Chapter 12

Stretch, fold, prune

I.1. Introduction to conjugacy problems for
diffeomorphisms. This is a survey article on the area
of global analysis defined by filerentiable dynamical
systems or equivalently the action ff@rentiable) of a
Lie groupG on a manifoldM. Here Dif(M) is the group
of all diffeomorphisms oM and a difeomorphism is a
differentiable map with a ffierentiable inverse.. (.) Our
problem is to study the global structure, i.e., all of the
orbits of M.

—Stephen Smaldifferentiable Dynamical Systems

E HAVE LEARNED that the Rossler attractor is very thin, but otherwise the
W return maps that we found were disquieting — figure 3.6 didappear
to be a one-to-one map. This apparent loss of invertibiitan artifact
of projection of higher-dimensional return maps onto tHewer-dimensional
subspaces. As the choice of a lower-dimensional subspadaitisary, the resulting
snapshots of return maps look rather arbitrary, too. Sudemhtions beg a
question: Does there exist a natural, intrinsic coordirgtetem in which we
should plot a return map?

We shall argue in sect. 12.1 that the answer is yes: The sintrzoordinates
are given by the stahlgnstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediatehbeidood of the
unstable manifold. In chapter 5 we established that Floaustipliers of periodic
orbits are (local) dynamical invariants. Here we shall sltioat every equilibrium
point and every periodic orbit carries with it stable andtabke manifolds which
provide topologically invarianglobal foliation of the state space. They will
enable us to partition the state space in a dynamically iswaevay, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relativetsgpaordering of
trajectories, and separates the admissible and inadheigsieraries. We illustrate
how this works on HEnon map example 12.3. Determining wiychbol sequences
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are absent, or ‘pruned’ is a formidable problem when viewethée state space,
[X1, X2, ..., Xg] coordinates. It is equivalent to the problem of deterngnthe
location of all homaoclinic tangencies, or all turning paimif the Hénon attractor.
They are dense on the attractor, and show no self-similactsiie in the state
space coordinates. However, in the ‘danish pastry’ repteien of sect. 12.3
(and the ‘pruned danish,” in American vernacular, of se@t4), the pruning
problem is visualized as crisply as the New York subway mapjtnerary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedigsn tempo of the
preceding chapter. Skip most of this chapter unless yolyraakd to get into
nitty-gritty details of symbolic dynamics.

fast track:
W chapter 13, p. 251
12.1 Going global: stablgunstable manifolds

The complexity of this figure will be striking, and | shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic
tanglesLes méthodes nouvelles de la méchanique céleste

The Jacobian matrig! transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initidinitesimal sphere of

neighboring trajectories into an ellipsoid timlater, as in figure 4.2.
Nearby trajectories separate exponentially along theabiesdirections, approach
each other along the stable directions, and creep alongdingimal directions.

The fixed pointg Jacobian matrixJ(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encirclitige fixed point is

linear in the sense of sect. 4

The continuations of the span of the local stable, unstabnedirections into
global curvilinear invariant manifolds are called ttable respectivelyunstable
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manifolds They consist of all points which march into the fixed poimward,
respectively backward in time

W = {xe M: fi(x) - xq — 0 ast — oo}
wH {xeM: f7{(x) — x4 — O ast — oo}. (12.1)

Eigenvectorsl) of the monodromy matrixi(x) play a special role - on them the
action of the dynamics is the linear multiplication hy (for a real eigenvector)
along 1- dimensionalnvariant curve\/VLi’iS or spiral infout action in a 2B surface
(for a complex pair). Fot — +oo a finite segment oNV(SC), respectively\N(“e)
converges to the linearized map eigenved®, respectivelye®, where©, ©
stand respectively for ‘contracting, ‘expanding.” Indhéense each eigenvector
defines a (curvilinear) axis of the stable, respectivelytalsise manifold.

