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Nonlinear dynamics of the hydrogen molecule
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The hydrogen molecule (i contains the basic ingredients for understanding the chemical bond, even more
so than the hydrogen molecule ion, id studied in the context of nonlinear dynamics. The classical mechanics
of H, is studied in three dimensions with nine, six, and three degrees of freedom and in one dinfension
degrees of freedom The semiclassical quantization is made using the Bohr-Sommerfeld rules and the
Gutzwiller formula to calculate the eigenvalues of the doubly occupied symmetric excited statesfof &b
initio quantum calculation is performed and compared with semiclassical results. The difficulties that appear in
those calculations are discussed, and a proposal of the experimental measure is made.
[S1050-294{@8)05508-5

PACS numbses): 31.10+2z, 03.20+i, 05.45+b, 31.25-v

I. INTRODUCTION portant technique, because it represents the connection be-
tween classical and quantum mechariite correspondence
Bohr was the first to describe the electronic structuredrinciple) for regular or chaotic systems. This connection can
(chemical bonglfrom a physical point of view for a hydro- help “translate” quantum mechanics into classical terms.
gen molecule () and other moleculefd,2]. Pauli tried to The understanding of th|s connection has a fundamental im-
calculate the energy formation of the hydrogen molecuIe—iorfv?trr&agﬁaeoloirnt:‘fe thuzrmﬁ?rg \t/)v%rﬁﬁj\]/vﬁgr? t];:)er ;Vnh;}g;gggr;as
n . o , .
(H,") by applying Bohr-Sommerfeld qu_ant_|zat|{)®]. How- sical system is chaotic. To build the semiclassical mechanics
ever, correct procedures for the quantization were unknow!

X C o Bfa system, it is necessary to know some classical properties
[4] With the advent of modern quantum mechanics, it wasy, ., 35 neriodic orbits and their magnitudgsriod, action,

possible to calculate correctly the electronic structure foretc_)_
several molecules. . Classical mechanics can also be used to find adiabatic
Calculations for one-electron molecules, e.g,, Hcanbe  yays to solve the quantum problem. Some classical orbits
exactly solved(numerically [5] by quantum mechanics in gescribed by several variables can present one variable that
the Born-Oppenheimer approximation. For any moleculechanges slowly in relation to the others. In this case, some
with two or more electrons in the same adiabatic approximaadiabatization can be done, and the slow variable can be
tion, it is not possible to know exactly the quantum solution,taken as a parameter. The Born-Oppenheimer adiabatization
but sometimes it can be known with very high accuracy. Inis the best known example of this. This adiabatic quantum
addition, the three-bodfor unrestricted four-bodyproblem  calculation describes states close to those described by a cor-
cannot be solved exactly by either quantum or classical theaesponding classical orbit added by the semiclassical proce-
ries. Nevertheless, the understanding of the electronic struclure. The application in the Hi system can be found in
ture still presents several problems, because it is very diffiRefs.[3,4,8 for semiclassical quantization. Another example
cult to understand quantum mechanics intuitively. Theis the “frozen planetary atom” for heliurfi9,10].
electronic structure of the ground state and the first excited Beyond the importance of giving the first step for the
states of the small molecules can be obtained with perfeactomprehension of the chemical bond, this study tries to re-
accuracy by quantum mechanics depending on the computaever the intuitive vision in the description of chemistry. For
tional sources. But it is very hard to obtain the quantuminstance, it is necessary to include the electron exchange in-
solution to the high excited state by ab initio calculation, tegrals, as it was done for the He at¢frl], in a complete
since there are enormous numerical convergence problensemiclassical treatment of the chemical bond of the Hhat
which demand a lot of computational time. Otherwise, lim-intuitive approach will not prevent a future development in
ited quantum approximations must be used for this proposafjuantum calculation, but can strongly influence the direction
Classical mechanics does not describe the electronitoward an understanding of some important chemical prop-
structure for quantum systems. However, it is a powerfulerties. The direct or indirect uses of classical mechanics in
technique to understand quantum mechanics. Following thehemistry can mainly help studies of the excited states of
old quantum theory, classical mechanics is implementedomplex systems.
(correctly with some added properties to describe quantum This paper is a continuation and extension of a previous
systems. This modified mechanics receives the name ofiork on classical mechanics of,H6]. Here classical me-
semiclassical theory. It is an approximated theory which deechanics is studied under several approximations and degrees
scribes a system with increasing accuracy coupled with inef freedom. There are many discussions about the semiclas-
creasing excitation, i.e., when the quantum interference phesical quantization and the quantum calculation. Of course,
nomenon becomes less important. the semiclassical methods proposed here are considered as
The semiclassical theory has recently become a very improviding an additional, complementary understanding of the
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chemical bond, but they are not an exclusive explanation ofvhereu is the reduced mass of the nuclBi,is the internu-

it. clear position vectorPg is the conjugate nuclear relative
The main objective of this paper is not only to develop amomentum vector; is theith electron position vectop; is

semiclassical procedure to describe the high excited statefhe conjugate electronic momentum vectgg(=r;=R/2) is

but to obtain a description of states with few periodic orbits.the ith electron position vector with respect to nud&iand

The H, system is an extremely complex problem from thez . (=1, for H,) is the nuclear charge. In E¢L), the mass

point of view of the three-body probleitor restricted four-  hqarization term is avoided.

body problem with six degrees of freedom; until today, 0 * £quation(1) describes a Newtonian system, i.e., it is not

our knowledge, it has not been worked out. With a fewqnacted to any electrodynamic phenomena. All comments
simple orbits it is possible to simplify the problem, and thus

the comprehension of the chemical bond can be im roveclnade here about stabilities are related to Newtonian move-
P p hents and not to electrodynamic ones. These are not consid-

ngr;:(icelérnts are used throughout this paper unless OtherV\”Sgred here, since the ultimate objective is the quantization of
the classical mechanics of the, ldystem. In the same way,
relativistic mechanics was included in neither classical nor
quantum mechanics. Briefly, this work treats the nonintegra-
The unrestrict four-body(nine degrees of freedom bility and quantization of the Newtonian ;Hnultidimen-

Hamiltonian for H in Cartesian coordinates is presented be-sional system.
low: Equation(1) can be reduced considering varialleas a

parameter. In this case, the system is reduced to six degrees
Zn  Zg  Zpn  Zp of freedom(the restricted four-body problem
The Hamiltonian[Eq. (1)] for adiabatic approximation
can be written in the confocal elliptic coordinates defined by
ats 1 (1) [12], &=(ria+ris)/R, 7i=(ria—rig)/R, and¢;, whereg
is the azimuthal angle, and

