
PHYSICAL REVIEW A SEPTEMBER 1998VOLUME 58, NUMBER 3
Nonlinear dynamics of the hydrogen molecule
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The hydrogen molecule (H2) contains the basic ingredients for understanding the chemical bond, even more
so than the hydrogen molecule ion. H2 is studied in the context of nonlinear dynamics. The classical mechanics
of H2 is studied in three dimensions with nine, six, and three degrees of freedom and in one dimension~two
degrees of freedom!. The semiclassical quantization is made using the Bohr-Sommerfeld rules and the
Gutzwiller formula to calculate the eigenvalues of the doubly occupied symmetric excited states of H2. An ab
initio quantum calculation is performed and compared with semiclassical results. The difficulties that appear in
those calculations are discussed, and a proposal of the experimental measure is made.
@S1050-2947~98!05508-5#
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I. INTRODUCTION

Bohr was the first to describe the electronic struct
~chemical bond! from a physical point of view for a hydro
gen molecule (H2) and other molecules@1,2#. Pauli tried to
calculate the energy formation of the hydrogen molecule-
(H2

1) by applying Bohr-Sommerfeld quantization@3#. How-
ever, correct procedures for the quantization were unkno
@4#. With the advent of modern quantum mechanics, it w
possible to calculate correctly the electronic structure
several molecules.

Calculations for one-electron molecules, e.g., H2
1, can be

exactly solved~numerically! @5# by quantum mechanics in
the Born-Oppenheimer approximation. For any molec
with two or more electrons in the same adiabatic approxim
tion, it is not possible to know exactly the quantum solutio
but sometimes it can be known with very high accuracy.
addition, the three-body~or unrestricted four-body! problem
cannot be solved exactly by either quantum or classical th
ries. Nevertheless, the understanding of the electronic st
ture still presents several problems, because it is very d
cult to understand quantum mechanics intuitively. T
electronic structure of the ground state and the first exc
states of the small molecules can be obtained with per
accuracy by quantum mechanics depending on the comp
tional sources. But it is very hard to obtain the quantu
solution to the high excited state by anab initio calculation,
since there are enormous numerical convergence prob
which demand a lot of computational time. Otherwise, li
ited quantum approximations must be used for this propo

Classical mechanics does not describe the electr
structure for quantum systems. However, it is a powe
technique to understand quantum mechanics. Following
old quantum theory, classical mechanics is implemen
~correctly! with some added properties to describe quant
systems. This modified mechanics receives the name
semiclassical theory. It is an approximated theory which
scribes a system with increasing accuracy coupled with
creasing excitation, i.e., when the quantum interference p
nomenon becomes less important.

The semiclassical theory has recently become a very
PRA 581050-2947/98/58~3!/1846~13!/$15.00
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portant technique, because it represents the connection
tween classical and quantum mechanics~the correspondence
principle! for regular or chaotic systems. This connection c
help ‘‘translate’’ quantum mechanics into classical term
The understanding of this connection has a fundamental
portance for the chemical bond@6,7# and for what occurs
with chaos in the quantum world, when the analogous c
sical system is chaotic. To build the semiclassical mecha
of a system, it is necessary to know some classical prope
such as periodic orbits and their magnitudes~period, action,
etc.!.

Classical mechanics can also be used to find adiab
ways to solve the quantum problem. Some classical or
described by several variables can present one variable
changes slowly in relation to the others. In this case, so
adiabatization can be done, and the slow variable can
taken as a parameter. The Born-Oppenheimer adiabatiza
is the best known example of this. This adiabatic quant
calculation describes states close to those described by a
responding classical orbit added by the semiclassical pro
dure. The application in the H2

1 system can be found in
Refs.@3,4,8# for semiclassical quantization. Another examp
is the ‘‘frozen planetary atom’’ for helium@9,10#.

Beyond the importance of giving the first step for th
comprehension of the chemical bond, this study tries to
cover the intuitive vision in the description of chemistry. F
instance, it is necessary to include the electron exchange
tegrals, as it was done for the He atom@11#, in a complete
semiclassical treatment of the chemical bond of the H2. That
intuitive approach will not prevent a future development
quantum calculation, but can strongly influence the direct
toward an understanding of some important chemical pr
erties. The direct or indirect uses of classical mechanics
chemistry can mainly help studies of the excited states
complex systems.

This paper is a continuation and extension of a previo
work on classical mechanics of H2 @6#. Here classical me-
chanics is studied under several approximations and deg
of freedom. There are many discussions about the semic
sical quantization and the quantum calculation. Of cour
the semiclassical methods proposed here are considere
providing an additional, complementary understanding of
1846 © 1998 The American Physical Society
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chemical bond, but they are not an exclusive explanation
it.

The main objective of this paper is not only to develop
semiclassical procedure to describe the high excited sta
but to obtain a description of states with few periodic orb
The H2 system is an extremely complex problem from t
point of view of the three-body problem~or restricted four-
body problem! with six degrees of freedom; until today, t
our knowledge, it has not been worked out. With a fe
simple orbits it is possible to simplify the problem, and th
the comprehension of the chemical bond can be improv
Atomic units are used throughout this paper unless otherw
specified.

II. THEORY AND MODELS

The unrestrict four-body~nine degrees of freedom!
Hamiltonian for H2 in Cartesian coordinates is presented b
low:

HH2
5

1

2m
PR

21
1

2
~P1

21P2
2!2

ZA

ur1Au
2

ZB

ur1Bu
2

ZA

ur2Au
2

ZB

ur2Bu

1
ZAZB

uRu
1

1

ur22r1u
, ~1!
-

i-

d
s

za
T

h

o

or
s-
of

es,
.

d.
se

-

wherem is the reduced mass of the nuclei,R is the internu-
clear position vector,PR is the conjugate nuclear relativ
momentum vector,r i is the ith electron position vector,Pi is
the conjugate electronic momentum vector,r iC(5r i6R/2) is
the ith electron position vector with respect to nucleiC, and
ZC (51, for H2) is the nuclear charge. In Eq.~1!, the mass
polarization term is avoided.

Equation~1! describes a Newtonian system, i.e., it is n
connected to any electrodynamic phenomena. All comme
made here about stabilities are related to Newtonian mo
ments and not to electrodynamic ones. These are not con
ered here, since the ultimate objective is the quantization
the classical mechanics of the H2 system. In the same way
relativistic mechanics was included in neither classical
quantum mechanics. Briefly, this work treats the noninteg
bility and quantization of the Newtonian H2 multidimen-
sional system.

Equation~1! can be reduced considering variableR as a
parameter. In this case, the system is reduced to six deg
of freedom~the restricted four-body problem!.