Actual construction of these manifolds is the converse @it dhefinition (12.1):
one starts with an arbitrarily small segment of a fixed poigemvector and lets
evolution stretch it into a finite segment of the associatedifold. As a periodic
point x on cyclepis a fixed point off Te(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consideiith expanding eigen-
value, eigenvector pairA(, &) computed fromJ = Jp(x) evaluated at a fixed
point x,

JEV () = A (), xeMp, Ai>1. (12.2)

Take an infinitesimal eigenvectet) (x), |67 (x)|| = & < 1, and its returm;ef(x)
after one period’,. Sprinkle the straight interval betwees pig] ¢ Wi with a
large number of points®, for example equidistantly spaced on logarithmic scale
between Iz and InA; + Ine. The successive returns of these poifts(x®),
f2To(x®), - .., fTo(xH)) trace out the d curveW) within the unstable manifold.
As separations between points tend to grow exponentiaigryeso often one
needs to interpolate new starting points between the rrdiees. Repeat for

—e(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting directida an expanding one,
tracing out the curvilinear stable manifcw(si) as a continuation o).

Expanding/contracting real negative Floquet multiplier. As above, but every
even iteratef2To(x), £4Tr(x{), {6Te(x) continues in the directior®, every
odd one in the directiorel),

Complex Floguet multiplier pair, expanding/contracting. The complex Floquet
multiplier pair{Aj, Aj.1 = Aj} has Floquet exponents (5.9) of fortf) = p( +
iw, with the sign ofu®) £ 0 determining whether the linear neighborhood
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Figure 12.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of .
complex eigenvalue pair of an unstable equilibriur
of plane Couette flow, a projection from a 61,506
dimensional state space ODE truncation of the (
dimensional) Navier-Stokes PDE. (J.F. Gibson,
Nov. 2005 blog entry [12.61])

is out/ in spiralling. The orthogonal pair of real eigenvect¢Reel), Im &)}
spans a plane, as in (4.28). = 2r/w) is the time of one turn of the spiral,
JTReel)(x) = |AjIRee)(x). As in the real cases above, sprinkle the straight
interval betweend, |Ajle] along Reel)(x) with a large number of points®. The
flow will now trace out the & invariant manifold as an oytin spiralling strip.
Two low-dimensional examples are the unstable manifoldthefLorenz flow,
figure 11.8 (a), and the Rossler flow, figure 11.10 (a). Forghliti non-trivial
example, see figure 12.1.

The unstable manifolds of a flow adg-dimensional. Taken together with the
marginally stable direction along the flow, they are rathardhto visualize. A
more insightful visualization isféered by (- 1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see alsets3.1.1). Stable,
unstable manifolds for maps are defined by

WS

WU

{xeP: P"(x) - xg - 0 asn — oo}
{xe®: P™(x) - xg - 0asn— o , (12.3)

where P(x) is the @ - 1)-dimensional return map (3.1). In what follows, all
invariant manifoldsAVY, WS will be restricted to their Poincaré sectiong', Ws.

Example 12.1 A section at a fixed point with a complex Floquet multiplier pa ir:

(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or
periodic) point X4 with a complex Floquet multiplier pair is the plane P specified by the
fixed point (located at the tip of the vector X;) and the eigenvector Im e® perpendicular
to the plane. A point X is in the section P if it satisfies the condition

(X—Xq) - Ime® = 0. (12.4)

In the neighborhood of Xq the spiral out/in motion is in the {Ree®, Im e®} plane, and
thus guaranteed to be cut by the Poincaré section  normal to e,

In general the full state space eigenvectors do not lie iniacace section; the

eigenvector€() tangent to the section are given by (5.20). Furthermorelgvitni
the linear neighborhood of fixed poirtthe trajectories return with approximate
periodicity Ty, this is not the case for the globally continued manifolds), or
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the first return times (3.1) fier, and tha\V¥, restricted to the Poincaré section is
obtained by continuing trajectories of the points from thi $tate space curve

W(“J) to the sectiorP.

