
Chapter 12

Stretch, fold, prune

I.1. Introduction to conjugacy problems for
diffeomorphisms. This is a survey article on the area
of global analysis defined by differentiable dynamical
systems or equivalently the action (differentiable) of a
Lie groupG on a manifoldM. Here Diff(M) is the group
of all diffeomorphisms ofM and a diffeomorphism is a
differentiable map with a differentiable inverse. (. . .) Our
problem is to study the global structure, i.e., all of the
orbits ofM.

—Stephen Smale,Differentiable Dynamical Systems

W   that the Rössler attractor is very thin, but otherwise the
return maps that we found were disquieting – figure 3.6 did notappear
to be a one-to-one map. This apparent loss of invertibility is an artifact

of projection of higher-dimensional return maps onto theirlower-dimensional
subspaces. As the choice of a lower-dimensional subspace isarbitrary, the resulting
snapshots of return maps look rather arbitrary, too. Such observations beg a
question: Does there exist a natural, intrinsic coordinatesystem in which we
should plot a return map?

We shall argue in sect. 12.1 that the answer is yes: The intrinsic coordinates
are given by the stable/unstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediate neighborhood of the
unstable manifold. In chapter 5 we established that Floquetmultipliers of periodic
orbits are (local) dynamical invariants. Here we shall showthat every equilibrium
point and every periodic orbit carries with it stable and unstable manifolds which
provide topologically invariantglobal foliation of the state space. They will
enable us to partition the state space in a dynamically invariant way, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of
trajectories, and separates the admissible and inadmissible itineraries. We illustrate
how this works on Hénon map example 12.3. Determining whichsymbol sequences
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are absent, or ‘pruned’ is a formidable problem when viewed in the state space,
[x1, x2, ..., xd] coordinates. It is equivalent to the problem of determining the
location of all homoclinic tangencies, or all turning points of the Hénon attractor.
They are dense on the attractor, and show no self-similar structure in the state
space coordinates. However, in the ‘danish pastry’ representation of sect. 12.3
(and the ‘pruned danish,’ in American vernacular, of sect. 12.4), the pruning
problem is visualized as crisply as the New York subway map; any itinerary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the
preceding chapter. Skip most of this chapter unless you really need to get into
nitty-gritty details of symbolic dynamics.

fast track:

chapter 13, p. 251

12.1 Going global: stable/unstable manifolds

The complexity of this figure will be striking, and I shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic
tangles,Les méthodes nouvelles de la méchanique céleste

The Jacobian matrixJt transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initialinfinitesimal sphere of

neighboring trajectories into an ellipsoid timet later, as in figure 4.2.
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Nearby trajectories separate exponentially along the unstable directions, approach
each other along the stable directions, and creep along the marginal directions.

The fixed pointq Jacobian matrixJ(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encirclingthe fixed point is

linear in the sense of sect. 4.2.

J

+   x δ

δp

x0

0x +      x

The continuations of the span of the local stable, unstable eigen-directions into
global curvilinear invariant manifolds are called thestable, respectivelyunstable
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manifolds. They consist of all points which march into the fixed point forward,
respectively backward in time

Ws =
{

x ∈ M : f t(x) − xq→ 0 ast → ∞
}

Wu =
{

x ∈ M : f −t(x) − xq→ 0 ast → ∞
}

. (12.1)

Eigenvectorse(i) of the monodromy matrixJ(x) play a special role - on them the
action of the dynamics is the linear multiplication byΛi (for a real eigenvector)
along 1− dimensionalinvariant curveWu,s

(i) or spiral in/out action in a 2-D surface
(for a complex pair). Fort → ±∞ a finite segment onWs

(c), respectivelyWu
(e)

converges to the linearized map eigenvectore(c), respectivelye(e), where(c), (e)

stand respectively for ‘contracting,’ ‘expanding.’ In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

Actual construction of these manifolds is the converse of their definition (12.1):
one starts with an arbitrarily small segment of a fixed point eigenvector and lets
evolution stretch it into a finite segment of the associated manifold. As a periodic
point x on cyclep is a fixed point off Tp(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Considerith expanding eigen-
value, eigenvector pair (Λi , e(i)) computed fromJ = Jp(x) evaluated at a fixed
point x,

J(x)e(i)(x) = Λie(i)(x) , x ∈ Mp , Λi > 1 . (12.2)

Take an infinitesimal eigenvectore(i)(x), ||e(i)(x)|| = ε ≪ 1, and its returnΛie(i)(x)
after one periodTp. Sprinkle the straight interval between [ε,Λiε] ⊂ Wu

(i) with a

large number of pointsx(k), for example equidistantly spaced on logarithmic scale
between lnε and lnΛi + ln ε . The successive returns of these pointsf Tp(x(k)),
f 2Tp(x(k)), · · ·, f mTp(x(k)) trace out the 1d curveWu

(i) within the unstable manifold.
As separations between points tend to grow exponentially, every so often one
needs to interpolate new starting points between the rarified ones. Repeat for
−e(i)(x).

Contracting real and positive Floquet multiplier . Reverse the action of the
map backwards in time. This turns a contracting direction into an expanding one,
tracing out the curvilinear stable manifoldWs

(i) as a continuation ofe(i).

Expanding/contracting real negative Floquet multiplier. As above, but every
even iteratef 2Tp(x(k)), f 4Tp(x(k)), f 6Tp(x(k)) continues in the directione(i), every
odd one in the direction−e(i).