The Hamiltonian@Eq. ~1!# for adiabatic approximation
can be written in the confocal elliptic coordinates defined
@12#, j i5(r iA1r iB)/R, h i5(r iA2r iB)/R, andw i , wherew
is the azimuthal angle, and
Hel5
2

R2~j1
22h1

2! H ~j1
221!Pj1

2 1~12h1
2!Ph1

2 1S 1

j1
221

1
1

12h1
2D Pw1

2 J 2
2

R

~ZA1ZB!j12~ZA2ZB!h1

~j1
22h1

2!

1
2

R2~j2
22h2

2! H ~j2
221!Pj2

2 1~12h2
2!Ph2

2 1S 1

j2
221

1
1

12h2
2D Pw2

2 J 2
2

R

~ZA1ZB!j22~ZA2ZB!h2

~j2
22h2

2!

1
2

R
$~j1

21h1
221!1~j2

21h2
221!22j1j2h1h222 cos~w12w2!A~j1

221!~12h1
2!~j2

221!~12h2
2!%21/2, ~2!
whereHel is the HH2
adiabatic without the internuclear re

pulsion (ZAZB /R), and the subindices of the variables ind
cate the electrons.

This Hamiltonian@Eq. ~2!# is singular, and is regularize
@13# in order to eliminate the difficulties of the singularitie
which appear in the numerical calculation. The regulari
tion procedure is made by expansion of the phase space.
time (t) that describe the flux of Hamiltonian@Eq. ~2!# and
the energy (E) are considered the canonical variables. T
regularized Hamiltonian is given by

G5 f ~j1 ,h1 ,j2 ,h2!~Hel1Pt!50,

where f (j1 ,h1 ,j2 ,h2)5@(j1
22h1

2)(j2
22h2

2)/(j1
2j2

2)# is a
convenient function that vanishes with the singularities
Eq. ~2!, Hel is the same as in Eq.~2!, andPt[2E. The new
time (t8) is defined byt85 f 21(j1 ,h1 ,j2 ,h2)(t1const), the
singularities are transferred to the time (t8) and the integra-
tion becomes very slow in time (t) near the singularities.

The canonical transformations are necessary to transf
the G into canonical equation. The following variable tran
formations are made:
-
he

e

f

m

~2x i /R!25j i
221,

u i5arccosh i ,

and the generating functions F3(Pj i
,x i)52Pj i

@1

1(2x i /R)2#1/2 andF3(Ph i
,u i)52Ph i

cosui are required to
calculate the conjugate momenta

Px i
5~2/R!2x i Pj i

/@11~2x i /R!2#1/2

and

Pu i
52Ph i

sin u i .

Finally, the regularized Hamiltonian is given by
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G5
1

2

@x2
21~R/2!2 sin2 u2#

@x2
21~R/2!2#

Px1

2 1
1

2

@x1
21~R/2!2 sin2 u1#

@x1
21~R/2!2#

Px2

2 1
1

2

@x2
21~R/2!2 sin2 u2#
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21~R/2!2#@x2
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1
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21~R/2!2#@x2

21~R/2!2#
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2
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2

x1
2 sin2 u1

1
1

2
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2
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G 2
@x2

21~R/2!2 sin2 u2#@~ZA1ZB!Ax1
21~R/2!22~ZA2ZB!~R/2!cosu1#
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21~R/2!2#@x2

21~R/2!2#

2
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H

where

R125$x1
21x2

21~R/2!2~cos2 u11cos2 u2!

22Ax1
21~R/2!2Ax2

21~R/2!2 cosu1 cosu2

22 cos~w12w2!x1x2 sin u1 sin u2%
1/2.

The regularized Hamiltonian is transformed into t
Hamiltonian of the helium atom in spherical coordinates
R50. Equation~3! becomes similar to the pendulum Ham
tonian for one-electron systems~e.g., H2

1) in thex'0 limit.
This Hamiltonian@Eq. ~3!# is important to describe the H2

system completely. However, the one-dimensional~1D! ap-
proximation can be used, since the difficulties of the mu
dimensional calculation are drastically reduced.

The 1D Hamiltonian for H2 is given by

H5 1
2 ~P1

21P2
2!21/uz12R/2u21/uz11R/2u21/uz22R/2u

21/uz21R/2u11/uz12z2u, ~4!

wherePi is the momentum conjugated at positionzi of the
electron. This Hamiltonian@Eq. ~4!# is studied with both
regularized and smoothed potentials. The smoothed po
tials are given by

Vattr.51/@~zi6R/2!21d2#1/2 ~5a!

and

Vrep.51/@~z12z2!21d2#1/2, ~5b!

whereVattr. is the attraction potential between the proton a
electron, andVrep. is the interelectronic potential. The use
the regularized or smoothed potential shows different res
for two ~more!-electron system in the 1D model.

The regularized~1D! model has a centrifugal barrier ove
each nucleus that represents the true barrier in two dim
sions @10#. That barrier implies a parabolic orbit (e51,
wheree is the eccentricity! of the electrons around the nu
clei. In this case, the H2 system divides the space into thre
regions separated by singular potentials. The smoothed
tential ~without barrier! connects the movements of electro
r

-

n-

d

ts

n-

o-

~with enough energy! in these three regions. This connectio
will be discussed in the Sec. III.

The coupled Hamilton equations are obtained from
regularized or smoothed Hamiltonian and integrated num
cally with the Runge-Kutta method of fifth order. The stab
ity angles and the Lyapunov exponents of the periodic or
can be obtained by the Monodromy method@14# as shown.
The periodic orbit~PO! is a periodic solution of the Hamil-
ton equation, and this solution is described by

gPO~T!5gPO~0!,

where g5(q,p) and T is the period of the orbit. The
@g8(0)5gPO1dg8# initial condition is used to evaluate th
neighborhood of the periodic orbit;dg8 is a small displace-
ment around periodic orbit. Using the@g8(0)# in the Hamil-
ton equations for one period, the@g9(T)5gPO1dg9# result
is obtained.

For the small displacement the following linear appro
mation is obtained:

dg95Mdg8 ,

whereM is the linear transformation matrix or monodrom
matrix. The eigenvalues ofM are the stability angles~imagi-
nary numbers! and the Lyapunov exponents~real numbers!
for two degrees of freedom.