IIl. THEORY AND MODELS

1 1
Hy=5— Pa+ 5 (Pi+P3)— —— -
Mo 2p "RT251 02y rggl raal regl

_ 2 2 N 1 2 _E(ZA+ZB)§1_(ZA_ZB)771
e (VPP gy P -
2_1\p2 N 1 2| 2 (ZatZe)&o—(Za—Ze) 72
+R2(§§—7l§)[(§2 VPP g1 127w TR &)

2
T AE+ ni- D+ (E+ mi— )26 mm— 20801~ eV(E-D(L- ) (E-D(L-75)} Y2 (2

whereHg, is the HH2 adiabatic without the internuclear re- (2xi /R)Zzgi’fl_ 1,

pulsion Z,Zg/R), and the subindices of the variables indi-
cate the electrons.
This Hamiltonian[Eg. (2)] is singular, and is regularized ;= arccosy; ,
[13] in order to eliminate the difficulties of the singularities
which appear in the numerical calculation. The regulariza-
tion procedure is made by expansion of the phase space. Tlamd the generating functions F3(P,,x;)=—P¢[1
time (t) that describe the flux of HamiltonigiEq. (2)] and 4 (2,./R)2]¥/2 andF4(P,,,6;)=—P, cos¢ are required to

the energy E) are cqnsmere_d the canonical variables. Thecalculate the conjugate momenta
regularized Hamiltonian is given by

'=1(&1,71,82,72)(Het PY=0,

where f(&1,71,&2,72) =[(£1- 7)(&- M)(EE)] is a
convenient function that vanishes with the singularities of
Eq.(2), He is the same as in E¢2), andP,=—E. The new and
time (t') is defined byt’ =f~1(&;,91,&,, 7,) (t+ const), the
singularities are transferred to the timg)(and the integra- )
tion becomes very slow in tima) near the singularities. Pyp=—P, sing.
The canonical transformations are necessary to transform
theI into canonical equation. The following variable trans-
formations are made: Finally, the regularized Hamiltonian is given by

P, = (2IR)*xiP, I[1+(2x; IR)*]"?
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13RSI 6], L[E+H(RRZSIP 6], 1 [3+(RI2)% i 6,
T2 X3+ (R27] T2 X3+ (R2)Z] ' 2 [+ (R2AGT (RI27 4

1 [x2+(R/2)? sir? 6,]

, X2+ (R2Z i 01][ X3+ (RI2)? sir? 6,]

2 X3+ (R X3+ (RI2)7] % [x5+(R2)%][ x5+ (R/2)%]
; Pe, 1 PL, [X3+ (RI2)2 Sir? 0,][(Za+Ze) Vs + (RI2)2— (Za— Zg) (RI2)cOs 6]
P2 st o, 2 5 s 6, DG+ (R (RI2)7]

[xi+ (R12)? sir? 611[(Za+ Zg) VX3 + (RI2)*~ (Za—Zg) (RI2)cOS 6]
[xi+(RIx3+ (RI2)?]

[x3+ (R/2)% sir? 6,1 x5+ (R/2)? sir? 6]

i+ (R2A0xe+(RID?Rl ©
|
where (with enough energyin these three regions. This connection
will be discussed in the Sec. lIl.
Ri={x;+ x5+ (RI2)*(cos 6;+cos 6,) The coupled Hamilton equations are obtained from the
5 5 5 regularized or smoothed Hamiltonian and integrated numeri-
—2\xi+(R12)2Jx5+ (R/2)? cos 6 cos b, cally with the Runge-Kutta method of fifth order. The stabil-

ity angles and the Lyapunov exponents of the periodic orbits
can be obtained by the Monodromy metHddl as shown.
The periodic orbit(PO) is a periodic solution of the Hamil-
ton equation, and this solution is described by

—2 08 @1~ ¢2) X1X2 Sin 67 sin 92}1/2-

The regularized Hamiltonian is transformed into the
Hamiltonian of the helium atom in spherical coordinates for
R=0. Equation(3) becomes similar to the pendulum Hamil-
tonian for one-electron systerts.g., H*) in the y~0 limit. ¥pd T) = vpd0),

This Hamiltonian Eq. (3)] is important to describe the,H
system completely. However, the one-dimensidddl) ap-  where y=(q,p) and T is the period of the orbit. The
proximation can be used, since the difficulties of the multi-[ ¥’ (0)= ypot 6,/] initial condition is used to evaluate the

dimensional calculation are drastically reduced. neighborhood of the periodic orbif,, is a small displace-
The 1D Hamiltonian for His given by ment around periodic orbit. Using tie/'(0)] in the Hamil-
ton equations for one period, the'(T)= ypot J,/] result
H=3(P3+P3)—1/z,— R/2|— /|2, + RI2| — 1/|z,— R/2| is obtained.

For the small displacement the following linear approxi-

—U|z,+RI2 + 1|2, 2], (4)  mation is obtained:

where P; is the momentum conjugated at positignof the

electron. This HamiltoniadEq. (4)] is studied with both Oy =M,
regularized and smoothed potentials. The smoothed poten-
tials are given by whereM is the linear transformation matrix or monodromy
matrix. The eigenvalues &fl are the stability angle@magi-
Vo= 1[(z,+ RI2)%+ 62112 (58  nary numbersand the Lyapunov exponenseal numbers

for two degrees of freedom.
and

Vrep.= 1/[(21_22)2+ 52]1/2, (5b) IIl. RESULTS

H H b o J A. Symmetric orbits and their stabilities
whereV ., is the attraction potential between the proton an : . , .
electron, and/\¢, is the interelectronic potential. The use of TZ‘? sym.metﬂc orbits c_an be defmed_by ﬂlel folll)owmg
the regularized or smoothed potential shows different result§00rdinates: £1= &, 7| =[], |coser—e)|=1, &
for two (more-electron system in the 1D model. =Ps, |P,|=IP,,|. and|P, [=|P,| [see Eq.2)]. It is

The regularized1D) model has a centrifugal barrier over possible to find various orbits for the,ldystem starting from
each nucleus that represents the true barrier in two dimersome known orbits for HE6,15,16. A sketch of some orbits
sions [10]. That barrier implies a parabolic orbitt€1, is presented in Fig. 1. Langmuir's orbits are obtained from
wheree is the eccentricity of the electrons around the nu- Bohr’s orbits by making a Bohr-Kramers’ rotatioRgy) of
clei. In this case, the Hsystem divides the space into three the orbit of electron 1 over a plane conveniently selected.
regions separated by singular potentials. The smoothed pdte main difference between the orbits in the He and H
tential (without barriej connects the movements of electrons systems is the nonexistence of spherical symmetry in the H
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FIG. 1. Bohr's and Langmuir’s orbits for the helium atdhie)
and for the hydrogen molecule gH Langmuir's orbits are ob-
tained from Bohr's orbits by making a Bohr-Kramers rotation
(Rex)

In the case of the § it is important to consider the system in
three dimensions, since Bohr's and Langmuir orbits are dif:
ferent forR+0.