Complex Floquet multiplier pair, expanding/contracting. The complex Floquet
multiplier pair {Λ j ,Λ j+1 = Λ

∗
j } has Floquet exponents (5.9) of formλ( j) = µ( j) ±

iω( j), with the sign ofµ(k j)
, 0 determining whether the linear neighborhood
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Figure 12.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of a
complex eigenvalue pair of an unstable equilibrium
of plane Couette flow, a projection from a 61,506-
dimensional state space ODE truncation of the (∞-
dimensional) Navier-Stokes PDE. (J.F. Gibson, 8
Nov. 2005 blog entry [12.61])

is out / in spiralling. The orthogonal pair of real eigenvectors{Ree( j), Im e( j)}

spans a plane, as in (4.28).T = 2π/ω( j) is the time of one turn of the spiral,
JTRee( j)(x) = |Λ j |Ree( j)(x) . As in the real cases above, sprinkle the straight
interval between [ε, |Λ j |ε] along Ree( j)(x) with a large number of pointsx(k). The
flow will now trace out the 2d invariant manifold as an out/ in spiralling strip.
Two low-dimensional examples are the unstable manifolds ofthe Lorenz flow,
figure 11.8 (a), and the Rössler flow, figure 11.10 (a). For a highly non-trivial
example, see figure 12.1.

The unstable manifolds of a flow aredu-dimensional. Taken together with the
marginally stable direction along the flow, they are rather hard to visualize. A
more insightful visualization is offered by (d−1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see also sect. 3.1.1). Stable,
unstable manifolds for maps are defined by

Ŵs =
{

x ∈ P : Pn(x) − xq→ 0 asn→ ∞
}

Ŵu =
{

x ∈ P : P−n(x) − xq→ 0 asn→ ∞
}

, (12.3)

where P(x) is the (d− 1)-dimensional return map (3.1). In what follows, all
invariant manifoldsWu, Ws will be restricted to their Poincaré sectionsŴu, Ŵs.

Example 12.1 A section at a fixed point with a complex Floquet multiplier pa ir:
(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or
periodic) point xq with a complex Floquet multiplier pair is the plane P specified by the
fixed point (located at the tip of the vector xq) and the eigenvector Im e(k) perpendicular
to the plane. A point x is in the section P if it satisfies the condition

(x− xq) · Im e(k) = 0 . (12.4)

In the neighborhood of xq the spiral out/in motion is in the {Ree(k), Im e(k)} plane, and
thus guaranteed to be cut by the Poincaré section P normal to e(k).

In general the full state space eigenvectors do not lie in a Poincaré section; the
eigenvectorŝe( j) tangent to the section are given by (5.20). Furthermore, while in
the linear neighborhood of fixed pointx the trajectories return with approximate
periodicity Tp, this is not the case for the globally continued manifolds;τ(x), or
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the first return times (3.1) differ, and theŴu
( j) restricted to the Poincaré section is

obtained by continuing trajectories of the points from the full state space curve
Wu

( j) to the sectionP.

For long times the unstable manifolds wander throughout theconnected ergodic
component, and are no more informative than an ergodic trajectory. For example,
the line with equitemporal knots in figure 12.1 starts out on asmoothly curved
neighborhood of the equilibrium, but after a ‘turbulent’ episode decays into an
attractive equilibrium point. The trick is to stop continuing an invariant manifold
while the going is still good.

fast track:

sect. 12.2, p. 232

Learning where to stop is a bit of a technical exercise, the reader might prefer
to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

As the flow is nonlinear, there is no ‘natural’ linear basis torepresent it.
Wistful hopes like ‘POD modes,’ ‘Karhunen-Loève,’ and other linear changes of
bases do not cut it. The invariant manifolds are curved, and their coordinatizations
are of necessity curvilinear, just as the maps of our globe are, but infinitely foliated
and thus much harder to chart.

Let us illustrate this by parameterizing a 1d slice of an unstable manifold by its
arclength. Sprinkle evenly points{x(1), x(2), · · · , x(N−1)} between the equilibrium
point xq = x(0) and pointx = x(N), along the 1d unstable manifold continuation
x(k) ∈ Ŵu

( j) of the unstablêe( j) eigendirection (we shall omit the eigendirection

label ( j) in what follows). Then the arclength from equilibrium pointxq = x(0) to
x = x(N) is given by

s2 = lim
N→∞

N
∑

k=1

gi j dx(k)
i dx(k)

j , dx(k)
i = x(k)

i − x(k−1)
i . (12.5)

For the lack of a better idea (perhaps the dynamically determinedg = JT J would
be a more natural metric?) let us measure arclength in the Euclidian metric,gi j =

δi j , so

s= lim
N→∞

















N
∑

k=1

(

dx(k)
)2
















1/2

. (12.6)

By definition f τ(x)(x) ∈ Ŵu
( j), so f t(x) induces a 1d maps(s0, τ) = s( f τ(x0)(x0)).
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Turning pointsare points on the unstable manifold for which the local unstable
manifold curvature diverges for forward iterates of the map, i.e., points at which
the manifold folds back onto itself arbitrarily sharply. For our purposes, approximate
turning points suffice. The 1d curveŴu

( j) starts out linear atxq, then gently curves
until –under the influence of other unstable equilibria and/or periodic orbits– it
folds back sharply at ‘turning points’ and then nearly retraces itself. This is likely
to happen if there is only one unstable direction, as we saw inthe Rössler attractor
example 11.3, but if there are several, the ‘turning point’ might get stretched out
in the non-leading expanding directions.

The trick is to figure out a goodbase segmentto the nearest turning point
L = [0, sb], and after the foldback assign tos(x, t) > sb the nearest points on the
base segment. If the stable manifold contraction is strong,the 2nd coordinate
connectings(x, t) → s can be neglected. We saw in example 11.3 how this
works. You might, by nature and temperament, take the dark view: Rössler
has helpful properties, namely insanely strong contraction along a 1-dimensional
stable direction, that are not present in real problems, such as turbulence in a plane
Couette flow, and thus the lessons of chapter 11 of no use when it comes to real
plumbing. For this reason, both of the training examples to come, the billiards
and the Hénon map are of Hamiltonian, phase space preserving type, and thus as
far from being insanely contracting as possible. Yet, to a thoughtful reader, they
unfold themselves as pages of a book.