For long times the unstable manifolds wander throughoutoh@ected ergodic
component, and are no more informative than an ergodicctraje For example,
the line with equitemporal knots in figure 12.1 starts out csmebothly curved
neighborhood of the equilibrium, but after a ‘turbulentisgmle decays into an
attractive equilibrium point. The trick is to stop contingian invariant manifold
while the going is still good.

fast track:
W sect. 12.2, p. 232
Learning where to stop is a bit of a technical exercise, tadeemight prefer
to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

J As the flow is nonlinear, there is no ‘natural’ linear basigdpresent it.
Wistful hopes like ‘POD modes, ‘Karhunen-Loéve, and ethinear changes of
bases do not cut it. The invariant manifolds are curved, e toordinatizations
are of necessity curvilinear, just as the maps of our gloegtart infinitely foliated
and thus much harder to chart.

Let usillustrate this by parameterizing d dlice of an unstable manifold by its
arclength. Sprinkle evenly poin{s(Y), x@, ... x(N-1)} petween the equilibrium
point x; = X% and pointx = X, along the @ unstable manifold continuation

x® e W, of the unstable&) eigendirection (we shall omit the eigendirection
label (j in what follows). Then the arclength from equilibrium poigt= x© to
x = XN is given by

= lim Zg d¥ax, =M -, (12.5)

For the lack of a better idea (perhaps the dynamically deteug = J'J would
be a more natural metric?) let us measure arclength in thidiuacmetric,g;; =
dij, SO

k=1

N 1/2
s= lim [Z dx® } : (12.6)

By definition f7®(x) € W (J), so f'(x) induces a @ maps(sg, 7) = (70 (xg)).
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Turning pointsare points on the unstable manifold for which the local usista
manifold curvature diverges for forward iterates of the miag, points at which
the manifold folds back onto itself arbitrarily sharply.rfewr purposes, approximate
turning points sfiice. The H curveW!, starts out linear akq, then gently curves
until —under the influence of other unstable equilibria/angberiodic orbits— it
folds back sharply at ‘turning points’ and then nearly regsitself. This is likely
to happen if there is only one unstable direction, as we sdieiROssler attractor
example 11.3, but if there are several, the ‘turning poirigmget stretched out
in the non-leading expanding directions.

The trick is to figure out a gooblase segmertb the nearest turning point
L = [0, 5], and after the foldback assign $x,t) > s, the nearest poing on the
base segment. If the stable manifold contraction is strdimg,2nd coordinate
connectings(x,t) — s can be neglected. We saw in example 11.3 how this
works. You might, by nature and temperament, take the daew:viRossler
has helpful properties, namely insanely strong contraciong a 1-dimensional
stable direction, that are not present in real problemd) asdurbulence in a plane
Couette flow, and thus the lessons of chapter 11 of no use witemies to real
plumbing. For this reason, both of the training examplesame, the billiards
and the Hénon map are of Hamiltonian, phase space pregdwyga, and thus as
far from being insanely contracting as possible. Yet, tocugfntful reader, they
unfold themselves as pages of a book.

Assign to eachd-dimensional pointx“e Lq a coordinates = s(X) whose
value is the Euclidean arclength (12.5¢pmeasured along the 1-dimensiof
section of thex, unstable manifold. Next, for a nearby poif ¢ Ly determine
the pointx; € Lq which minimizes the Euclidean distance € %1)?, and assign
arc length coordinate valug)y = s(X;1) to Xo. In this way, an approximate 1-
dimensional intrinsic coordinate system is built alongudhstable manifold. This
parametrization is useful if the non—wandering set fiaiently thin that its perpendicular
extent can be neglected, with every point on the non—-wanglesét assigned the
nearest point on the base segmiegt

Armed with this intrinsic curvilinear coordinate paranizdtion, we are now
in a position to construct a 1-dimensional model of the dyisaron the non—
wandering set. Ik, is thenth Poincaré section of a trajectory in neighborhood of
Xg, ands, is the corresponding curvilinear coordinate, tisgn = f™(s,) models
the full state space dynamicg = X,.1. We approximatef(s,) by a smooth,
continuous 1-dimensional map: Lq — Lq by taking X, € Ly, and assigning to
X1 the nearest base segment paint = S(Xn+1)-

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract tptbon page 232,
about ‘the action (dferentiable) of a Lie groug on a manifoldM,’ time has
come to bring Smale to everyman. If you still remain mystifiedthe end of
this chapter, reading chapter 16 might help; for example Libuville operators
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symmetric 3-disk pinball; a bounce in which the
trajectory returns to the preceding disk is labeled 0, and
a bounce which results in continuation to the third disk
is labeled 1.