These few orbits which appeared in Fig. 1 are considered
here the most important ones to describe the multidimen- FIG. 2. The orbits of the 3D hydrogen molecule with
sional H, molecule. In the system with two degrees of free-=—1.0 andR=2.0. The dots represent the nuclei. TBga orbit
dom it is possible to find a great number of orbits systematiis shown in(a) and (b), By, in (c) and(d), Lp,a in (e) and (f),
cally, although it is practically impossible to find them for Ly b in (g and(h), andL,,b" in (i) and(j). (), (c), (€), (9), and(i)
higher degrees of freedom. Some insight about the orbits capresent the Cartesian space coordinates landd), (f), (h), and
be important in finding them, as in the Bohr and Langmuir(j) refer to the Cartesian momentum coordinates.
orbits found for H molecule.

Bohr proposed that the valence electréoster electrons  make the first quantization of the,Hholecule. Bohr's other
were located on a ring around the internuclear 48iga  orbit is the By,b. It is the planetary movement defined by

orbit; see Fig. Jrepresenting the chemical bofiti2,6]. The  Pauli [3]. This orbit is not an exact ellipse, like the one
value of the chemical binding energye{ 2E,) of the presented in Fig. @). In the Cartesian momentum coordi-
ground staterf=1) agrees within 17% in relation to Lang- nates[Fig. 2(d)], it is possible to see the inflections caused
muir's experimental valu¢2], whereE is the total energy by interelectronic repulsion in maximum approximation.
and E, is the energy of the hydrogen atom in the ground More complicated features can be found in Langmuir or-
state. In relation to modern measurements or quantum nibits (LHza’ |_H2b, and LHZb’), The LHza orbit is shown in

merical calculations this error is around 6% for total energyrigs. Fe) and af) for 3D Cartesian coordinate space and

41% in relation to chemical binding energy, and 21% formomentum, respectively. In this orbit the angular momentum
geometry. This is an acceptable result for the simple modek exiremely variable. The “collision” of electrons is shown

that describes a complex system. The orbits that appear ig Fig. 2(). This “collision” appears in Fig. &) as a cross
Fig. 1 for the H system are described in more details below;, (0,0 momentum coordinates. Similarly, the, b and
1 . L 2

and in Ref[6]. LHZb’ orbits have the same behavior. The Cartesian space

The angular momentum for tk@Hza orbit is constant as ) ) )
shown in Figs. &) and Zb) for 3D Cartesian space and and momentum coordinates for thﬂzb orbit are shown in

momentum coordinates, respectively. Bohr made the anguldrids. 49) and 2h), respectively. Thé.y b" orbitis shown in
momentum quantization of this particular orbit trying to Fig. 2(i). Similar features of the interelectronic repulsion of
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the Bsz orbit in momentum coordinates can be seen in the
Lsz' orbit presented in Fig. (®. Figures 2a)-2(j) were
made using the complete Hamiltonidkq. (3)] with Eg
=—1.0 andR=2.0, whereE,, is the electronic energy.

The stabilities of the symmetric orbits were studied with
the effective Hamiltonian with three degrees of freedom.
More details about stabilitiestability angle and Lyapunov
exponenk of these orbits can be found in R¢6].

The effective Hamiltonian of the three degrees of freedom—
for neighborhood trajectories deHza and Bsz orbits in

a
confocal elliptic coordinates is given by Y

4
He= sz { (- 1)Pi+(1— n»)P?
el R2(§2_772)[(§ ) £ ( 7]) 7
+(1+ l)PZ] 5t 2 (6)
£-1 1-7°] ¢ R(&-7) Ry
where R;=R(&2+ 2~ 1)1 ¢=¢1=6&, n=m=—n,, et 0
Qo= Q1= T, Pg:Pglngz, P”:P”]_:_Pﬂg’ and P<P z(a.u.)

=P, =P,,. The symmetric neighborhood of these symmet-

ric orbits is defined by the signals which appear in variables. FIG. 3. The level curves of the hyperbolic point in space coor-
The effective Hamiltonian for Langmuir orbits and their dinates for theB,; a orbit with R=2.0. The ordinate belongs to the

neighborhoods are similar to the E&). For theLHza orbit, internuclear axigunstable displacemenand the abscissa belongs

Ry= R[(§2— 1)(1—- 772)Sin2(<p)]1/2, E1=&, Mm=7, @ to the orbital plandstable displacementEach level corresponds to

— — - — 5% of AE.
—¢1=2¢, P =P, P, =P, andP, =—P, . For the 0

Lub orbit, Rip;=RE| 7], §1=&, m=—72, ¢2—¢1=0, _ o _ _
P.=P. P.=—P_. andP. =P_ . Finallv. fortheL, b’  mMately over a section of an ellipsoidiflat ring” ). In this

T & Tm T L2 v H2 case, the Poincamap is “fuzzy” only for a torus far from
orbit, Rp=R[(§°=1)(1-7)]"" &i=&, m=mn2, ¢2 the orbit.

_(’Dlh_ ™ Pe,=Pe, P”l_P72 andP,, =P, ' o “Washer” trajectories are obtained if the electrons are
T e_Bsz’ LHgb’ a_ndLsz Or?'ts are margina ySt"’_‘b €N Jimited to the orbital plane of thé,, a orbit, but not re-
trlle ammu:hlazl ‘Xrei“o'ﬁfl cin(;y?erm)gtﬁnly sytmm?tmt:t(:]l_s- stricted to a circumferencéransversal section of the ellip-
placement. FOR¢= @y~ @170 (Or @) the System lost this §0id. The Poincarenap is similar to the integrable system,

stability. Other important asymmetries can also be included. he other d d . isited with thi
in the H, studies, e.g., to considér # &,, | 71| #| 7,|, etc. since the other degree of freg Om IS not visited with this
' ' 2> 171 2 particular initial condition. This Poincameap is presented in

The symmetric orbit can change its stability I - ) .
(stable=unstable) when the trajectory crosses a hyperbolic!i% 14.16S)|m|lar maps are obtained for unstable regiéiy (

point in the phase space. The hyperbolic point in the space L . - . o
coordinate for thé,,.a orbit is shown in Fig. 3 including the | "€ combination of the “flat ring” and “washer” trajec-