Assign to eachd-dimensional point ˆx ∈ Lq a coordinates = s(x̂) whose
value is the Euclidean arclength (12.5) toxq measured along the 1-dimensionalPq

section of thexq unstable manifold. Next, for a nearby point ˆx0 < Lq determine
the pointx̂1 ∈ Lq which minimizes the Euclidean distance ( ˆx0 − x̂1)2, and assign
arc length coordinate values0 = s(x̂1) to x̂0. In this way, an approximate 1-
dimensional intrinsic coordinate system is built along theunstable manifold. This
parametrization is useful if the non–wandering set is sufficiently thin that its perpendicular
extent can be neglected, with every point on the non–wandering set assigned the
nearest point on the base segmentLq.

Armed with this intrinsic curvilinear coordinate parametrization, we are now
in a position to construct a 1-dimensional model of the dynamics on the non–
wandering set. If ˆxn is thenth Poincaré section of a trajectory in neighborhood of
xq, andsn is the corresponding curvilinear coordinate, thensn+1 = f τn(sn) models
the full state space dynamics ˆxn → x̂n+1. We approximatef (sn) by a smooth,
continuous 1-dimensional mapf : Lq → Lq by taking x̂n ∈ Lq, and assigning to
x̂n+1 the nearest base segment pointsn+1 = s(x̂n+1).

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 232,
about ‘the action (differentiable) of a Lie groupG on a manifoldM,’ time has
come to bring Smale to everyman. If you still remain mystifiedby the end of
this chapter, reading chapter 16 might help; for example, the Liouville operators
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Figure 12.2: Binary labeling of trajectories of the
symmetric 3-disk pinball; a bounce in which the
trajectory returns to the preceding disk is labeled 0, and
a bounce which results in continuation to the third disk
is labeled 1.

form a Lie group of symplectic, or canonical transformations acting on the (p, q)
manifold.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded. An example is a 3-dimensional
invertible flow sketched in figure 11.10 which returns a Poincaré section of the
flow folded into a ‘horseshoe’ (we shall belabor this in figure12.4). We now exercise 12.1

offer two examples of locally unstable but globally bounded flows which return
an initial area stretched and folded into a ‘horseshoe,’ such that the initial area
is intersected at most twice. We shall refer to such mappingswith at most 2n

transverse self-intersections at thenth iteration as theonce-foldingmaps.

The first example is the 3-disk game of pinball figure 11.5, which, for sufficiently
separated disks (see figure 11.6), is an example of a completeSmale horseshoe.
We start by exploiting its symmetry to simplify it, and then partition its state space
by its stable/ unstable manifolds.

Example 12.2 Recoding 3-disk dynamics in binary. (continued from example 11.2) The
A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique, nor necessarily the
smartest one - before proceeding it pays to quotient the symmetries of the dynamics in
order to obtain a more efficient description. We do this in a quick way here, and redo it
in more detail in sect. 12.5.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what
is important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For the 3-
disk game of pinball there are two topologically distinct kinds of collisions, figure 12.2:

exercise 11.1
exercise 12.6

si =

{

0 : pinball returns to the disk it came from
1 : pinball continues to the third disk . (12.7)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces
is automatic. If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences (see table 15.1)
are admissible. exercise 11.2

It is intuitively clear that as we go backward in time (reverse the velocity vector),
we also need increasingly precise specification of x0 = (s0, p0) in order to follow a given
past itinerary. Another way to look at the survivors after two bounces is to plotMs1.s2,
the intersection of M.s2 with the strips Ms1. obtained by time reversal (the velocity
changes sign sinφ → − sinφ). Ms1.s2, figure 12.3 (a), is a ‘rectangle’ of nearby
trajectories which have arrived from disk s1 and are heading for disk s2. (continued
in example 12.6)
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Figure 12.3: The 3-disk game of pinball of
figure 11.5, generated by starting from disk 1,
preceded by disk 2, coded in binary, as in
figure 12.2. (a) StripsMsi. j which have survived
a bounce in the past and will survive a bounce in
the future. (b) Iteration corresponds to the decimal
point shift; for example, all points in the rectangle
[1.01] map into the rectangles [0.10], [0.11] in one
iteration. (a)

si
nØ

1

0

−1
−2.5 0 2.5s

0.0 1.1

0. .01. .1

0.1

1.0

(b)

si
n

θ

s

1.

0.01

0.010.01

0.

0.00

The 3-disk repeller does not really look like a ‘horseshoe;’the ‘fold’ is cut
out of the picture by allowing the pinballs that fly between the disks to fall off the
table and escape. Next example captures the ‘stretch & fold’horseshoe dynamics
of return maps such as Rössler’s, figure 3.5.

Example 12.3 A Hénon repeller complete horseshoe: (continued from example 3.7) Consider
2-dimensional Hénon map exercise 3.5

(xn+1, yn+1) = (1− ax2
n + byn, xn) . (12.8)

If you start with a small ball of initial points centered around the fixed point x0, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
Wu

0 . Iterated backward in time,

(xn−1, yn−1) = (yn,−b−1(1− ay2
n − xn)) , (12.9)

this small ball of initial points traces out the stable manifold Ws
0. Their intersections

enclose the region M. , figure 12.4 (a). Any point outside Ws
0 border of M. escapes

to infinity forward in time, while –by time reversal– any point outside Wu
0 border arrives

from infinity back in paste. In this way the unstable - stable manifolds define topologically,
invariant and optimal initial region M.; all orbits that stay confined for all times are
confined toM. .