III. RESULTS

A. Symmetric orbits and their stabilities

The symmetric orbits can be defined by the followin
coordinates: j15j2 , uh1u5uh2u, ucos(w12w2)u51, Pj1

5Pj2
, uPh1

u5uPh2
u, and uPw1

u5uPw2
u @see Eq.~2!#. It is

possible to find various orbits for the H2 system starting from
some known orbits for He@6,15,16#. A sketch of some orbits
is presented in Fig. 1. Langmuir’s orbits are obtained fro
Bohr’s orbits by making a Bohr-Kramers’ rotation (RBK) of
the orbit of electron 1 over a plane conveniently select
The main difference between the orbits in the He and2
systems is the nonexistence of spherical symmetry in the2.
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In the case of the H2, it is important to consider the system
three dimensions, since Bohr’s and Langmuir orbits are
ferent forRÞ0.

These few orbits which appeared in Fig. 1 are conside
here the most important ones to describe the multidim
sional H2 molecule. In the system with two degrees of fre
dom it is possible to find a great number of orbits system
cally, although it is practically impossible to find them fo
higher degrees of freedom. Some insight about the orbits
be important in finding them, as in the Bohr and Langm
orbits found for H2 molecule.

Bohr proposed that the valence electrons~outer electrons!
were located on a ring around the internuclear axis@BH2

a

orbit; see Fig. 1# representing the chemical bond@1,2,6#. The
value of the chemical binding energy (E22EH) of the
ground state (n51) agrees within 17% in relation to Lang
muir’s experimental value@2#, whereE is the total energy
and EH is the energy of the hydrogen atom in the grou
state. In relation to modern measurements or quantum
merical calculations this error is around 6% for total ener
41% in relation to chemical binding energy, and 21%
geometry. This is an acceptable result for the simple mo
that describes a complex system. The orbits that appea
Fig. 1 for the H2 system are described in more details bel
and in Ref.@6#.

The angular momentum for theBH2
a orbit is constant as

shown in Figs. 2~a! and 2~b! for 3D Cartesian space an
momentum coordinates, respectively. Bohr made the ang
momentum quantization of this particular orbit trying

FIG. 1. Bohr’s and Langmuir’s orbits for the helium atom~He!
and for the hydrogen molecule (H2). Langmuir’s orbits are ob-
tained from Bohr’s orbits by making a Bohr-Kramers rotati
(RB-K)
f-

d
-

-
i-

an
r

u-
,
r
el
in

lar

make the first quantization of the H2 molecule. Bohr’s other
orbit is theBH2

b. It is the planetary movement defined by
Pauli @3#. This orbit is not an exact ellipse, like the one
presented in Fig. 2~c!. In the Cartesian momentum coordi-
nates@Fig. 2~d!#, it is possible to see the inflections caused
by interelectronic repulsion in maximum approximation.

More complicated features can be found in Langmuir or
bits (LH2

a, LH2
b, and LH2

b8). The LH2
a orbit is shown in

Figs. 2~e! and 2~f! for 3D Cartesian coordinate space and
momentum, respectively. In this orbit the angular momentum
is extremely variable. The ‘‘collision’’ of electrons is shown
in Fig. 2~e!. This ‘‘collision’’ appears in Fig. 2~f! as a cross
in ~0,0! momentum coordinates. Similarly, theLH2

b and

LH2
b8 orbits have the same behavior. The Cartesian spac

and momentum coordinates for theLH2
b orbit are shown in

Figs. 2~g! and 2~h!, respectively. TheLH2
b8 orbit is shown in

Fig. 2~i!. Similar features of the interelectronic repulsion of

FIG. 2. The orbits of the 3D hydrogen molecule withE
521.0 andR52.0. The dots represent the nuclei. TheBH2

a orbit
is shown in~a! and ~b!, BH2

b in ~c! and ~d!, LH2
a in ~e! and ~f!,

LH2
b in ~g! and~h!, andLH2

b8 in ~i! and~j!. ~a!, ~c!, ~e!, ~g!, and~i!
represent the Cartesian space coordinates, and~b!, ~d!, ~f!, ~h!, and
~j! refer to the Cartesian momentum coordinates.
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the BH2
b orbit in momentum coordinates can be seen in

LH2
b8 orbit presented in Fig. 2~j!. Figures 2~a!–2~j! were

made using the complete Hamiltonian@Eq. ~3!# with Eel
521.0 andR52.0, whereEel is the electronic energy.

The stabilities of the symmetric orbits were studied w
the effective Hamiltonian with three degrees of freedo
More details about stabilities~stability angle and Lyapunov
exponent! of these orbits can be found in Ref.@6#.

The effective Hamiltonian of the three degrees of freed
for neighborhood trajectories forBH2

a and BH2
b orbits in

confocal elliptic coordinates is given by

Hel5
4

R2~j22h2! H ~j221!Pj
21~12h2!Ph

2

1S 1

j221
1

1

12h2D Pw
2 J 2

8

R

j

~j22h2!
1

1

R12
, ~6!

where R125R(j21h221)1/2, j5j15j2 , h5h152h2 ,
w22w15p, Pj5Pj1

5Pj2
, Ph5Ph1

52Ph2
, and Pw

5Pw1
5Pw2

. The symmetric neighborhood of these symm
ric orbits is defined by the signals which appear in variab

The effective Hamiltonian for Langmuir orbits and the
neighborhoods are similar to the Eq.~6!. For theLH2

a orbit,

R125R@(j221)(12h2)sin2(w)#1/2, j15j2 , h15h2 , w2
2w152w, Pj1

5Pj2
, Ph1

5Ph2
and Pw1

52Pw2
. For the

LH2
b orbit, R125Rjuhu, j15j2 , h152h2 , w22w150,

Pj1
5Pj2

, Ph1
52Ph2

andPw1
5Pw2

. Finally, for theLH2
b8

orbit, R125R@(j221)(12h2)#1/2, j15j2 , h15h2 , w2
2w15p, Pj1

5Pj2
, Ph1

5Ph2
andPw1

5Pw2
.

TheBH2
b, LH2

b, andLH2
b8 orbits are marginally stable in

the azimuthal direction@6#, considering only symmetric dis
placement. ForDw5w22w1Þ0 ~or p! the system lost this
stability. Other important asymmetries can also be includ
in the H2 studies, e.g., to considerj1Þj2 , uh1uÞuh2u, etc.

The symmetric orbit can change its stabili
(stable
unstable) when the trajectory crosses a hyperb
point in the phase space. The hyperbolic point in the sp
coordinate for theBH2

a orbit is shown in Fig. 3 including the
centrifugal term. In this case, the trajectories escape from
z direction, i.e., perpendicular to the orbital plane~unstable
direction!. The other direction is stable.

This hyperbolic point was found with the Hamiltonia
with three degrees of freedom@Eq. ~6!#, as were the stability
angles and Lyapunov exponents. There are three hyperb
points for theLH2

a orbit. The presence of these points mod
fies qualitatively the dynamics of the system. For example
an axial H2 system~one dimensional! these points are relate
to ionic resonance.