. 2 . . tories gives the “ring” trajectories, and the related Poincare
centrifugal term. In this case, the trajectories escape from thr(?1 i mpletely “fuzzv.” The “ring” traiectories far
z direction, i.e., perpendicular to the orbital plaastable ap IS compietely ‘uzzy.” 1he ‘ring" trajectonies 1a
direction. The other direction is stable. from the BHza orbit suffer autoionizatiofopen torug The

This hyperbolic point was found with the Hamiltonian Li,a orbit presents “flat ring” and “washer” trajectories,
with three degrees of freedof&q. (6)], as were the stability similarly to theBHza orbit.
angles and Lyapunov exponents. There are three hyperbolic
points for theLHza orbit. The presence of these points modi-

fies qualitatively the dynamics of the system. For example, in . )

an axial H system(one dimensionalthese points are related ~ When theBy a andL a orbits are stable for symmetric

to ionic resonance. displacement, the correlated unrestricted four-body problem
[Eq. (1)] can also be stable. The neighborhoods ofBiea

and Lya orbits without fixed nuclei are presented in Figs.

5(a) and 8b). These trajectories correspond Ey,,=—0.5
Some neighboring trajectories of the orbits that appear iind initial Eq=—1. The neighborhood of these orbits is
Fig. 1 have been calculated with the complete 8. “Flat  similar to the restricted four-body problem discussed before.
ring” trajectories can be obtained if the electrons are notrhe nuclei oscillate like the shape of the sine function, while
limited to the orbital plane of thd, a orbit, considering the electrons orbit around the internuclear axis. The period of
particular initial conditions. These electrons run approxi-the electronic orbit is about 600 times smaller than that of the

C. Unrestricted four-body

B. Neighborhood of some symmetric orbits
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FIG. 4. Poincaranap (p,=0) around theBHza orbit. The initial conditions of symmetric trajectories atg=£,=2.0, n,= 1,=0.0,
¢2—¢@1=m, Py =P,=P, =P, =00, -10<P, =P, <1.0, R=2%(3°-3"9), and E=—(3¥*~1)%2* (the values ofR and E are

given by the Bohr quantization results of tBﬁZa orbit).

nucleus. These studies can also add some knowledge to tleéectronic coordinates differ in signals and module. The fun-
stability work of the hydrogenlike moleculd.7]. damental orbit for asymmetric pendulum is presented in Fig.
6. There are no pendulum trajectories in atomic systems

D. Pauli’s orbits (Wannier orbi} since they are spherically symmetric.

Some orbits connected to Pauli's work for,H[3] are
discussed.

(a) Satellite trajectory—the electron moves around one
proton, and the trajectories are limited between an ellipse
and a hyperbola;

(b) Planet trajectory—the electron moves simultaneously
around two protons, and these trajectories are limited be-
tween two ellipses;

(c) Leminiscat trajectory—similar to the previous case.
The difference is that the trajectories are not limited between
two ellipses, but describe leminiscat trajectories with shape
of " ",

The electronic movements in the, ldystem are a combi-
nation of two trajectories above, since in this case two elec-
trons are presented. The combinations of the different trajec-
tories renders the system unstable due to autoionization 1
caused by the interaction of the electrons. Bigb, L, b,
and LHZb’ orbits can be seen as a combination of two plan-

etary symmetric movements; in this particular case, the elec- 2
trons are strongly correlated.

y(a.u.)

E. One-dimensional trajectories -1
Trajectories in one dimension can also be found. b 0 @‘@
(a) Pendulum trajectorieor H," [3])—the two electrons 2(a.u,) 1 "

oscillate along the middle axigerpendicular to the internu-
clear axig between the two protons. The oscillation may be FIG. 5. The neighborhood of the unrestricted four-bdglya

symmetric or asymmetri¢chaotig. In the latter case, the orbit in (a) and Ly,a in (b).
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Puy(an)

|z2|(a.u.)

Py(au)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 B
|z1](a.u.) o
FIG. 6. Fundamental asymmetric pendulum orbit for initial con- ¢
ditionsx; =2z,=0, x,=1.5, andz,=0; all momentum are zero, and '2'920_0 0.0 xlaw) 200

Eq= —2.44 andR=2.0. )
FIG. 7. Poincaranaps ¢,= —R/2) with R=2.0 for (a) ZeeZ

. . i ) . configuration with initial conditionsz; = —2,=0.5 andP, =P,

_ The effective Ha_mlltoman forzthe sl%mmetnc pendulum is —1.82574 E,= —1.00); (b) ZeZeconfiguration with initial con-

given by Eq.(6) with Ryp=R(£°—1)™, &1=&2, m=72  gitions 2,=5.0, ,=—0.5, andP, =P, =0.0 (Ex=—2.90); (C)

=0, ¢o—¢1=m, P, =P, P, =P, =0,andP, =P. eZZeconfiguration with initial cohditioznszl=5.0,22= —2.5, and
(b) Axial trajectories—the electrons are in the internu-p, =P,,=0.0 Eo=—1.24).

clear axis. Four distinct combinations are possible because '

there are two electrons and two protons, which divide théh€ two protons, can be studied using a dipole approxima-
internuclear axis into three regions. tion, like the FPA for He atoni18]. The three other combi-

These four distinct combinations can be nanezize ~ Nations ip_or:e _dir?ensio(Ta)hdal) shovx;_ chac;_tic behavior _flor .
Zeez Zeze andzZeeconsidering he o nucled) an  SMITENE efeclores, Theee confguratons ae simiar to
the two electronsd). The eZZeconfiguration has the elec- 9 : p
trons in two outer regions of the molecule, and theeZ one electron over one nucleus, —~ R/2) were calculated

X . - ’ for these three axial configurations. Figur@)7shows the
configuration has the electrons inside the molecule. Th