Figure 12.2: Binary labeling of trajectories of the '

form a Lie group of symplectic, or canonical transformasi@cting on the, q)
manifold.

If a flow is locally unstable but globally bounded, any opeti b&initial
points will be stretched out and then folded. An example is-dingensional
invertible flow sketched in figure 11.10 which returns a Paracsection of the
flow folded into a ‘horseshoe’ (we shall belabor this in figdi®4). We now exercise 12.1
offer two examples of locally unstable but globally bounded $flavhich return
an initial area stretched and folded into a ‘horseshoehdghat the initial area
is intersected at most twice. We shall refer to such mappings at most 2
transverse self-intersections at tiith iteration as thence-foldingmaps.

The first example is the 3-disk game of pinball figure 11.5clhior suficiently
separated disks (see figure 11.6), is an example of a confpheste horseshoe.
We start by exploiting its symmetry to simplify it, and thearfition its state space
by its stable/ unstable manifolds.

Example 12.2 Recoding 3-disk dynamics in binary. (continued from example 11.2) The
A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique, nor necessarily the
smartest one - before proceeding it pays to quotient the symmetries of the dynamics in
order to obtain a more efficient description. We do this in a quick way here, and redo it

in more detail in sect. 12.5.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what
is important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For the 3-
disk game of pinball there are two topologically distinct kinds of collisions, figure 12.2:
exercise 11.1
exercise 12.6

1 : pinball continues to the third disk. (12.7)

§ = { 0 :  pinball returns to the disk it came from
In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces
is automatic. If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences (see table 15.1)
are admissible. exercise 11.2

It is intuitively clear that as we go backward in time (reverse the velocity vector),
we also need increasingly precise specification of Xo = (S, Po) in order to follow a given
past itinerary. Another way to look at the survivors after two bounces is to plot Ms, s,,
the intersection of M, with the strips Ms, obtained by time reversal (the velocity
changes sign sing — —sing). Mss,, figure 12.3(a), is a ‘rectangle’ of nearby
trajectories which have arrived from disk s; and are heading for disk s,. (continued
in example 12.6)
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Figure 12.3: The 3-disk game of pinball of
figure 11.5, generated by starting from disk 1,
preceded by disk 2, coded in binary, as in
figure 12.2. (a) Strips\s; which have survived

a bounce in the past and will survive a bounce in
the future. (b) Iteration corresponds to the decimal
point shift; for example, all points in the rectangle
[1.01] map into the rectangles.f®], [0.11] in one
iteration. €)

singd

The 3-disk repeller does not really look like a ‘horseshdié ‘fold’ is cut
out of the picture by allowing the pinballs that fly betweea tlisks to fall d¢f the
table and escape. Next example captures the ‘stretch & fioideshoe dynamics
of return maps such as Rossler’s, figure 3.5.

Example 12.3 A Hénon repeller complete horseshoe: (continued from example 3.7) Consider
2-dimensional Hénon map exercise 3.5
(X1, Ynr) = (L= @8 + byn, Xn) . (12.8)

If you start with a small ball of initial points centered around the fixed point Xy, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
WS. lterated backward in time,

(Xn-1, Yn-1) = (Yo =0 (1 — @2 — %)) » (12.9)

this small ball of initial points traces out the stable manifold \Wg. Their intersections
enclose the region M., figure 12.4(a). Any point outside WS border of M. escapes
to infinity forward in time, while —by time reversal— any point outside W border arrives
from infinity back in paste. In this way the unstable - stable manifolds define topologically,
invariant and optimal initial region M_; all orbits that stay confined for all times are
confined to M_ .

The Hénon map models qualitatively the Poincaré section return map of figure 11.10.

