satisfy

Z;Jt(xo) = A(x)J!(xo), initial condition J9(xp) =1

evaluation requires minimal additional programming effort

extend the d-dimensional integration routine, integrate
concurrently with {(x) the a? elements of J!(xo)

will work for short finite times, but for exponentially unstable
flows one quickly runs into numerical over- and/or underflow
problems...



Jacobian matrix maps a spherical
neighborhood of xp into an ellip-
soidal neighborhood time t later

Neighbors separate along unstable directions,
approach each other along stable directions,
creep along the marginal directions



stability matrix A = A(xq) evaluated at an equilibrium point xq is
constant
fli(x) = xqg + M(x —xq) +---,

J'(xq) = ¥ A = A(xq)
for a constant A the Jacobian matrix
x(t) = e”x(0)
is the solution of the linear equation

X = Ax

so study linear flows first:



stability multipliers, diagonal case:
if A= diagonal matrix Ap with eigenvalues (A1, A2, ..., \g)

et)\1 R 0
0 . e”\d

A = kth stability multiplier of the finite time Jacobian matrix J!
Ak = kth stability exponent

A = et)\(k) _ ef(ﬂ(k)'i‘/w(k))



diagonal example:

Jacobian matrix J
(%o )= (% o) (%0)

exponent p > 0: trajectory x(t) spirals out
exponent p < 0: it spirals in

frequency w: rate of rotation



streamlines for typical 2-dimensional flows:

saddle (hyperbolic)
in-node (attracting)
center (elliptic)

in-spiral
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Lorenz flow is organized by its 3 unstable equilibria
@ hyperbolically unstable origin EQq equilibrium

@ unstable pair EQ¢ and EQ;
with complex spiral-out stability exponents



flow near the EQq:

z
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[y unstable eigenvector e("),

J stable eigenvectors e(®), e(®)
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note the strong A(") expansion: the EQ, equilibrium is

unreachable, and the repelling EQ{ — EQq heteroclinic

connection never observed in simulations



At A12>
A=
(A21 Az

eigenvalues Ay, Ao Of A

1
_ 2 _
Mo = 5 (trA:t\/(trA) 4detA)

can form a complex conjugate pair

)\1:,u+iw, AngT:u—iw



example : stability of Lorenz equilibrium EQ;

unstable eigenplane
spanned by
Ree(") and Ime("),

stable eigenvector e(®




two equilibrium points
(xy—.z7)
(x*,y",z%)

stable manifold of “+” equilibrium point = attraction basin
boundary:

right of the “+” equilibrium trajectories escape,

left of the “+” spiral toward the “—” equilibrium point
— seem to wander chaotically for all times



linearized stability exponents

(A ,pp * iwy) = (—5.686, 0.0970 + /0.9951)
(\Fopd + i) = (01929, —4.596 x 1076 +[5.428)

1, £ iw, eigenvectors span a plane

this plane rotates with angular period

T_ =~ |27/wy| =6.313

“w »

a trajectory that starts near the equilibrium point spirals
away per one rotation with multiplier

/\radial =~ exp()\z’ T_) =1.84



each Poincaré section return, contracted into the stable
manifold by amazing factor of Ay ~ exp(A; T_) = 10156 ())
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Rdssler Poincaré return map is in practice 1 — dimensional



a neighborhood of x(t) is determined by the flow linearized
around x(t). Nearby points aligned along the stable
(contracting) directions remain in the neighborhood of the
trajectory x(t) = f!(xo);

the ones to keep an eye on are the points which leave the
neighborhood along the unstable directions. The repercussion
are far-reaching:

as long as the number of unstable directions is finite, the same
theory applies to finite-dimensional ODEs, phase-space volume
preserving Hamiltonian flows, and dissipative, volume
contracting infinite-dimensional PDEs


http://chaosbook.org/chapters/stability.pdf
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