) ) e ap foreZZeconfiguration, Fig. ) shows theZeZecon-
ZeZe (or eZe2 configuration has one electron inside andfigupration, and Fig.g(k) shows fqheZeeZconfiguration. The

another outside the molecule. TEZ ee(or eeZ2 configu-  reqylarized coordinates are shown in these figures, as long as
ration has the two electrons in the same outer region of thghe Cartesian momentum coordinates diverge over the pro-
molecule. This last configuration is very similar to the “fro- tgn.
zen planetary atom’(FPA) of the helium aton{9,10]. The near-collinear intrashell resonances for He system are
In the case of Hin one dimension a FPA configuration associated with an asymmetric stretchlike motion of the elec-
can be found. The Poincaraap of this FPA configuration tron pair. The axial and pendulum configurations are prob-
shows tori, which represents the intermediate case betweetbly important to describe the similar resonances in the H
He and the negative hydrogen ion {H Calculations of sta- system. TheeZZe configuration is very similar to that of
bility indexes for the H system in four degrees of freedom eZe for He [9]. This configuration can be important to de-
(with R=2) show unstable behavior of the FPA orbit. Thesescribe the Rydberg molecular state with atomic character. On
previous calculations give,,=0.3 and \,=0.4 for E the other hand, th&eeZ configuration can describe states
=—1.0, where\, and \, are the Lyapunov exponents for With molecular character, since interaction between the elec-
radial and angular motion, respectively. The FPA configuralrons is strong(the electron-exchange procgs3he ZeZe
tion for the H, system in two dimensions is unstable since configuration can be .con5|dered an .|ntermed|ate case, and the
the inner electron blinds the nearby proton totally, and the?@nhdulum configuration can be similar to thatz#eZ The
outer electron is attracted by the other proton on the oppositeS€ Of @symmetric orbits in one dimension, similarly to the
side of the molecule. The configuration assumed by the mol€ atom[19], can be can|d(_ered in the study of Bystem,
ecule is the inner electron orbiting in a satellite trajectorybUt here only symmetric orbits have been used.
around one proton and the outer electron orbiting in a planet
trajectory around the set consisting of the other proton and
the satellite system. This configuration, as well as one with Important points may be discussed in relation to the regu-
each electron orbiting in different planet trajectories aroundarized and smoothed potentigqg. (5)] for 1D system with

F. Regularized and smoothed potential
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two or more electrons. The procedure of regularization modi- 2
fies the 1D Hamiltonian. The modification is the addition of
a centrifugal barrier in the singularities. For example, the
canonical transformation@?=x) of the regularization of
the hydrogen atorfin one dimensiopchanges the electronic
coordinate x) by the harmonic-oscillator coordinat®] be-
comingx=0. This modification restricts the electron to oc-
cupying only the positive “side” of the H in one dimension.
This is interpreted as addition of the centrifugal barrier for —~ |
parabolic trajectories in one dimension wik- 1. E 0
This modification does not change the physics of the H &
atom, since H has a symmetric plane containing the barrier,
and the variablex appears a$x| in the correct 1D Hamil-
tonian of the H atom. Whether or not the barrier is added
changes the He atonttwo-electron systejn completely -1
[9,10.
The procedure of regularization does not change the
Hamiltonian for the H* (one-electronsystem; it just keeps

A
1y

the outer and inner regions separated, since the potentials a NN Wi AN

b

singular. Similarly, the physical modifications of the He -2
atom are also observed in the Bystem in one dimension.

The presence or absence of the centrifugal barrier is im-
portant in 1D movements. Th&ee and eZe configurations FIG. 8. Smoothed potential energy for the Bystem in one
are different in the He atom, since ti@ee configuration is  dimension. Each level corresponds to 2.5%Ad, R=2.0, ands
classically stable whereas tleZ e configuration is unstable =1.0.

[9]. The(smoothedl potential without centrifugal barrier can-
not be similar to the potential with barri€t0], because the gular potentials. The Hand He potentials coincide in the
latter links theZee andeZe configurations. R—O0 limit.

The 1D potential with barrier is used for high-eccentricity = The other configuration&ZeZeor eZeZandZee2 are
orbits in the free atom and for the FPA in the radial variable exclusive of the Hsystem. TheZeeZconfiguration shows a
since the relative angle is zero most of the tirh6]. The 1D  maximum in (0,0) coordinates that represents the electron-
smoothed potential(without barriej is used when the electron smoothed collision. This colliside, =z, diagona)
nucleus exercises just a perturbation in the electronic movepresents two minimumghyperbolic point near protons
ments[20]. [triple collisions or ionic resonance (HH™)]. This triple

The electrons collide with each other and with the nucleicollision was shifted in th&ZeeZ direction because of the
in 1D movements. These collisions rarely occur for highersmoothed procedure. For the exact potenfsahgulay this
dimensions. However, the use of the smoothed potential rezollision appears in€ 1,— 1) and(1,1) coordinates. The two
duces the importance of the collisions, while the smoothegimultaneous electron-proton collisiopsovalent resonance
parameter is an important adjustment factor. (H-H)] appears irZeeZ ZeZeor eZeZ andeZZeas ab-

Briefly, the difference between these potentials occurs fogolute minimumsZeZeor eZeZand eZZe configurations
the two-plus electron system in one dimension. The potenpresent similar features tdeeZ except for the electron-
tials are equivalent for a one-electron systémne or two  electron collision. TheZeeZ configurations can be autoion-
dimensiong and a two-plus electron system in two dimen- jzed with a smoothed potential, but this is impossible with
sions, with the exception of the “role of the Coulomb singu- regularized potential.
larity” [21]. The stability of the axial H system with a Briefly, what is the best potentia(regularized and
smoothed potential without barrier depends on &fgaram-  smoothedl model that represents the twmore) electron
eter[see Eq(5)] and on the four axial configurations, since system in one dimension? Actually the physical system is
this smoothed potential connects these axial trajectories witBD. The system can be reduced to 2D if the angular momen-
different stabilities. The level curves of the smoothed potentum is preserved. The subsequent reduction of the dimension
tial energy is presented in Fig. 8 wik=2.0 andé=1.0 for ~ depends on the studied trajectories of the system. It is nec-
the H, system in one dimension. Each level curve corre-essary to maintain the centrifugal barrier in one dimension
sponds to 5% of th& E(= Einimum— Emaximum» @nd the co-  for higher eccentricity and for some correlated trajectories.
ordinates refer to the position of the electrons. The choice ofhe centrifugal barrier potential appears explicitly in the
6=1.0 (one atomic unijtis related to the quantum average Hamiltonian in curvilinear coordinates. This is reduced in
minimum distance in atomic or molecular syste28]. This  one dimension considering an infinity barrier on the nuclei.
implies that the classical model does not have singular pothis barrier impedes the electron from “falling” into the
tential, like quantum mechanics does. nucleus. The addition of this barrier can be made using the