B. Neighborhood of some symmetric orbits

Some neighboring trajectories of the orbits that appea
Fig. 1 have been calculated with the complete Eq.~3!. ‘‘Flat
ring’’ trajectories can be obtained if the electrons are
limited to the orbital plane of theBH2

a orbit, considering
particular initial conditions. These electrons run appro
e

.

-
s.

d

ic
ce

e

lic

n

in

t

-

mately over a section of an ellipsoid~‘‘flat ring’’ !. In this
case, the Poincare` map is ‘‘fuzzy’’ only for a torus far from
the orbit.

‘‘Washer’’ trajectories are obtained if the electrons a
limited to the orbital plane of theBH2

a orbit, but not re-

stricted to a circumference~transversal section of the ellip
soid!. The Poincare` map is similar to the integrable system
since the other degree of freedom~h! is not visited with this
particular initial condition. This Poincare` map is presented in
Fig. 4. Similar maps are obtained for unstable region (Eel

,21.16).
The combination of the ‘‘flat ring’’ and ‘‘washer’’ trajec-

tories gives the ‘‘ring’’ trajectories, and the related Poinca`
map is completely ‘‘fuzzy.’’ The ‘‘ring’’ trajectories far
from the BH2

a orbit suffer autoionization~open torus!. The

LH2
a orbit presents ‘‘flat ring’’ and ‘‘washer’’ trajectories

similarly to theBH2
a orbit.

C. Unrestricted four-body

When theBH2
a andLH2

a orbits are stable for symmetri
displacement, the correlated unrestricted four-body prob
@Eq. ~1!# can also be stable. The neighborhoods of theBH2

a

and LH2
a orbits without fixed nuclei are presented in Fig

5~a! and 5~b!. These trajectories correspond toEtot520.5
and initial Eel521. The neighborhood of these orbits
similar to the restricted four-body problem discussed befo
The nuclei oscillate like the shape of the sine function, wh
the electrons orbit around the internuclear axis. The perio
the electronic orbit is about 600 times smaller than that of

FIG. 3. The level curves of the hyperbolic point in space co
dinates for theBH2

a orbit with R52.0. The ordinate belongs to th
internuclear axis~unstable displacement! and the abscissa belong
to the orbital plane~stable displacement!. Each level corresponds to
5% of DE.
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FIG. 4. Poincare` map (w250) around theBH2
a orbit. The initial conditions of symmetric trajectories are:j15j252.0, h15h250.0,

w22w15p, Pj1
5Pj2

5Ph1
5Ph2

50.0, 21.0<Pw1
5Pw2

<1.0, R523/(32231/2), and E52(33/221)2/24 ~the values ofR and E are
given by the Bohr quantization results of theBH2

a orbit!.
o

n
ps

sl
b

e
ee
ap

-
le
je
tio

n
le

-
be

n-
ig.
ms
nucleus. These studies can also add some knowledge t
stability work of the hydrogenlike molecule@17#.

D. Pauli’s orbits

Some orbits connected to Pauli’s work for H2
1 @3# are

discussed.
~a! Satellite trajectory—the electron moves around o

proton, and the trajectories are limited between an elli
and a hyperbola;

~b! Planet trajectory—the electron moves simultaneou
around two protons, and these trajectories are limited
tween two ellipses;

~c! Leminiscat trajectory—similar to the previous cas
The difference is that the trajectories are not limited betw
two ellipses, but describe leminiscat trajectories with sh
of ‘‘ `’’.

The electronic movements in the H2 system are a combi
nation of two trajectories above, since in this case two e
trons are presented. The combinations of the different tra
tories renders the system unstable due to autoioniza
caused by the interaction of the electrons. TheBH2

b, LH2
b,

andLH2
b8 orbits can be seen as a combination of two pla

etary symmetric movements; in this particular case, the e
trons are strongly correlated.

E. One-dimensional trajectories

Trajectories in one dimension can also be found.
~a! Pendulum trajectories~for H2

1 @3#!—the two electrons
oscillate along the middle axis~perpendicular to the internu
clear axis! between the two protons. The oscillation may
symmetric or asymmetric~chaotic!. In the latter case, the
the

e
e

y
e-

.
n
e

c-
c-
n

-
c-

electronic coordinates differ in signals and module. The fu
damental orbit for asymmetric pendulum is presented in F
6. There are no pendulum trajectories in atomic syste
~Wannier orbit! since they are spherically symmetric.

FIG. 5. The neighborhood of the unrestricted four-bodyBH2
a

orbit in ~a! andLH2
a in ~b!.
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1852 PRA 58A. LÓPEZ-CASTILLO
The effective Hamiltonian for the symmetric pendulum
given by Eq. ~6! with R125R(j221)1/2, j15j2 , h15h2
50, w22w15p, Pj1

5Pj2
, Ph1

5Ph2
50, andPw1

5Pw2
.

~b! Axial trajectories—the electrons are in the intern
clear axis. Four distinct combinations are possible beca
there are two electrons and two protons, which divide
internuclear axis into three regions.

These four distinct combinations can be namedeZZe,
ZeeZ, ZeZe, andZZeeconsidering the two nuclei (Z) and
the two electrons (e). TheeZZeconfiguration has the elec
trons in two outer regions of the molecule, and theZeeZ
configuration has the electrons inside the molecule. T
ZeZe ~or eZeZ! configuration has one electron inside a
another outside the molecule. TheZZee~or eeZZ! configu-
ration has the two electrons in the same outer region of
molecule. This last configuration is very similar to the ‘‘fro
zen planetary atom’’~FPA! of the helium atom@9,10#.

In the case of H2 in one dimension a FPA configuratio
can be found. The Poincare` map of this FPA configuration
shows tori, which represents the intermediate case betw
He and the negative hydrogen ion (H2). Calculations of sta-
bility indexes for the H2 system in four degrees of freedo
~with R52! show unstable behavior of the FPA orbit. The
previous calculations givel r50.3 and lu50.4 for Eel
521.0, wherel r and lu are the Lyapunov exponents fo
radial and angular motion, respectively. The FPA configu
tion for the H2 system in two dimensions is unstable sin
the inner electron blinds the nearby proton totally, and
outer electron is attracted by the other proton on the oppo
side of the molecule. The configuration assumed by the m
ecule is the inner electron orbiting in a satellite trajecto
around one proton and the outer electron orbiting in a pla
trajectory around the set consisting of the other proton
the satellite system. This configuration, as well as one w
each electron orbiting in different planet trajectories arou

FIG. 6. Fundamental asymmetric pendulum orbit for initial co
ditionsx15z150, x251.5, andz250; all momentum are zero, an
Eel522.44 andR52.0.
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the two protons, can be studied using a dipole approxim
tion, like the FPA for He atom@18#. The three other combi-
nations in one dimension~axial! show chaotic behavior for
asymmetric trajectories. These configurations are simila
the eZe configuration of He@9#. Some Poincare` maps with
one electron over one nucleus (z252R/2) were calculated
for these three axial configurations. Figure 7~a! shows the
map foreZZeconfiguration, Fig. 7~b! shows theZeZecon-
figuration, and Fig. 7~c! shows theZeeZconfiguration. The
regularized coordinates are shown in these figures, as lon
the Cartesian momentum coordinates diverge over the
ton.