For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in sects. 3.3
and 29.1, forb # Qitis kind of a fattened parabola; by construction, it takes a rectangular
initial area and returns it bent as a horseshoe. Parameter a controls the amount of
stretching, while the parameter b controls the amount of compression of the folded
horseshoe. For definitiveness, fix the parameter values to a = 6, b = —1; the map
is then strongly stretching but area preserving, the furthest away from the strongly
dissipative examples discussed in sect. 11.2. The map is quadratic, so it has 2 fixed
points Xo = f(Xo), X1 = f(X1) indicated in figure 12.4(a). For the parameter values at
hand, they are both unstable.

Iterated one step forward, the region M_ is stretched and folded into a Smale
horseshoe drawn in figure 12.4 (b). Label the two forward intersections f (M) N M. by
Ms,, with s € {0,1}. The horseshoe consists of the two strips My, M. , and the bent
segment that lies entirely outside the W line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.
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Figure 12.4: The Hénon map (12.8) foa =

6, b = —1: fixed point0 with segments of
its stable, unstable manifold4, W!, and fixed
point 1. (a) Their intersection bounds the region
M_ = 0BCD which contains the non—wandering
setQ. (b) The intersection of the forward image oo
f(M) with M consists of two (future) strips

Mo, My, with points BCD brought closer to

fixed pointO by the stable manifold contraction.

(c) The intersection of the forward imagdéAM)) -1
with the backward backward-*(M) is a four- (@) -
region cover of Q. (d) The intersection of

the twice-folded forward horseshd&(M)) with ,
backward horseshoe?(M). (€) The intersection /
of f2(M) with f=2(M) is a 16-region cover of 10 f
Q. lteration yields the complete Smale horseshoe /
non-wandering sef, i.e., the union of all non- /
wandering points off, with every forward fold |
intersecting every backward fold. (P. Cvitanovic Zi/ -
and Y. Matsuoka) (c)°o°

1.0

Iterated one step backwards, the region M is again stretched and folded into
a horseshoe, figure 12.4 (c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the
horseshoe bend wander off to infinity as n — —oo, and we are left with the two (past)
strips Mo, M 1 . Iterating two steps forward we obtain the four strips Mi1, Mo, Moo, M1o,
and iterating backwards we obtain the four strips M oo, M .01, M 11, M 10 transverse to
the forward ones just as for 3-disk pinball game figure 12.2. Iterating three steps forward
we get an 8 strips, and so on ad infinitum. (continued in example 12.4)

What is the significance of the subscript suchgaswhich labels theM 11
future strip? The two stripsVl o, M 1 partition the state space into two regions
labeled by the two-letter alphabet = {0,1}. S* = .011 is thefuture itinerary
for all x e Mp11. Likewise, for the past strips all € Ms ...s ;5. have thepast
itinerary S™ = s ---s.1S . Which partition we use to present pictorially the
regions that do not escape imiterations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo = f(Mo), Mo =1TMy).

Q, the non—wandering set (2.2) @, is the union of all points whose forward
and backward trajectories remain trapped for all time, ivg the intersections
of all images and preimages 8fl:

Q:{x:xe lim fm(M,)ﬂf—“(M,)}. (12.10)

m,Nn—oo

Two important properties of the Smale horseshoe are thatsitacomplete
binary symbolic dynamicand that it isstructurally stable
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Figure 12.5: Kneading orientation preserving danish @ ﬁ
pastry: mimic the horsheshoe dynamics of figure 12.6 r\
by: (1) squash the unit square by fact@?,1(2) stretch

it by factor 2, and (3) fold the right half back over the A B
left half.