The connections of the axial trajectories by a smoothedegularization procedure oad hog in the smoothed poten-
potential can be seen in Fig. 8. T ee (or eeZ2 and tial. The smoothed potentiglithout barriey can be recom-
eZZequadrantdFig. 8 appear in the He atom &eeand mended for a nonisolated system when the nuclei are consid-
eZe configurationg 9], respectively, for smoothed and sin- ered a perturbation, e.g., in atoms and molecules in a strong
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electric field[20]. If the interest of the study is to describe 20 . .
generic 2D trajectories and not to represent high eccentricity \
ones, the 1D smoothed potential without barrier is indicated. .
The smoothed parametés) can be considered the other di- 500
mension, approximately. The electron-nucleus and electron- & L
electron collisions are drastically reduced, as in two dimen-
sions. 20 , , a
0.0 2.0 Rlau) 40 6.0
G. Semiclassical quantization 1.0 ) ' '
The actions of the symmetric orbits can be calculated as } \
5 |
SBON=27(n+0 £ 0.0 [~
for Bohr orbits(rotation, and as
i -1.0 — L
SLaNIMUI= 2 7+ (n+ 1/2) 0.0 2.0 R@aw) 40 6.0
1.0 T T T
for Langmuir orbits(libration). Nevertheless, the system in |
three dimensions has other degrees of freedom, and these are ~
added in the actions as 200 =
]
SBON= 2 N+ 0+ (1 + 1/2) + Oy(m+1/2)] R /
\
and 1.0 , ' <
SHNIMUI= 2 7] 1+ 1/24 6,(1 + 1/2) + ,(m+ 1/2)], 0.0 2.0 Rev) 4.0 6.0

where 6 and 6. are the stability anales for symmetric dis- FIG. 9. Bohr-Sommerfeld total energy for several states in func-
o p y ang Y tion of theR for (a) the B, a orbit with 6(E) =0, (b) the By, ;a orbit

placement$l|br§1t|ons) wh]ch belong to the qrbltal plane and with correctd(E): (c) the Ly, a orbit with correctd(E).
to the perpendicular orbital plane, respectively. 2
The vertical spectrum for one orbit, i.e., the eigenvalues
for fixed geometry R) can be obtained by the following 2 i
procedure: the actiofS(n,I,m)(E)] as a function of the ¢(E)(#0) are shown in Figs. (®) and dc), respectively.
quantum numbergn, |, andm) and of the energyE) is  Emin=—0.5606 6=1) for theBy,a orbit with Ryy,=1.270
calculated, while the intersection between the values of th@nd Ep,=—0.9552 6=0) for L, a with Rqy,=0.54. This
energy forS(n,l,m)(E) and for classical calculation of the semiclassical quantization occurs in the stable region for the
action[ S@sSI} E)] (with R fixed) is considered the eigen- By,a orbit [Fig. Ab)], i.e., O(E)#0 and\=0, and\ is the
value (E) of the orbit. Since the bisystem is not scaled t0 | yapunov exponent. The first states for thg,a orbit [Fig.
ﬁ]neer:ggl'l th%fﬁ“22\8,215eieftgeoﬁgpd;ﬁectﬁf;gﬁdbgﬁun (c)] belong to the stable region. The other states occur in an
using th)cla.R scalir?g relation given byg nstable region, but this is no longer important since the
- function S(n,lI,m)(E) practically depends on (for a high
S=S(R/2)*? value ofn). Those results do not satisfactorily describe the
and ground state of the Hmolecule, as expected. The WKB
~ quantization ofB,. b, Ly b, andLy b’ orbits are performed
E=E(2/R). . o 2 2 2 d
- - - in a similar way. The ground state related to these orbits is
The functionS(n,I,m)(E)|r-, and S™YE)|,_, can be very low in energy, making it difficult to obtain the classical
calculated for several values d&® with scaling relation. action numerically. For excited states, Bohr’s orbits present
S(n,I,m)(E) depends on scaling in thé(E), since theE  similar eigenvalues and so do Langmuir’s.
changes wittR and 6 does not depend dR parameterg are The rigorous EBK(Einstein-Brillouin-Kelley quantiza-
the stability anglesS™S“4E) depends completely on the tion of invariant KAM tori around Bohr’s and Langmuir's
scaling relation. The eigenvalues can be found making therbits is not applicable to the Hsystem, since asymmetric
interception of theS(n,I,m)(E)|gr and S™S°YE) |, curves librations are unstable. However, the semiclassical path-
for eachR. integral quantization of nonintegrable Hamiltonian systems
These eigenvalues f@y,a andLy,a orbits are shown in  [22] is applicable. A better semiclassical description can be
Fig. 9 for five first values oh (I=0 andm=0) and several Obtained using the Gutzwiller trace formd22] to calculate
values ofR. The total energy in function dR for By a orbit  the density of levels.

with 8(E)=0 is shown in Fig. €8). The lowest state

The eigenvalues foBHza and Ln,a orbits with correct

=1) presents the minimum E(,,=—1.1005) at Ry, H. Semiglassical path-in.tegrz.al quantization
=1.101. This value is the same as Bohr's result Byra of nonintegrable Hamiltonian systems
orbit quantization [Eni,=—(3*?—1)%/(2*n?) and R The extension of the quantization for most nonintegrable

=2°n%/(3?—3'9)] [1]. The other statesn) obey the same systems is unknown. However, global quantization using the
relations. classical periodic orbits is an alternative.
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The quantization for a nonintegrable system was made by The Gutzwiller formula can be calculated using these
Gutzwiller using the Feymann path integral in the semiclasseven orbits with two degrees of freedom: two for eBgfa
sical approximatior(stationary phaseg22]. The semiclassi-  ang Ly,a orbit and one for eactB, b, Ly, andLyp’
cal density of statedrace formula depends on classical tra- orbit. The related semiclassical density of states in two de-

jectories which start and end at the same point. ThesSrees of freedom foR=2 is presented in Fig. 18). The

trajectorle_s are the periodic _orblts, and they give an OSCIIIafrace formula was extended in order to use orbits with three
tory contribution in the density of states as

degrees of freedom, where some orbimz(b, LHZb, and
T cogj(S /1h—anl2)] Ly b’) have one additional constant of the moti@ngular
dE)=2 — > ;

- o |[detM!-1)1Y4 @) momentum in azimuth directignA similar spectrum for the
two degrees of freedom is obtained considening 0 (m is
The trace formula above sums all repetitioj3 6f the  the azimuth quantum numbeas shown in Fig. 1®). In the
primitive periodic orbits ) with periodT,, actionS, and  abscissa of Fig. 10 one will find{E,) ~** or the effective
Maslov index @, (a,=0 for Bohr orbits ande,=2 for  quantum number Ney), while the ordinate shows the
Langmuir orbitg, M, is the stability matrix. The determinant density of Stzates[d(Eel)] divided by square of the
of the trace formula depends on the fixed point. In two de-Ts,, [d(Ee)/Ts, (Ee)]. The vertical lines in these figures

grees of freedom, it is given as are the quantum eigenvalu@iscussed beloy Some singu-
o ) larities appear in these figures; they are related to the change
—i sinh(jN\/2);  hyperbolic of stability. These changes occur whemnd 6 are zero or 1