The near-collinear intrashell resonances for He system
associated with an asymmetric stretchlike motion of the e
tron pair. The axial and pendulum configurations are pr
ably important to describe the similar resonances in the2
system. TheeZZe configuration is very similar to that o
eZe for He @9#. This configuration can be important to de
scribe the Rydberg molecular state with atomic character.
the other hand, theZeeZ configuration can describe state
with molecular character, since interaction between the e
trons is strong~the electron-exchange process!. The ZeZe
configuration can be considered an intermediate case, an
pendulum configuration can be similar to that ofZeeZ. The
use of asymmetric orbits in one dimension, similarly to t
He atom@19#, can be considered in the study of H2 system,
but here only symmetric orbits have been used.

F. Regularized and smoothed potential

Important points may be discussed in relation to the re
larized and smoothed potentials@Eq. ~5!# for 1D system with

-

FIG. 7. Poincare` maps (z252R/2) with R52.0 for ~a! ZeeZ
configuration with initial conditionsz152z250.5 and Pz1

5Pz2

51.82574 (Eel521.00); ~b! ZeZeconfiguration with initial con-
ditions z155.0, z2520.5, andPz1

5Pz2
50.0 (Eel522.90); ~c!

eZZeconfiguration with initial conditionsz155.0, z2522.5, and
Pz1

5Pz2
50.0 (Eel521.24).
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PRA 58 1853NONLINEAR DYNAMICS OF THE HYDROGEN MOLECULE
two or more electrons. The procedure of regularization mo
fies the 1D Hamiltonian. The modification is the addition
a centrifugal barrier in the singularities. For example,
canonical transformation (Q25x) of the regularization of
the hydrogen atom~in one dimension! changes the electroni
coordinate (x) by the harmonic-oscillator coordinate (Q) be-
coming x>0. This modification restricts the electron to o
cupying only the positive ‘‘side’’ of the H in one dimension
This is interpreted as addition of the centrifugal barrier
parabolic trajectories in one dimension withe51.

This modification does not change the physics of the
atom, since H has a symmetric plane containing the bar
and the variablex appears asuxu in the correct 1D Hamil-
tonian of the H atom. Whether or not the barrier is add
changes the He atom~two-electron system! completely
@9,10#.

The procedure of regularization does not change
Hamiltonian for the H2

1 ~one-electron! system; it just keeps
the outer and inner regions separated, since the potential
singular. Similarly, the physical modifications of the H
atom are also observed in the H2 system in one dimension.

The presence or absence of the centrifugal barrier is
portant in 1D movements. TheZee andeZe configurations
are different in the He atom, since theZee configuration is
classically stable whereas theeZe configuration is unstable
@9#. The~smoothed! potential without centrifugal barrier can
not be similar to the potential with barrier@10#, because the
latter links theZeeandeZeconfigurations.

The 1D potential with barrier is used for high-eccentric
orbits in the free atom and for the FPA in the radial variab
since the relative angle is zero most of the time@10#. The 1D
smoothed potential~without barrier! is used when the
nucleus exercises just a perturbation in the electronic mo
ments@20#.

The electrons collide with each other and with the nuc
in 1D movements. These collisions rarely occur for high
dimensions. However, the use of the smoothed potentia
duces the importance of the collisions, while the smooth
parameter is an important adjustment factor.

Briefly, the difference between these potentials occurs
the two-plus electron system in one dimension. The pot
tials are equivalent for a one-electron system~one or two
dimensions! and a two-plus electron system in two dime
sions, with the exception of the ‘‘role of the Coulomb sing
larity’’ @21#. The stability of the axial H2 system with a
smoothed potential without barrier depends on thed param-
eter @see Eq.~5!# and on the four axial configurations, sinc
this smoothed potential connects these axial trajectories
different stabilities. The level curves of the smoothed pot
tial energy is presented in Fig. 8 withR52.0 andd51.0 for
the H2 system in one dimension. Each level curve cor
sponds to 5% of theDE(5Eminimum2Emaximum), and the co-
ordinates refer to the position of the electrons. The choice
d51.0 ~one atomic unit! is related to the quantum averag
minimum distance in atomic or molecular systems@20#. This
implies that the classical model does not have singular
tential, like quantum mechanics does.

The connections of the axial trajectories by a smooth
potential can be seen in Fig. 8. TheZZee ~or eeZZ! and
eZZequadrants~Fig. 8! appear in the He atom asZee and
eZe configurations@9#, respectively, for smoothed and sin
i-
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gular potentials. The H2 and He potentials coincide in th
R→0 limit.

The other configurations~ZeZeor eZeZand ZeeZ! are
exclusive of the H2 system. TheZeeZconfiguration shows a
maximum in ~0,0! coordinates that represents the electro
electron smoothed collision. This collision~z15z2 diagonal!
presents two minimums~hyperbolic point! near protons
@triple collisions or ionic resonance (H2-H1)#. This triple
collision was shifted in theZeeZ direction because of the
smoothed procedure. For the exact potential~singular! this
collision appears in (21,21) and~1,1! coordinates. The two
simultaneous electron-proton collisions@covalent resonance
(H-H)# appears inZeeZ, ZeZeor eZeZ, andeZZeas ab-
solute minimums.ZeZeor eZeZand eZZeconfigurations
present similar features toZeeZ except for the electron-
electron collision. TheZeeZconfigurations can be autoion
ized with a smoothed potential, but this is impossible w
regularized potential.