For acompleteSmale horseshoe every forward fdl¢{ M) intersects transversally
every backward foldf "™(M), so a unique bi-infinite binary sequence can be
associated to every element of the non—wandering set. A painQ is labeled
by the intersection of its past and future itinerar®&s) = ---s251%.9% -,
where s,=s if f"(X)e Ms ,se{0,1}andne Z. remark A.1

The system is said to kmructurally stablaf all intersections of forward and
backward iterates of1 remain transverse for fiiciently small perturbation$ —
f + 6 of the flow, for example, for slight displacements of the digkthe pinball
problem, or sfficiently small variations of the HEnon map parametets While section 1.8
structural stability is exceedingly desirable, it is algoeedingly rare. About this,
more later. section 25.2

12.3 Symbol plane

Consider a system for which you have succeeded in constguattovering symbolic
dynamics, such as a well-separated 3-disk system. Nowmtaring the disks

toward each other. At some critical separation a disk wattdblocking families

of trajectories traversing the other two disks. The ordewiich trajectories

disappear is determined by their relative ordering in spidugeones closest to the
intervening disk will be pruned first. Determining inadniligs itineraries requires

that we relate the spatial ordering of trajectories to theie ordered itineraries. exercise 12.7

So far we have rules that, given a state space patrtition rgenatemporally
ordered itinerary for a given trajectory. Our next task is tonverse: given a
set of itineraries, what is thgpatial ordering of corresponding points along the
trajectories? In answering this question we will be aide&ale’s visualization
of the relation between the topology of a flow and its symbdyicamics by means
of ‘horseshoes,’ such as figure 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baken'sfoamation appropriate
to Hénon type mappings, yields a binary coordinatizatiballgpossible periodic
points.
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Figure 12.6: The dynamics maps two (past) strips
strips Mo, M into two (future) stripsMo,, M;..

The corners are labeled to aid visualization. Note 0
that theBCGH strip is rotated by 180 degrees. (P.
Cvitanovi¢ and Y. Matsuoka) (e)

The symbolic dynamics of once-folding map is given by theistampastry
transformation. This generates both the longitudinal aadsiverse alternating
binary tree. The longitudinal coordinate is given by theched a symbolic
sequence; the transverse coordinate is given by the tdikafymbolic sequence.
The dynamics on this space is given by symbol shift pernartativolume preserving,
with 2 expansion and/2 contraction.

For a better visualization of 2-dimensional non—wandesets, fatten the
intersection regions until they completely cover a unitagy as in figure 12.7.

We shall refer to such a ‘map’ of the topology of a given ‘stre®& fold’ exercise 12.2
dynamical system as th®ymbol square The symbol square is a topologicallgxercise 12.3
accurate representation of the non—wandering set andssasva street map for
labeling its pieces. Finite memory @h steps and finite foresight of steps
partitions the symbol square intectangleds m1--- S9.-91% - - - S, such as those
of figure 12.6. In the binary dynamics symbol square the dizeich rectangle is
2-Mx 27" it corresponds to a region of the dynamical state spacehnduntains
all points that share commam future andm past symbols. This region maps
in a nontrivial way in the state space, but in the symbol sguigr dynamics is
exceedingly simple; all of its points are mapped by the datpnint shift (11.20)

(-5 251%.519% ") =S 25190S51.9%3" - , (12.11)

Example 12.4 A Hénon repeller subshift: (continued from example 12.3) The
Hénon map acts on the binary partition as a shift map. Figure 12.6 illustrates action
f(Mo) = Mo.. The square [01.01] gets mapped into the rectangles o-[01.01] = [10.1] =
{[10.10],[10.11]}, see figure 12.4 (e). Further examples can be gleaned from figure 12.4.

As the horseshoe mapping is a simple repetitive operatierexpect a simple
relation between the symbolic dynamics labeling of the ésiiee strips, and
their relative placement. The symbol square poi{&*) with future itinerary
S* are constructed by converting the sequenca,&finto a binary number by
the algorithm (11.9). This follows by inspection from figut2.9. In order to
understand this relation between the topology of horseshod their symbolic
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L 01.
1 1
Figure 12.7: Kneading danish pastry: symbol . O 11
square representation of an orientation preserving | ‘r 777777777 '
once-folding map obtained by fattening the Smale !
horseshoe intersections of (a) figure 12.6 (b) 1 10.
figure 12.4 into a unit square. Also indicated: the |
fixed points0, 1 and the 2-cycle point®91,10}. In 0 i 00.
the symbol square the dynamics maps rectangles G
into rectangles by a decimal point shift. (@) .0 1 (b)
R
%
LN 01.
.
\ d TAS
Ay 11.
Figure 12.8: Kneading orientation preserving %‘%"@ T
danish pastry: symbol square representatio 1 é é 10.