(3H)[de(Mi—1)]¥2={ coshjr/2), inverse hyperbolic and the d(.—:‘nomin.a}tor of the trace formula becomes null.
The singularities in Eq=—1.23 ([N=0.90), Eg
=—0.60 (Ne=1.3), andEy=—0.36 (N.=1.7) concerns

where \ is the Lyapunov exponent and is the stability the Ly,a orbit. The smgulgrlty |nEe|——1.1§ (Neﬁ.—0.93)
angle. ForBy b, Ly b, andLy b’ orbits, only elliptic solu- belong to the By,a orbit. The last S|ngula.r_|ty[Ee|
tions are found. The singular spectrum is obtained with al= — 0-95 (Ne=1.02)] appears due to the repetition of the
repetitions of the primitive orbits in the Gutzwiller formula. L, orbit. The dotted curves presented in Fig. 10 are the
The spectrum is smoothed for a finite number of the repetinon-normalized smoothed quantum spectrum divided by
tions, e.g., fixing a maximum periodr{,.,). Tmax Was con- Té a- The smoothed quantum spectrum is given by
sidered as the period of thza orbit (TBHza)' since this 2

sin(jm#), elliptic,

period is longer than the others considered here. Fdr,t@a

orbit it is not necessary to make repetitions, because its pe-
riod (T,_H a) andTBH , are near. The other orbits are summed
2 2

once or twice depending on the rafip/Tg . whereT; is whereE, are the quantum eigenvalues ah8=1#/Tg, .
Za

the period of the orbit considered. The ratif/Tg _ T_he spectra calculated by Gutzwiller. formu_la, presented
) ] . ™2 in Fig. 10, are very smooth since they did not include many

changes according to energy, since the system is not scalggpetitions. The trace formula sums all primitive ordiEs).

to energy. The number of the repetitions is[lVTg, 1. (7)], but in this calculation only the Bohr and Langmuir or-

where InfX] is the entire part of th&. bits were included. These orbits are considered the most im-

The Bsz’ |_H2b, and Lsz' orbits are reduced to two portant symmetric ones, but the symmetric pendulum orbit

degrees of freedom, since the azimuth direction degree {§2n P& important too. . .

marginally stable for these symmetric orbi§. The eigen- The semiclassical calculations take into account some
values of the monodromy matrix are not complex numberéqualltgtlve asp_ects of the grount_j state. These calculations
(loxodromio, i.e., they are imaginargelliptic) or real (hy- descrlbg the eigenvalues of the f!rst states very well, and of
perbolio. These eigenvalues are real numbers for the thref€ €xcited states nedl~1.8 satisfactorily. Unfortunately
degrees of freedorB a and Ly a orbits [6]. Since these the quantum calculation becomes difficult for higs, and

two orbits have two uncouple@wo linearly independent or no more quantum results are shown_. However, the se_miclas—
nonloxodromic eigenvalues pairdegrees of freedortsmall sical prevision can be used to describe thesystem at high
displacements belong to the orbital plane and the

perpendicular-to-orbital planeevery three-degree-of free-

dom orbit can be broken in two different orbits with two . Quantum calculation

degrees. For instance, tBg a andB,, b orbits can be seen  p ap initio quantum calculation was made for fixed ge-
as sections of the respective ellipsoid in three dimensiongmetry (R=2.0). The states calculated are the doubly occu-
The three orbits of the two degrees of freedom obtained fronpied symmetric excited stat¢éBOSES. These states are re-
By, a (two orbits andBy, a (one orbiy describe a symmetric |ated to classical symmetric orbits, since the two electrons
displacement of the ellipsoid in three dimensions. In addi-describe similar classical trajectories and, consequently, the
tion, see the Poincamap (Fig. 4) and the discussions in the quantum numbers are equal, except for spin numbers.
“neighborhood of some symmetric orbits” about the behav- The Schrdinger equation for Fimolecule was calculated

ior around theBHza and LHZa orbits. using thevieLb program[23]. This program uses as an initial

do(E)=(AE J2m) 1) o (E-En)(20E%)
n
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FIG. 10. Thed function is given by Eq(7) with R=2. The vertical lines are the quantum eigenvalues. The dotted curves are the
smoothed quantum spectrui@a) d is calculated in two degrees of freedoth) d is calculated in three degrees.

guess a linear combination of the Cartesian Gaussian atomortant to give an idea about the DOSES.
bases. These atomic bases comprise@p, 4d, 3f, and & The quantum calculation is compared to others in the lit-
atomic functions. The electronic structure was described agrature. The total energyej of the first DOSES was calcu-
the full configuration-interaction level, and, having alated asE=—0.3985[24], E=—0.3969[25], E=—0.402
Hartree-Fock configuration, as the zero-order function.

The DOSES are resonances. This particularity render_s the TABLE I. Total energy E=E,+ 1/R) in a.u. for the H ground
guantum calculation very difficult. The quantum calcula’qonState and DOSES and for,H[5] with R=2.0.
performed here considers the resonance states as discrete
ones, which represent an important limitation to the calcula-  g444e

tion. EHZ-DOSES EH{r

The resonance characteristic of DOSES can be seen in 1o -1.138
Table I. For example, &ﬁ DOSES has energy above that of 103 —0.603 (X Eg*)
the 103 (ground-stateof the H,* system. The b can be 1o} —0.427
considered as a Hsystem with one ionized electrgelec- 1o} —0.168 (AZhH
tron infinity far). All DOSES are inside the ionization series 17 —0.0928
of H,. The limit series correspond to the, Hspectrum(5]. 205 —0.0185
The DOSES calculated are singlet and hE\gesymmetry in 1w, +0.071 (BII])
the D, group. The symmetry of the A doublet states ap- 20 +0.139 (C3y)
pear between parentheses in Table I. The number of the ion- 305 +0.215
ization series (continuun) increases as number of the 202 +0.233

u

DOSES. The quantum calculation made here has been im
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[26], andE= — 0.427(this work. E= —0.09437[25] for the  like the 1w, molecular orbital. These correlations are not

second DOSES can be compared wik —0.0928 (this  accidental; probably the “scars” around some classical orbit

work). appear in eigenfunctions of some excited state or in the wave
The (1ol)(201) state that is not one of the DOSES is function of some set of them.