The Hénon map models qualitatively the Poincaré section return map of figure 11.10.
For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in sects. 3.3
and 29.1, for b , 0 it is kind of a fattened parabola; by construction, it takes a rectangular
initial area and returns it bent as a horseshoe. Parameter a controls the amount of
stretching, while the parameter b controls the amount of compression of the folded
horseshoe. For definitiveness, fix the parameter values to a = 6, b = −1; the map
is then strongly stretching but area preserving, the furthest away from the strongly
dissipative examples discussed in sect. 11.2. The map is quadratic, so it has 2 fixed
points x0 = f (x0), x1 = f (x1) indicated in figure 12.4 (a). For the parameter values at
hand, they are both unstable.

Iterated one step forward, the regionM. is stretched and folded into a Smale
horseshoe drawn in figure 12.4 (b). Label the two forward intersections f (M.) ∩M. by
Ms., with s ∈ {0, 1}. The horseshoe consists of the two stripsM0.,M1. , and the bent
segment that lies entirely outside the Ws

0 line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.
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Figure 12.4: The Hénon map (12.8) fora =

6, b = −1: fixed point 0 with segments of
its stable, unstable manifoldsWs, Wu, and fixed
point 1. (a) Their intersection bounds the region
M. = 0BCD which contains the non–wandering
setΩ. (b) The intersection of the forward image
f (M.) with M. consists of two (future) strips
M0., M1., with points BCD brought closer to
fixed point 0 by the stable manifold contraction.
(c) The intersection of the forward imagef (M.)
with the backward backwardf −1(M.) is a four-
region cover ofΩ. (d) The intersection of
the twice-folded forward horseshoef 2(M.) with
backward horseshoef −1(M.). (e) The intersection
of f 2(M.) with f −2(M.) is a 16-region cover of
Ω. Iteration yields the complete Smale horseshoe
non–wandering setΩ, i.e., the union of all non-
wandering points off , with every forward fold
intersecting every backward fold. (P. Cvitanović
and Y. Matsuoka)

(a) −1.0 0.0 1.0

−1.0

0.0

1.0

0
W

u

W
s

B

C
D

1

(b) −1.0 0.0 1.0

−1.0

0.0

1.0

1.

0

0.D

B

C

(c)

1.0

0.0

0.1

1.1

(d)
10.0

00.0

00.1

10.1

11.1

11.0

01.0

01.1

(e)

01.10

10.10

00.11

01.01

Iterated one step backwards, the regionM. is again stretched and folded into
a horseshoe, figure 12.4 (c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the
horseshoe bend wander off to infinity as n → −∞, and we are left with the two (past)
stripsM.0,M.1 . Iterating two steps forward we obtain the four stripsM11.,M01.,M00.,M10.,
and iterating backwards we obtain the four strips M.00,M.01,M.11,M.10 transverse to
the forward ones just as for 3-disk pinball game figure 12.2. Iterating three steps forward
we get an 8 strips, and so on ad infinitum. (continued in example 12.4)

What is the significance of the subscript such as.011 which labels theM.011

future strip? The two stripsM.0,M.1 partition the state space into two regions
labeled by the two-letter alphabetA = {0, 1}. S+ = .011 is thefuture itinerary
for all x ∈ M.011. Likewise, for the past strips allx ∈ Ms−m···s−1s0. have thepast
itinerary S- = s−m · · · s−1s0 . Which partition we use to present pictorially the
regions that do not escape inm iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.2) ofM., is the union of all points whose forward
and backward trajectories remain trapped for all time, given by the intersections
of all images and preimages ofM:

Ω =

{

x : x ∈ lim
m,n→∞

f m(M.)
⋂

f −n(M.)
}

. (12.10)

Two important properties of the Smale horseshoe are that it has acomplete
binary symbolic dynamicsand that it isstructurally stable.
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Figure 12.5: Kneading orientation preserving danish
pastry: mimic the horsheshoe dynamics of figure 12.6
by: (1) squash the unit square by factor 1/2, (2) stretch
it by factor 2, and (3) fold the right half back over the
left half.

B

A

A

B

B

A

For acompleteSmale horseshoe every forward foldf n(M) intersects transversally
every backward foldf −m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labeled
by the intersection of its past and future itinerariesS(x) = · · · s−2s−1s0.s1s2 · · ·,
where sn = s if f n(x) ∈ M.s , s∈ {0, 1} andn ∈ Z. remark A.1

The system is said to bestructurally stableif all intersections of forward and
backward iterates ofM remain transverse for sufficiently small perturbationsf →
f + δ of the flow, for example, for slight displacements of the disks in the pinball
problem, or sufficiently small variations of the Hénon map parametersa, b. While section 1.8

structural stability is exceedingly desirable, it is also exceedingly rare. About this,
more later. section 25.2

12.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering symbolic
dynamics, such as a well-separated 3-disk system. Now startmoving the disks
toward each other. At some critical separation a disk will start blocking families
of trajectories traversing the other two disks. The order inwhich trajectories
disappear is determined by their relative ordering in space; the ones closest to the
intervening disk will be pruned first. Determining inadmissible itineraries requires
that we relate the spatial ordering of trajectories to theirtime ordered itineraries. exercise 12.7

So far we have rules that, given a state space partition, generate atemporally
ordered itinerary for a given trajectory. Our next task is the converse: given a
set of itineraries, what is thespatial ordering of corresponding points along the
trajectories? In answering this question we will be aided bySmale’s visualization
of the relation between the topology of a flow and its symbolicdynamics by means
of ‘horseshoes,’ such as figure 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baker’s transformation appropriate
to Hénon type mappings, yields a binary coordinatization of all possible periodic
points.
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Figure 12.6: The dynamics maps two (past) strips
stripsM.0,M.1 into two (future) stripsM0.,M1..
The corners are labeled to aid visualization. Note
that theBCGHstrip is rotated by 180 degrees. (P.
Cvitanović and Y. Matsuoka) (e)
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The symbolic dynamics of once-folding map is given by the danish pastry
transformation. This generates both the longitudinal and transverse alternating
binary tree. The longitudinal coordinate is given by the head of a symbolic
sequence; the transverse coordinate is given by the tail of the symbolic sequence.
The dynamics on this space is given by symbol shift permutations; volume preserving,
with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non–wanderingsets, fatten the
intersection regions until they completely cover a unit square, as in figure 12.7.