Briefly, what is the best potential~regularized and
smoothed! model that represents the two-~more-! electron
system in one dimension? Actually the physical system
3D. The system can be reduced to 2D if the angular mom
tum is preserved. The subsequent reduction of the dimen
depends on the studied trajectories of the system. It is n
essary to maintain the centrifugal barrier in one dimens
for higher eccentricity and for some correlated trajectori
The centrifugal barrier potential appears explicitly in t
Hamiltonian in curvilinear coordinates. This is reduced
one dimension considering an infinity barrier on the nuc
This barrier impedes the electron from ‘‘falling’’ into th
nucleus. The addition of this barrier can be made using
regularization procedure or,ad hoc, in the smoothed poten
tial. The smoothed potential~without barrier! can be recom-
mended for a nonisolated system when the nuclei are con
ered a perturbation, e.g., in atoms and molecules in a str

FIG. 8. Smoothed potential energy for the H2 system in one
dimension. Each level corresponds to 2.5% ofDE, R52.0, andd
51.0.
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1854 PRA 58A. LÓPEZ-CASTILLO
electric field@20#. If the interest of the study is to describ
generic 2D trajectories and not to represent high eccentr
ones, the 1D smoothed potential without barrier is indicat
The smoothed parameter~d! can be considered the other d
mension, approximately. The electron-nucleus and elect
electron collisions are drastically reduced, as in two dim
sions.

G. Semiclassical quantization

The actions of the symmetric orbits can be calculated

SBohr52p~n10!

for Bohr orbits~rotation!, and as

SLangmuir52p~n11/2!

for Langmuir orbits~libration!. Nevertheless, the system
three dimensions has other degrees of freedom, and thes
added in the actions as

SBohr52p@n101uo~ l 11/2!1up~m11/2!#

and

SLangmuir52p@n11/21uo~ l 11/2!1up~m11/2!#,

whereuo andup are the stability angles for symmetric di
placements~librations! which belong to the orbital plane an
to the perpendicular orbital plane, respectively.

The vertical spectrum for one orbit, i.e., the eigenvalu
for fixed geometry (R) can be obtained by the following
procedure: the action@S(n,l ,m)(E)# as a function of the
quantum numbers~n, l, and m! and of the energy (E) is
calculated, while the intersection between the values of
energy forS(n,l ,m)(E) and for classical calculation of th
action @Sclassical(E)# ~with R fixed! is considered the eigen
value (En) of the orbit. Since the H2 system is not scaled to
energy, the relationship betweenE and S is calculated nu-
merically. The eigenvalues for other geometries can be fo
using theR scaling relation given by

S5S̃~R/2!1/2

and

E5Ẽ~2/R!.

The functionS̃(n,l ,m)(Ẽ)uR52 and S̃classical(Ẽ)uR52 can be
calculated for several values ofR with scaling relation.
S(n,l ,m)(E) depends on scaling in theu(E), since theE
changes withR andu does not depend onR parameter,u are
the stability angles.Sclassical(E) depends completely on th
scaling relation. The eigenvalues can be found making
interception of theS(n,l ,m)(E)uR and Sclassical(E)uR curves
for eachR.

These eigenvalues forBH2
a andLH2

a orbits are shown in

Fig. 9 for five first values ofn ~l 50 andm50! and several
values ofR. The total energy in function ofR for BH2

a orbit

with u(E)50 is shown in Fig. 9~a!. The lowest state (n
51) presents the minimum (Emin521.1005) at Rmin
51.101. This value is the same as Bohr’s result forBH2

a

orbit quantization @Emin52(33/221)2/(24n2) and Rmin
523n2/(32231/2)] @1#. The other states (n) obey the same
relations.
ty
.

n-
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s
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The eigenvalues forBH2
a and LH2

a orbits with correct

u(E)(Þ0) are shown in Figs. 9~b! and 9~c!, respectively.
Emin520.5606 (n51) for theBH2

a orbit with Rmin51.270

and Emin520.9552 (n50) for LH2
a with Rmin50.54. This

semiclassical quantization occurs in the stable region for
BH2

a orbit @Fig. 9~b!#, i.e., u(E)Þ0 andl50, andl is the

Lyapunov exponent. The first states for theLH2
a orbit @Fig.

9~c!# belong to the stable region. The other states occur in
unstable region, but this is no longer important since
function S(n,l ,m)(E) practically depends onn ~for a high
value of n!. Those results do not satisfactorily describe t
ground state of the H2 molecule, as expected. The WK
quantization ofBH2

b, LH2
b, andLH2

b8 orbits are performed
in a similar way. The ground state related to these orbit
very low in energy, making it difficult to obtain the classic
action numerically. For excited states, Bohr’s orbits pres
similar eigenvalues and so do Langmuir’s.

The rigorous EBK~Einstein-Brillouin-Keller! quantiza-
tion of invariant KAM tori around Bohr’s and Langmuir’s
orbits is not applicable to the H2 system, since asymmetri
librations are unstable. However, the semiclassical pa
integral quantization of nonintegrable Hamiltonian syste
@22# is applicable. A better semiclassical description can
obtained using the Gutzwiller trace formula@22# to calculate
the density of levels.

H. Semiclassical path-integral quantization
of nonintegrable Hamiltonian systems

The extension of the quantization for most nonintegra
systems is unknown. However, global quantization using
classical periodic orbits is an alternative.

FIG. 9. Bohr-Sommerfeld total energy for several states in fu
tion of theR for ~a! theBH2

a orbit with u(E)50, ~b! theBH2
a orbit

with correctu(E); ~c! the LH2
a orbit with correctu(E).
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PRA 58 1855NONLINEAR DYNAMICS OF THE HYDROGEN MOLECULE
The quantization for a nonintegrable system was made
Gutzwiller using the Feymann path integral in the semicl
sical approximation~stationary phase! @22#. The semiclassi-
cal density of states~trace formula! depends on classical tra
jectories which start and end at the same point. Th
trajectories are the periodic orbits, and they give an osc
tory contribution in the density of states as

d~E!5(
r

Tr

p\ (
j Þ0

cos@ j ~Sr /\2ap/2!#

u@det~M r
j 21!#1/2u

. ~7!