S S = 4 B
of an orientation preserving once-folding map %§7&7§¢ -
obtained by fattening the intersections of two '§/§4§" 00.| o
forward iterateg two backward iterates of Smale %/ 4

horseshoe into a unit square.

dynamics, it might be helpful to backtrace to sect. 11.4 aodkvihrough and
understand first the symbolic dynamics of 1-dimensionainacial mappings.

Under backward iteration the roles of 0 and 1 symbols aredhtafnged;/\/(gl
has the same orientation A4, while M;* has the opposite orientation. We assigRercise 12.4
to an orientation preservingonce-folding map thepast topological coordinate
6 = 6(S7) by the algorithm:

_ wy ifs,=0 B
Wn-1 = {l—wn ifs, =1 W=
5(S7) = OWQW_1W_p...= Z Wi_n/2 (12.12)

Such formulas are best derived by solitary contemplatigchefction of a folding
map, in the same way we derived the future topological coaidi(11.9).

001 %%
01 |
111.

Figure 12.9: Kneading danish pastry: symbol squar®11.
representation of an orientation preserving onceqo.
folding map obtained by fattening the Smale horseshge
intersections of figure 12.4 (e) into a unit square. Alsi
indicated: the fixed point8, 1, and the 3-cycle points 100.

{011110,101. In the symbol square the dynamic%00 5
maps rectangles into rectangles by a decimal point ©

shift. '000.001'011.010'110.111'101.100
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The coordinate pairé(y) associates a poini(y) in the state space Cantor
set of figure 12.4 to a point in the symbol square of figure 1@t8serving the
topological ordering. The symbol squa®] serves as a topologically faithful
representation of the non—wandering set of any once-fgldiap, and aids us in
partitioning the set and ordering the partitions for any flathis type.

fast track:
W chapter 13, p. 251
12.4 Prune danish

Anyone know where | can get a good prune danish in
Charlotte? | mean a real NY Jewish bakery kind of prune
danish!

— Googled

In general, not all possible symbol sequences are realzetiysical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a shostp is excluded by
some obstacle, such as a disk that blocks the path, or a j@btethge. In order to
enumerate orbits correctly, we needpiaunethe inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so fdnés straight-
forward, and sets the stage for situations that resemblee the real life. A
generic once-folding map does not yield a complete horgestwmme of the horseshoe
pieces might beruned i.e., not realized for particular parameter values of the
mapping. In 1 dimension, the criterion for whether a givembglic sequence
is realized by a given unimodal map is easily formulated; aryjt that strays
to the right of the value computable from tkeeading sequencghe orbit of
the critical point (11.13)) is pruned. This is a topologistdtement, independent
of a particular unimodal map. Our objective is to generatlris notion to 2—
dimensionabnce-folding maps.

Adjust the parameters of a once-folding map so that thedatgion of the
backward and forward folds is still transverse, but no longemplete, as in
figure 12.10 (a). The utility of the symbol square lies in thetthat the surviving,
admissible itineraries still maintain the same relativatsp ordering as for the
complete case.

In the example of figure 12.10 the rectangles.11,011.1] have been pruned,
and consequentlgnytrajectory containing blockb; = 101,b, = 111 is pruned,
the symbol dynamics is a subshift of finite type (11.24). Werr#o the border
of this primary pruned region as tipeuning front another example of a pruning
front is drawn in figure 12.11 (b). We call it a ‘front’ as it cée visualized as a
border between admissible and inadmissible; any trajgettiose points would
fall to the right of the front in figure 12.11 is inadmissiblieg., pruned. The
pruning front is a complete description of the symbolic dyiws of once-folding
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01. 3

11. 11.1
Figure 12.10: (a) An incomplete Smale 10 101
horseshoe: the inner forward fold does not S22 Vo224 & | |
intersect the outer backward fold. (b) The primary 00. i
pruned region in the symbol square and the
corresponding forbidden binary blocks. .0 1

Figure 12.11:(a) Anincomplete Smale horseshoe
which illustrates (b) the monotonicity of the
pruning front: the thick line which delineates 3
the left border of the primary pruned region is &
monotone on each half of the symbol square. Th
backward folding in this figure and figure 12.10
is schematic - in invertible mappings there are
further missing intersections, all obtained by the
forward and backward iterations of the primary
pruned region.