We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’ exercise 12.2
exercise 12.3dynamical system as thesymbol square. The symbol square is a topologically

accurate representation of the non–wandering set and serves as a street map for
labeling its pieces. Finite memory ofm steps and finite foresight ofn steps
partitions the symbol square intorectangles[s−m+1 · · · s0.s1s2 · · · sn], such as those
of figure 12.6. In the binary dynamics symbol square the size of such rectangle is
2−m × 2−n; it corresponds to a region of the dynamical state space which contains
all points that share commonn future andm past symbols. This region maps
in a nontrivial way in the state space, but in the symbol square its dynamics is
exceedingly simple; all of its points are mapped by the decimal point shift (11.20)

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (12.11)

Example 12.4 A Hénon repeller subshift: (continued from example 12.3) The
Hénon map acts on the binary partition as a shift map. Figure 12.6 illustrates action
f (M.0) =M0.. The square [01.01] gets mapped into the rectangles σ[01.01]= [10.1] =
{[10.10], [10.11]}, see figure 12.4 (e). Further examples can be gleaned from figure 12.4.

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labeling of the horseshoe strips, and
their relative placement. The symbol square pointsγ(S+) with future itinerary
S+ are constructed by converting the sequence ofsn’s into a binary number by
the algorithm (11.9). This follows by inspection from figure12.9. In order to
understand this relation between the topology of horseshoes and their symbolic
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Figure 12.7: Kneading danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 12.6 (b)
figure 12.4 into a unit square. Also indicated: the
fixed points0, 1 and the 2-cycle points{01,10}. In
the symbol square the dynamics maps rectangles
into rectangles by a decimal point shift. (a) .1.0
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Figure 12.8: Kneading orientation preserving
danish pastry: symbol square representation
of an orientation preserving once-folding map
obtained by fattening the intersections of two
forward iterates/ two backward iterates of Smale
horseshoe into a unit square. ��������������
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dynamics, it might be helpful to backtrace to sect. 11.4 and work through and
understand first the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged;M−1
0

has the same orientation asM, whileM−1
1 has the opposite orientation. We assignexercise 12.4

to an orientation preservingonce-folding map thepast topological coordinate
δ = δ(S-) by the algorithm:

wn−1 =

{

wn if sn = 0
1− wn if sn = 1 , w0 = s0

δ(S-) = 0.w0w−1w−2 . . . =

∞
∑

n=1

w1−n/2
n . (12.12)

Such formulas are best derived by solitary contemplation ofthe action of a folding
map, in the same way we derived the future topological coordinate (11.9).

Figure 12.9: Kneading danish pastry: symbol square
representation of an orientation preserving once-
folding map obtained by fattening the Smale horseshoe
intersections of figure 12.4 (e) into a unit square. Also
indicated: the fixed points0, 1, and the 3-cycle points
{011,110,101}. In the symbol square the dynamics
maps rectangles into rectangles by a decimal point
shift.
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The coordinate pair (δ, γ) associates a point (x, y) in the state space Cantor
set of figure 12.4 to a point in the symbol square of figure 12.9,preserving the
topological ordering. The symbol square [δ, γ] serves as a topologically faithful
representation of the non–wandering set of any once-folding map, and aids us in
partitioning the set and ordering the partitions for any flowof this type.

fast track:

chapter 13, p. 251

12.4 Prune danish

Anyone know where I can get a good prune danish in
Charlotte? I mean a real NY Jewish bakery kind of prune
danish!

— Googled

In general, not all possible symbol sequences are realized as physical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a short path is excluded by
some obstacle, such as a disk that blocks the path, or a potential ridge. In order to
enumerate orbits correctly, we need toprunethe inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so far is rather straight-
forward, and sets the stage for situations that resembles more the real life. A
generic once-folding map does not yield a complete horseshoe; some of the horseshoe
pieces might bepruned, i.e., not realized for particular parameter values of the
mapping. In 1 dimension, the criterion for whether a given symbolic sequence
is realized by a given unimodal map is easily formulated; anyorbit that strays
to the right of the value computable from thekneading sequence(the orbit of
the critical point (11.13)) is pruned. This is a topologicalstatement, independent
of a particular unimodal map. Our objective is to generalizethis notion to 2−
dimensionalonce-folding maps.

Adjust the parameters of a once-folding map so that the intersection of the
backward and forward folds is still transverse, but no longer complete, as in
figure 12.10 (a). The utility of the symbol square lies in the fact that the surviving,
admissible itineraries still maintain the same relative spatial ordering as for the
complete case.

In the example of figure 12.10 the rectangles [10.1], [11.1] have been pruned,
and consequentlyany trajectory containing blocksb1 = 101,b2 = 111 is pruned,
the symbol dynamics is a subshift of finite type (11.24). We refer to the border
of this primary pruned region as thepruning front; another example of a pruning
front is drawn in figure 12.11 (b). We call it a ‘front’ as it canbe visualized as a
border between admissible and inadmissible; any trajectory whose points would
fall to the right of the front in figure 12.11 is inadmissible,i.e., pruned. The
pruning front is a complete description of the symbolic dynamics of once-folding
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Figure 12.10: (a) An incomplete Smale
horseshoe: the inner forward fold does not
intersect the outer backward fold. (b) The primary
pruned region in the symbol square and the
corresponding forbidden binary blocks. ��������������
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Figure 12.11:(a) An incomplete Smale horseshoe
which illustrates (b) the monotonicity of the
pruning front: the thick line which delineates
the left border of the primary pruned region is
monotone on each half of the symbol square. The
backward folding in this figure and figure 12.10
is schematic - in invertible mappings there are
further missing intersections, all obtained by the
forward and backward iterations of the primary
pruned region.

maps.For now we need this only as a concrete illustration of how pruning rules
arise.