The trace formula above sums all repetitions (j ) of the
primitive periodic orbits (r ) with period Tr , actionSr and
Maslov index a r (a r50 for Bohr orbits anda r52 for
Langmuir orbits!, Mr is the stability matrix. The determinan
of the trace formula depends on the fixed point. In two d
grees of freedom, it is given as

~ 1
2 !@det~M r

j 21!#1/25H 2 i sinh~ j l/2!; hyperbolic

cosh~ j l/2!, inverse hyperbolic

sin~ j pu!, elliptic,

where l is the Lyapunov exponent andu is the stability
angle. ForBH2

b, LH2
b, andLH2

b8 orbits, only elliptic solu-
tions are found. The singular spectrum is obtained with
repetitions of the primitive orbits in the Gutzwiller formula
The spectrum is smoothed for a finite number of the rep
tions, e.g., fixing a maximum period (Tmax). Tmax was con-
sidered as the period of theBH2

a orbit (TBH2a
), since this

period is longer than the others considered here. For theLH2
a

orbit it is not necessary to make repetitions, because its
riod (TLH2a

) andTBH2a
are near. The other orbits are summ

once or twice depending on the ratioTi /TBH2a
, whereTi is

the period of the orbit considered. The ratioTi /TBH2a

changes according to energy, since the system is not sc
to energy. The number of the repetitions is Int@Ti /TBH2a

#,

where Int@X# is the entire part of theX.
The BH2

b, LH2
b, and LH2

b8 orbits are reduced to two
degrees of freedom, since the azimuth direction degre
marginally stable for these symmetric orbits@6#. The eigen-
values of the monodromy matrix are not complex numb
~loxodromic!, i.e., they are imaginary~elliptic! or real ~hy-
perbolic!. These eigenvalues are real numbers for the th
degrees of freedomBH2

a and LH2
a orbits @6#. Since these

two orbits have two uncoupled~two linearly independent o
nonloxodromic eigenvalues pairs! degrees of freedom~small
displacements belong to the orbital plane and
perpendicular-to-orbital plane!, every three-degree-of free
dom orbit can be broken in two different orbits with tw
degrees. For instance, theBH2

a andBH2
b orbits can be seen

as sections of the respective ellipsoid in three dimensio
The three orbits of the two degrees of freedom obtained fr
BH2

a ~two orbits! andBH2
a ~one orbit! describe a symmetric

displacement of the ellipsoid in three dimensions. In ad
tion, see the Poincare` map~Fig. 4! and the discussions in th
‘‘neighborhood of some symmetric orbits’’ about the beha
ior around theBH2

a andLH2
a orbits.
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The Gutzwiller formula can be calculated using the
seven orbits with two degrees of freedom: two for eachBH2

a

and LH2
a orbit and one for eachBH2

b, LH2
b, and LH2

b8

orbit. The related semiclassical density of states in two
grees of freedom forR52 is presented in Fig. 10~a!. The
trace formula was extended in order to use orbits with th
degrees of freedom, where some orbits (BH2

b, LH2
b, and

LH2
b8! have one additional constant of the motion~angular

momentum in azimuth direction!. A similar spectrum for the
two degrees of freedom is obtained consideringm50 ~m is
the azimuth quantum number!, as shown in Fig. 10~b!. In the
abscissa of Fig. 10 one will find (2Eel)

21/2 or the effective
quantum number (Neff), while the ordinate shows the
density of states@d(Eel)# divided by square of the
TBH2a

@d(Eel)/TBH2a

2 (Eel)#. The vertical lines in these figure

are the quantum eigenvalues~discussed below!. Some singu-
larities appear in these figures; they are related to the cha
of stability. These changes occur whenl andu are zero or 1
and the denominator of the trace formula becomes null.

The singularities in Eel521.23 (Neff50.90), Eel
520.60 (Neff51.3), andEel520.36 (Neff51.7) concerns
the LH2

a orbit. The singularity inEel
2521.16 (Neff50.93)

belong to the BH2
a orbit. The last singularity @Eel

520.95 (Neff51.02)] appears due to the repetition of th
LH2

b orbit. The dotted curves presented in Fig. 10 are
non-normalized smoothed quantum spectrum divided
TBH2

a
2 . The smoothed quantum spectrum is given by

dQ~E!5~DEA2p!21(
n

e2~E2En!2/~2DE2!,

whereEn are the quantum eigenvalues andDE5\/TBH2a
.

The spectra calculated by Gutzwiller formula, presen
in Fig. 10, are very smooth since they did not include ma
repetitions. The trace formula sums all primitive orbits@Eq.
~7!#, but in this calculation only the Bohr and Langmuir o
bits were included. These orbits are considered the most
portant symmetric ones, but the symmetric pendulum o
can be important too.

The semiclassical calculations take into account so
qualitative aspects of the ground state. These calculat
describe the eigenvalues of the first states very well, and
the excited states nearNeff'1.8 satisfactorily. Unfortunately
the quantum calculation becomes difficult for highNeff , and
no more quantum results are shown. However, the semic
sical prevision can be used to describe the H2 system at high
Neff .

I. Quantum calculation

An ab initio quantum calculation was made for fixed g
ometry (R52.0). The states calculated are the doubly oc
pied symmetric excited states~DOSES!. These states are re
lated to classical symmetric orbits, since the two electro
describe similar classical trajectories and, consequently,
quantum numbers are equal, except for spin numbers.

The Schro¨dinger equation for H2 molecule was calculated
using theMELD program@23#. This program uses as an initia
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FIG. 10. Thed function is given by Eq.~7! with R52. The vertical lines are the quantum eigenvalues. The dotted curves ar
smoothed quantum spectrum.~a! d is calculated in two degrees of freedom.~b! d is calculated in three degrees.
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guess a linear combination of the Cartesian Gaussian ato
bases. These atomic bases comprise 9s, 6p, 4d, 3f , and 2g
atomic functions. The electronic structure was described
the full configuration-interaction level, and, having
Hartree-Fock configuration, as the zero-order function.

The DOSES are resonances. This particularity renders
quantum calculation very difficult. The quantum calculatio
performed here considers the resonance states as dis
ones, which represent an important limitation to the calcu
tion.

The resonance characteristic of DOSES can be see
Table I. For example, 1su

2 DOSES has energy above that
the 1sg

1 ~ground-state! of the H2
1 system. The H2

1 can be
considered as a H2 system with one ionized electron~elec-
tron infinity far!. All DOSES are inside the ionization serie
of H2. The limit series correspond to the H2

1 spectrum@5#.
The DOSES calculated are singlet and haveSg

1 symmetry in
the D`h group. The symmetry of the H2

1 doublet states ap-
pear between parentheses in Table I. The number of the
ization series ~continuum! increases as number of th
DOSES. The quantum calculation made here has been
ic
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he

rete
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m-

portant to give an idea about the DOSES.
The quantum calculation is compared to others in the

erature. The total energy (E) of the first DOSES was calcu
lated asE520.3985 @24#, E520.3969 @25#, E520.402

TABLE I. Total energy (E5Eel11/R) in a.u. for the H2 ground
state and DOSES and for H2

1 @5# with R52.0.

State EH2-DOSES EH2
1

1sg
2 21.138

1sg
1 20.603 (X Sg

1)
1su

2 20.427
1su

1 20.168 (A Su
1)

1pu
2 20.0928

2sg
2 20.0185

1pu
1 10.071 (B Pu

1)
2sg

1 10.139 (C Sg
1)

3sg
2 10.215

2su
2 10.233
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PRA 58 1857NONLINEAR DYNAMICS OF THE HYDROGEN MOLECULE
@26#, andE520.427~this work!. E520.09437@25# for the
second DOSES can be compared withE520.0928 ~this
work!.