used to compare with the results in literatue= —0.234 is _

found in this work, while the valu&= —0.2372 was found J. Experimental measure proposal

in Ref.[24], andE= —0.2369 was found in Ref25]. The stableA,?" molecule-iongwhereA,? can be B&**,
Several quantum methods can be applied to calculate thelg,?", Ca?", C,>", N,>7, O,%", etc) can be required for

H, system. The perturbation theory is used for weakly cor-experimental measure of the, HOSES. Since the ground

related electronic movements. For example, the perturbatiostate of these\,2" molecule ions is boundetstable [30]

theory uses the expansion of the interelectronic distancand all DOSES are not bounded. Thg?* molecule ions

(rij), e.g., in series of the Legendre polynomials, to describ&an contain two more nonbinding electrons in the Rydberg

the He atom27]. That expansion given Neumann formula state, which do not interfere with the core. These fiAal

[28], together with the zero-order wave function of thg"H molecules allow for the use of spectroscopy techniques and

molecule ion, can be used to describe thenkblecule. This  not just the collision ones for the measures of the resonance

method probably converges slowly to strong correlated®OSES.

movements such as DOSES, and special treatment such as

Feshbach projection must be done in order to describe the IV. DISCUSSION

resonance states. ) o
The quantum solution of the He system has been obtained S€Veral studies for the Hmolecule were shown in this

transforming the Scfiinger equation into perimetrical co- PaPer. These st_udles are important for a future understanding

ordinateg9,29). However, the loss of spherical symmetry in Of the connection between classical and quantum worlds

the H, system renders the use of this procedure difficult. ¢ the correspondence principlg'to chaotic problems and of
The smoothed semiclassical spectra for thesystem pre- f[he ch_emlcal bond since _the_:zl-d;ystem contains the basic

sented in Fig. 10 try to predict the DOSES eigenvalues or th@grements(two-electron b'”d'r_‘@f‘?r that.

smoothed quantum spectrum, although the quantum eige There are several works in literature on the He atom

values are not good for higher DOSES. If these semiclassicg;?’16’19'27'29 but not on the K molecule[6]. An exten-
calculations are good, the quantum eigenvalue fef, Bo?, sion was made in the He system in order to obtain the H

and 205 states would be lower than the ones calculated insystem, ar!d consequently.sev'eral calculation techniques used
in He studies can be applied in the Blystem.

it:'SNWirli' QF?(;rexﬁrannF;:fr,ntk(]:ZIch),]llgtt?or?gdaf:’:fjh hEI) Oif?g ?grpear The importance of the regularized Hamiltonian and the
eff = d : ] et~ se(mmetric classical orbits and their stabilities were described
semiclassical ones. The semiclassical pgewsmn can then bpartially in Ref.[6]. More complete discussions were made
obtained asq=—0.32 fgr the fourth (&) state andEei o The effective Hamiltonians of the three degrees of free-
= —0.30 for the fifth (2r,) state, if the separation of these 4oy 1o calculate the stability indexes were presented. The
states is similar to that in the quantum calculation. SOm&ejghhorhoods of some symmetric orbits were presented,
semiclassical calculations were performed for each orbit iy ong with some Poincaremaps to show their quasi-
order to correlate the orbit with the DOSES. For the groungptegrable behavior. Unrestricted-four-body symmetric tra-
state the principal contributions are given by Bga and  jectories were described, which can be important in stability
L2 orbits. The first of the DOSES is described mainly by studies of the hydrogenlike molecule or in generic four-body

theLy b orbit and a few of the rest bg,, b andLy p’. For problems. The possibilities of studies of the iolecule in

the other DOSES the most important contribution is given byP"€ dimension for pendulum and axial trajectories were de-

the Ly,a orbit. Another semiclassical calculation is made scribed. The axial bl molecule presents a more complex

with Bohr and Lanamuir orbit ratelvy. showing that th configuration in relation to the He atom. Important calcula-
onrand Langmuir orbits separately, showing that &, , using the symbolic dynamics can be made with this
Langmuir orbits are the most important to describe thes

DOSES fnodel as with the He atof®]. Discussions on the use of the
' regularized and smoothed potential were presented. They are

Correlation between the classical orbit and the shape 9 portant since the 1D models are not generically correct.

thedpro_ltzﬁbllgty'detns!ty of the (rjnf)lecular gré)ltils Cg‘.:‘ also be Some Bohr-Sommerfeld quantizations were performed
made. The trajectories around tB,a andBy b orbits are ¢, yho symmetric orbits, but those calculations were not

similar to probability level curves associated witty mo-  enough to describe the,ldystem. Unfortunately, that system
lecular orbital of the H molecule.,, in the same way, can s not integrable, and can show chaotic behavior and a global
be correlated td-y,a and Ly b’ orbits. For instance, the gsemiclassical quantization must be made. The Gutzwiller
most important contributions of the orbits in the descriptionformula was calculated using the symmetric orbits. That
of the DOSES are given by tHg, b orbit in 102 state(first ~ semiclassical approach showed its importance to describe the

of the DOSE$ and theL ,, a orbit in 172 state(second of nonintegrable and multidimensional, Fholecule with a few
A u

o orbits. Those symmetric classical orbits describe the
the DOSES The shape of thesz orbit [Figs. 1 and fy)] DOSES; other classical orbits can describe other states. Sev-

is just like that of the i, molecular orbital, since they have grg| types of orbits can be used, e.g. 1D orbits and asym-
a nodal plane between the protons. Similarly, thea orbit  metrical ones. Specifically, the correct semiclassical quanti-
[Figs. 1 and 2)] has a nodal plane that contains the protonszation of the DOSES might have been achieved in these
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studies, and the quantum calculation was used to show it. Iatep toward understanding the correspondence principle in
addition, semiclassical calculations predict that #einitio ~ the chemical world that treats essentially nonlinear systems.
guantum calculation must be improved in order to describe
the highly excited DOSES. The improvement of the quantum
calculations to describe resonance states has been shown in
the literaturg24—2§, but is not enough for now. The semi-  The author acknowledges Dr. M. A. M. de Aguiar for
classical approach can also be considered a very importanseful discussions and Dr. F. Machado and Dr. R. Qiisto
method to substitute for quantum calculations when the lattefor providing theMELD codes and the atomic bases, respec-
presents practical problems. The semiclassical prevision caively. Financial support from FAPES#roject Nos. 1995/
be used to describe the,ldystem at highNg. 9563—-8 and 1996/9862)&nd partial infrastructure from

Mainly, this paper described a theoretical study of thethe Instituto de fica “Gleb Wataghin” (UNICAMP) is
nonlinear dynamics of the hydrogen molecule. This is a firstalso acknowledged.
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