In the example at hand there are total of two forbidden blocks101, 111, so
For now we concentrate on this kind of pruning because it is particularly clean
and simple.

fast track:

chapter 13, p. 251

Though a useful tool, Markov partitioning is not without drawbacks. One
glaring shortcoming is that Markov partitions are not unique: any of many different
partitions might do the job. TheC2- andD3- equivariant systems that we discuss
next offers a simple illustration of different Markov partitioning strategies for the
same dynamical system.

12.5 Recoding, symmetries, tilings

In chapter 9 we made a claim that if there is a symmetry of dynamics, we
must use it. Here we shall show how to use it, on two concrete examples, and in
chapter 21 we shall be handsomely rewarded for our labors. First, the simplest
example of equivariance, a single ‘reflection’C2 group of example 9.13.

Example 12.5 C2 recoded: Assume that each orbit is uniquely labeled by anexercise 9.6
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Table 12.1: Correspondence between theC2 symmetry reduced cycles ˜p and the full state
space periodic orbitsp, together with their multiplicitiesmp. Also listed are the two
shortest cycles (length 6) related by time reversal, but distinct underC2.

p̃ p mp

1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

infinite string {si}, si ∈ {+,−} and that the dynamics is C2-equivariant under the + ↔ −
interchange. Periodic orbits separate into two classes, the self-dual configurations +−,
++−−, +++−−−, +−−+−++−, · · ·, with multiplicity mp = 1, and the pairs +, −, ++−,
− − +, · · ·, with multiplicity mp = 2. For example, as there is no absolute distinction
between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.7 (a), the Floquet
multipliers satisfy Λ+ = Λ−, Λ++− = Λ+−−, and so on. exercise 21.5

The symmetry reduced labeling ρi ∈ {0, 1} is related to the full state space
labeling si ∈ {+,−} by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (12.13)

For example, the fixed point + = · · · + + + + · · · maps into · · ·111· · · = 1, and so does
the fixed point −. The 2-cycle −+ = · · · − + − + · · · maps into fixed point · · ·000· · · = 0,
and the 4-cycle − + +− = · · · − − + + − − + + · · · maps into 2-cycle · · ·0101· · · = 01. A
list of such reductions is given in table 12.1.

Next, let us take the old pinball game and ‘quotient’ the state space by the
symmetry, or ‘desymmetrize.’ As the three disks are equidistantly spaced, our
game of pinball has a sixfold symmetry. For instance, the cycles12,23, and13 in
figure 12.12 are related to each other by rotation by±2π/3 or, equivalently, by a
relabeling of the disks. We exploit this symmetry by recoding, as in (12.7). exercise 11.1

exercise 12.6

Example 12.6 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (12.7) fixes the subsequent binary
symbols. Here we list an arbitrary ternary itinerary, and the corresponding binary
sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (12.14)
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Figure 12.12:The 3-disk game of pinball with the
disk radius : center separation ratio a:R= 1:2.5.
(a) 2-cycles12, 13, 23, and 3-cycles123 and132
(not drawn). (b) The fundamental domain, i.e., the
small 1/6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed points0,1. See figure 9.6
for cycle10 and further examples. (a) (b)

The first 2 disks initialize the trajectory and its direction; 3 7→ 1 7→ 2 7→ · · ·. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size state space partitions, and are
coded by a single binary sequence. (continued in example 12.7)

exercise 12.7
exercise 14.2

Binary symbolic dynamics has two immediate advantages overthe ternary
one; the prohibition of self-bounces is automatic, and the coding utilizes the
symmetry of the 3-disk pinball game in an elegant manner. exercise 11.2

The 3-disk game of pinball is tiled by six copies of thefundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors, see figure 12.12 (b). Every global 3-disktrajectory has a
corresponding fundamental domain mirror trajectory obtained by replacing every
crossing of a symmetry axis by a reflection. Depending on the symmetry of the
full state space trajectory, a repeating binary alphabet block corresponds either
to the full periodic orbit or to a relative periodic orbit (examples are shown in
figure 12.12 and table 12.2). A relative periodic orbit corresponds to a periodic
orbit in the fundamental domain.

Table 12.2 lists some of the shortest binary periodic orbits, together with
the corresponding full 3-disk symbol sequences and orbit symmetries. For a
number of deep reasons that will be elucidated in chapter 21,life is much simpler
in the fundamental domain than in the full system, so whenever possible our
computations will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball: (continued from example 12.6) The
D3 recoding can be worked out by a glance at figure 12.12 (a) (continuation of example 9.14).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by a
disk segment and the two adjacent sections of the symmetry axes that act as mirrors
(see figure 12.12 (b)). The three symmetry axes divide the space into six copies of
the fundamental domain. Any trajectory on the full space can be pieced together
from bounces in the fundamental domain, with symmetry axes replaced by flat mirror
reflections. The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has a
simple geometric interpretation, figure 12.2: a collision of type 0 reflects the projectile
to the disk it comes from (back–scatter), whereas after a collision of type 1 projectile
continues to the third disk. For example, 23 = · · ·232323· · · maps into · · ·000· · · = 0
(and so do 12 and 13), 123= · · ·12312· · · maps into · · ·111· · · = 1 (and so does 132),
and so forth. Such reductions for short cycles are given in table 12.2, figure 12.12 and
figure 9.7.
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Table 12.2: D3 correspondence between the binary labeled fundamental domain prime
cyclesp̃ and the full 3-disk ternary labeled cyclesp, together with theD3 transformation
that maps the end point of the ˜p cycle into the irreducible segment of thep cycle, see
sect. 9.12. Breaks in the above ternary sequences mark repeats of the irreducible segment;
for example, the full space 12-cycle 1212 3131 2323 consistsof 1212 and its symmetry
related segments 3131, 2323. The multiplicity ofp cycle ismp = 6np̃/np. The shortest
pair of fundamental domain cycles related by time reversal (but no spatial symmetry) are
the 6-cycles001011 and001101.