The (1su
1)(2su

1) state that is not one of the DOSES
used to compare with the results in literature.E520.234 is
found in this work, while the valueE520.2372 was found
in Ref. @24#, andE520.2369 was found in Ref.@25#.

Several quantum methods can be applied to calculate
H2 system. The perturbation theory is used for weakly c
related electronic movements. For example, the perturba
theory uses the expansion of the interelectronic dista
(r i j ), e.g., in series of the Legendre polynomials, to descr
the He atom@27#. That expansion given Neumann formu
@28#, together with the zero-order wave function of the H2

1

molecule ion, can be used to describe the H2 molecule. This
method probably converges slowly to strong correla
movements such as DOSES, and special treatment suc
Feshbach projection must be done in order to describe
resonance states.

The quantum solution of the He system has been obta
transforming the Schro¨dinger equation into perimetrical co
ordinates@9,29#. However, the loss of spherical symmetry
the H2 system renders the use of this procedure difficult.

The smoothed semiclassical spectra for the H2 system pre-
sented in Fig. 10 try to predict the DOSES eigenvalues or
smoothed quantum spectrum, although the quantum ei
values are not good for higher DOSES. If these semiclass
calculations are good, the quantum eigenvalue for 2sg

2, 3sg
2,

and 2su
2 states would be lower than the ones calculated

this work. For example, the fourth and fifth DOSES app
in Neff'1.9 for quantum calculations, and inNeff'1.8 for
semiclassical ones. The semiclassical prevision can the
obtained asEel520.32 for the fourth (3sg

2) state andEel

520.30 for the fifth (2su
2) state, if the separation of thes

states is similar to that in the quantum calculation. So
semiclassical calculations were performed for each orbi
order to correlate the orbit with the DOSES. For the grou
state the principal contributions are given by theBH2

a and

LH2
a orbits. The first of the DOSES is described mainly

theLH2
b orbit and a few of the rest byBH2

b andLH2
b8. For

the other DOSES the most important contribution is given
the LH2

a orbit. Another semiclassical calculation is ma
with Bohr and Langmuir orbits separately, showing that
Langmuir orbits are the most important to describe th
DOSES.

Correlation between the classical orbit and the shape
the probability density of the molecular orbitals can also
made. The trajectories around theBH2

a andBH2
b orbits are

similar to probability level curves associated withsg mo-
lecular orbital of the H2 molecule.pu , in the same way, can
be correlated toLH2

a and LH2
b8 orbits. For instance, the

most important contributions of the orbits in the descripti
of the DOSES are given by theLH2

b orbit in 1su
2 state~first

of the DOSES! and theLH2
a orbit in 1pu

2 state~second of

the DOSES!. The shape of theLH2
b orbit @Figs. 1 and 2~g!#

is just like that of the 1su molecular orbital, since they hav
a nodal plane between the protons. Similarly, theLH2

a orbit
@Figs. 1 and 2~e!# has a nodal plane that contains the proto
he
-
n
e
e

d
as

he

ed

e
n-
al

n
r

be

e
n
d

y

e
e

of
e

,

like the 1pu molecular orbital. These correlations are n
accidental; probably the ‘‘scars’’ around some classical o
appear in eigenfunctions of some excited state or in the w
function of some set of them.

J. Experimental measure proposal

The stableA2
21 molecule-ions~whereA2

2 can be Be2
21,

Mg2
21, Ca2

21, C2
21, N2

21, O2
21, etc.! can be required for

experimental measure of the H2 DOSES. Since the ground
state of theseA2

21 molecule ions is bounded~stable! @30#
and all DOSES are not bounded. TheA2

21 molecule ions
can contain two more nonbinding electrons in the Rydb
state, which do not interfere with the core. These finalA2
molecules allow for the use of spectroscopy techniques
not just the collision ones for the measures of the resona
DOSES.

IV. DISCUSSION

Several studies for the H2 molecule were shown in this
paper. These studies are important for a future understan
of the connection between classical and quantum wo
~‘‘the correspondence principle’’! to chaotic problems and o
the chemical bond since the H2 system contains the basi
ingredients~two-electron binding! for that.

There are several works in literature on the He at
@9,16,19,27,29#, but not on the H2 molecule@6#. An exten-
sion was made in the He system in order to obtain the2
system, and consequently several calculation techniques
in He studies can be applied in the H2 system.

The importance of the regularized Hamiltonian and t
symmetric classical orbits and their stabilities were descri
partially in Ref. @6#. More complete discussions were ma
here. The effective Hamiltonians of the three degrees of fr
dom to calculate the stability indexes were presented.
neighborhoods of some symmetric orbits were presen
along with some Poincare` maps to show their quasi
integrable behavior. Unrestricted-four-body symmetric t
jectories were described, which can be important in stabi
studies of the hydrogenlike molecule or in generic four-bo
problems. The possibilities of studies of the H2 molecule in
one dimension for pendulum and axial trajectories were
scribed. The axial H2 molecule presents a more comple
configuration in relation to the He atom. Important calcu
tions using the symbolic dynamics can be made with t
model as with the He atom@9#. Discussions on the use of th
regularized and smoothed potential were presented. They
important since the 1D models are not generically correc

Some Bohr-Sommerfeld quantizations were perform
for the symmetric orbits, but those calculations were n
enough to describe the H2 system. Unfortunately, that system
is not integrable, and can show chaotic behavior and a glo
semiclassical quantization must be made. The Gutzwi
formula was calculated using the symmetric orbits. Th
semiclassical approach showed its importance to describe
nonintegrable and multidimensional H2 molecule with a few
orbits. Those symmetric classical orbits describe
DOSES; other classical orbits can describe other states.
eral types of orbits can be used, e.g. 1D orbits and as
metrical ones. Specifically, the correct semiclassical qua
zation of the DOSES might have been achieved in th
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studies, and the quantum calculation was used to show i
addition, semiclassical calculations predict that theab initio
quantum calculation must be improved in order to descr
the highly excited DOSES. The improvement of the quant
calculations to describe resonance states has been sho
the literature@24–26#, but is not enough for now. The sem
classical approach can also be considered a very impo
method to substitute for quantum calculations when the la
presents practical problems. The semiclassical prevision
be used to describe the H2 system at highNeff .

Mainly, this paper described a theoretical study of t
nonlinear dynamics of the hydrogen molecule. This is a fi
R

e

l

In

e

in

nt
er
an

e
t

step toward understanding the correspondence principl
the chemical world that treats essentially nonlinear syste
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