p̃ p gp̃

0 1 2 σ12
1 1 2 3 C
01 12 13 σ23
001 121 232 313 C
011 121 323 σ13
0001 1212 1313 σ23

0011 1212 3131 2323 C2

0111 1213 2123 σ12
00001 12121 2323231313C
00011 12121 32323 σ13
00101 12123 21213 σ12
00111 12123 e
01011 12131 2321231323C
01111 12132 13123 σ23

p̃ p gp̃

000001 121212131313 σ23

000011 121212313131232323 C2

000101 121213 e
000111 121213212123 σ12
001011 121232131323 σ23
001101 121231323213 σ13
001111 121231232312313123 C
010111 121312313231232123 C2

011111 121321323123 σ13
0000001 121212123232323131313C
0000011 12121213232323 σ13
0000101 12121232121213 σ12
0000111 1212123 e
· · · · · · · · ·

Résum é

In the preceding and this chapter we start with ad-dimensional state space and
end with a 1-dimensional return map description of the dynamics. The arc-
length parametrization of the unstable manifold maintainsthe 1-to-1 relation of
the full d-dimensional state space dynamics and its 1-dimensional return-map
representation. To high accuracyno information about the flow is lostby its
1-dimensional return map description. We explain why Lorenz equilibria are
heteroclinically connected (it is not due to the symmetry),and how to generate
all periodic orbits of Lorenz flow up to given length. This we do, in contrast to the
rest of the thesis, without any group-theoretical jargon toblind you with.

For 1-dimensional maps the folding point is the critical point, and easy to
determine. In higher dimensions, the situation is not so clear - one can attempt
to determine the (fractal set of) folding points by looking at their higher iterates
- due to the contraction along stable manifolds, the fold gets to be exponentially
sharper at each iterate. In practice this set is essentiallyuncontrollable for the
same reason the flow itself is chaotic - exponential growth oferrors. We prefer to
determine a folding point by bracketing it by longer and longer cycles which can
be determined accurately using variational methods of chapter 29, irrespective of
their period.

For a generic dynamical system a subshift of finite type is theexception
rather than the rule. Its symbolic dynamics can be arbitrarily complex; even for
the logistic map the grammar is finite only for special parameter values. Only
some repelling sets (like our game of pinball) and a few purely mathematical
constructs (called Anosov flows) are structurally stable - for most systems of
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interest an infinitesimal perturbation of the flow destroys and/or creates an infinity
of trajectories, and specification of the grammar requires determination of pruning
blocks of arbitrary length. The repercussions are dramaticand counterintuitive;
for example, the transport coefficients such as the deterministic diffusion constant
of sect. 25.2 are emphaticallynot smooth functions of the system parameters.
Importance of symbolic dynamics is often grossly unappreciated; as we shall seesection 25.2

in chapters 20 and 23, the existence of a finite grammar is the crucial prerequisite
for construction of zeta functions with nice analyticity properties. This generic
lack of structural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate
most of the key concepts that we shall need for time being. Ourstrategy is akin
to bounding a real number by a sequence of rational approximants; we converge
toward the non–wandering set under investigation by a sequence of self-similar
Cantor sets. The rule that everything to one side of the pruning front is forbidden
might is striking in its simplicity: instead of pruning a Cantor set embedded within
some larger Cantor set, the pruning front cleanly cuts out acompactregion in the
symbol square, and that is all - there are no additional pruning rules. A ‘self-
similar’ Cantor set (in the sense in which we use the word here) is a Cantor set
equipped with asubshift of finite typesymbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules, eachforbidding a finite
subsequences1s2 . . . sn . Here the notations1s2 . . . sn stands forn consecutive
symbolss11, s2, . . ., sn, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by constructing
transition matrices and/or graphs, see chapters 14 and 15.

Commentary

Remark 12.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invariant
manifolds, see Abraham and Shaw [9.11]. Construction of invariant manifolds by map
iteration is described in Simo [12.34]. Fixed point stable/ unstable manifolds and their
homoclinic and heteroclinic intersections can be computedusing DsTool [12.58, 12.59,
12.60]. Unstable manifold turning points were utilized in refs. [12.12, 22.2, 12.31, 12.32,
12.33] to partition state space and prune inadmissible symbol sequences. The arclength
parameterized return maps were introduced by Christiansenet al. [12.62], and utilized
in ref. [12.36]. Even though no dynamical system has been studied more exhaustively
than the Lorenz equations, the analysis of sect. 11.2 is new.The desymmetrization
follows Gilmore and Lettelier [9.14], but the key new idea istaken from Christiansenet
al. [12.62]: the arc-length parametrization of the unstable manifold maintains the 1-to-1
relation of thefull d-dimensional state space dynamics and its 1-dimensional return-map
representation, in contrast to 1-dimensionalprojectionsof the (d−1)-dimensional Poincaré
section return maps previously deployed in the literature.In other words, to high accuracy
no information about the flow is lostby its 1-dimensional return map description.

Remark 12.2 Smale horseshoe. S. Smale understood clearly that the crucial ingredient
in the description of a chaotic flow is the topology of its non–wandering set, and he
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provided us with the simplest visualization of such sets as intersections of Smale horseshoes.
In retrospect, much of the material covered here can alreadybe found in Smale’s fundamental
paper [1.27], but an engineer or a scientist who has run into achaotic time series in his
laboratory might not know that he is investigating the action (differentiable) of a Lie group
G on a manifoldM, and that the Lefschetz trace formula is the way to go.

Remark 12.3 Pruning fronts. The ‘partition conjecture’ is due to Grassberger and
Kantz [29.3]. The notion of a pruning front and the ‘pruning-front conjecture’ was
formulated by Cvitanovićet al. [12.12], and developed by K.T. Hansen for a number of
dynamical systems in his Ph.D. thesis [12.19] and a series ofpapers [12.20]-[12.24]. The
‘multimodal map approximation’ is described in the K.T. Hansen thesis [12.19]. Hansen’s
thesis is still the most accessible exposition of the pruning theory and its applications.
Detailed studies of pruning fronts are carried out in refs. [12.13, 12.15, 12.14]; ref. [29.5]
is the most detailed study carried out so far. The rigorous theory of pruning fronts has
been developed by Y. Ishii [12.16, 12.17] for the Lozi map, and A. de Carvalho [12.18]
in a very general setting. Beyond the orbit pruning and its infinity of admissible unstable
orbits, an attractor of Hénon type may also own an infinity ofattractive orbits coexisting
with the strange attractor [12.63, 12.64]. We offer heuristic arguments and numerical
evidence that the coexistence of attractive orbits does notdestroy the strange attractor/repeller,
which is also in this case described by the 2− dimensionaldanish pastry plot.
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Exercises

12.1. A Smale horseshoe. The Hénon map of example 3.7
[

x′

y′

]

=

[

1− ax2 + by
x

]

(12.15)

maps the [x, y] plane into itself - it was constructed
by Hénon [3.6] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in figure 11.10. For definitiveness fix the
parameters toa = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that
its nth iterate by the Hénon map intersects the
rectangle 2n times.

b) Construct the inverse of the (12.15).

c) Iterate the rectangle back in the time; how many
intersections are there between then forward and
mbackward iterates of the rectangle?

d) Use the above information about the intersections
to guess the (x, y) coordinates for the two fixed
points, a 2-periodic point, and points on the two
distinct 3-cycles from table 15.1. The exact
periodic points are computed in exercise 13.13.

12.2. Kneading Danish pastry. Write down the (x, y) →
(x, y) mapping that implements the baker’s map

Figure: Kneading danish pastry: symbol square
representation of an orientation reversing once-folding
map obtained by fattening the Smale horseshoe

intersections of figure 12.4 into a unit square. In
the symbol square the dynamics maps rectangles into
rectangles by a decimal point shift.together with the

inverse mapping. Sketch a few rectangles in symbol
square and their forward and backward images. (Hint:
the mapping is very much like the tent map (11.4)).

12.3. Kneading danish without flipping. The baker’s map
of exercise 12.2 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the (x, y) → (x, y) mapping that implements an
orientation preserving baker’s map (no flip; Jacobian
determinant= 1). Sketch and label the first few folds
of the symbol square.

12.4. Orientation reversing once-folding map. By adding
a reflection around the vertical axis to the horseshoe map
g we get the orientation reversing map ˜g shown in the
second Figure above.̃Q0 andQ̃1 are oriented asQ0 and
Q1, so the definition of the future topological coordinate
γ is identical to theγ for the orientation preserving
horseshoe. The inverse intersectionsQ̃−1

0 and Q̃−1
1 are

oriented so that̃Q−1
0 is opposite toQ, while Q̃−1

1 has the
same orientation asQ. Check that the past topological
coordinateδ is given by

wn−1 =

{

1− wn if sn = 0
wn if sn = 1 , w0 = s0

δ(x) = 0.w0w−1w−2 . . . =

∞
∑

n=1

w1−n/2
n .(12.16)

12.5. Infinite symbolic dynamics. Let σ be a function
that returns zero or one for every infinite binary string:
σ : {0, 1}N → {0, 1}. Its value is represented by
σ(ǫ1, ǫ2, . . .) where theǫi are either 0 or 1. We will
now define an operatorT that acts on observables on the
space of binary strings. A functiona is an observable if
it has bounded variation, that is, if

‖a‖ = sup
{ǫi }

|a(ǫ1, ǫ2, . . .)| < ∞ .

For these functions

Ta(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .)

+a(1, ǫ1, ǫ2, . . .)σ(1, ǫ1, ǫ2, . . .) .
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(a) (easy) Consider a finite versionTn of the operator
T :

Tna(ǫ1, ǫ2, . . . , ǫ1,n) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show thatTn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent ofn.

(b) (medium) With the operator norm induced by the
function norm, show thatT is a bounded operator.

(c) (hard) Show thatT is not trace class.

12.6. 3-disk fundamental domain cycles. (continued

from exercise 9.6) Try to sketch0, 1, 01, 001,011, · · ·.

in the fundamental domain, and interpret the symbols
{0, 1} by relating them to topologically distinct types
of collisions. Compare with table 12.2. Then try to
sketch the location of periodic points in the Poincaré
section of the billiard flow. The point of this exercise
is that while in the configuration space longer cycles
look like a hopeless jumble, in the Poincaré section they
are clearly and logically ordered. The Poincaré section
is always to be preferred to projections of a flow onto
the configuration space coordinates, or any other subset
of state space coordinates which does not respect the
topological organization of the flow.

12.7. 3-disk pruning. (Not easy) Show that for 3-disk
game of pinball the pruning of orbits starts atR : a =
2.04821419. . ., figure 11.6. (K.T. Hansen)
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[12.36] Y. Lan and P. Cvitanović, “Unstable recurrent patterns in
Kuramoto-Sivashinsky dynamics,”Phys. Rev. E78, 026208 (2004);
arXiv:0804.2474.

[12.37] T. Hall, “Fat one-dimensional representatives of pseudo-Anosov isotopy
classes with minimal periodic orbit structure,”Nonlinearity7, 367 (1994).
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