. —100.10

=
QI0.01

L\ W J |
=2
N\,

oli.on - m

— 10110

maps.For now we need this only as a concrete illustrationoef pruning rules
arise.

In the example at hand there are total of two forbidden blddks, 111, so
For now we concentrate on this kind of pruning because it iiquadarly clean
and simple.

fast track:
W chapter 13, p. 251
Though a useful tool, Markov partitioning is not without ditzacks. One
glaring shortcoming is that Markov partitions are not uigany of many dterent
partitions might do the job. Th€,- andD3- equivariant systems that we discuss

next dfers a simple illustration of éierent Markov partitioning strategies for the
same dynamical system.

12.5 Recoding, symmetries, tilings

\
J In chapter 9 we made a claim that if there is a symmetry of dyosnwve
must use it. Here we shall show how to use it, on two concresengles, and in
chapter 21 we shall be handsomely rewarded for our laborst, e simplest
example of equivariance, a single ‘reflecti@y group of example 9.13.

Example 12.5 C, recoded: Assume that each orbit is uniquely labeled byerise 9.6
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Table 12.1: Correspondence between g symmetry reduced cyclgsand the full state
space periodic orbitp, together with their multiplicitiesn,. Also listed are the two
shortest cycles (length 6) related by time reversal, buirdisunderC,.

p p M
1 + 2
0 —+ 1
01 —— ++ 1
001 -+ + 2
011 -——— +++ 1
0001 -+ = +—++ 1
0011 —+++ 2
0111 ———— ++++ 1
00001 —+-+- 2
00011 —+4+-—-—- +—+++ 1
00101 —+4++4+-- +—-—++ 1
00111 —4+-—-— +—+++ 1
01011 —--+++ 2
01111 - ---- ++ 4+ ++ 1
001011 —4+4+---+-—-+++ 1
001101 —-4++4++--+-———++ 1

infinite string {s}, S € {+, —} and that the dynamics is Cy-equivariant under the + < —
interchange. Periodic orbits separate into two classes, the self-dual configurations +—,
++——, +++———, +——+—++—, - -, with multiplicity mp = 1, and the pairs +, —, ++—,
- — +, ---, with multiplicity my = 2. For example, as there is no absolute distinction
between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.7 (a), the Floquet

multipliers satisfy A, = A_, As+— = A4—_, and so on. exercise 21.5

The symmetry reduced labeling p; € {0,1} is related to the full state space
labeling s € {+, -} by

If s = s.1 then pi=1

If s # s.1 then pi=0 (12.13)
For example, the fixed point+ = --- + + + +--- maps into - --111.-- = 1, and so does
the fixed point —. The 2-cycle —+ = --- - + — +--- maps into fixed point - --000- - - = 0,
and the 4-cycle —+ +—=---— —++ ——+ +--- maps into 2-cycle ---0101--- =01 A

list of such reductions is given in table 12.1.

Next, let us take the old pinball game and ‘quotient’ theestgiace by the
symmetry, or ‘desymmetrize.” As the three disks are eqtadity spaced, our
game of pinball has a sixfold symmetry. For instance, théesyk2,23, and13 in
figure 12.12 are related to each other by rotation:By/3 or, equivalently, by a

relabeling of the disks. We exploit this symmetry by recodias in (12.7). exercise 11.1
exercise 12.6

Example 12.6 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (12.7) fixes the subsequent binary
symbols. Here we list an arbitrary ternary itinerary, and the corresponding binary
sequence:

ternary : 3121312321231323
binary -10101101011010 (12.14)
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Figure 12.12:The 3-disk game of pinball with the
disk radius : center separation ratio a=R1:2.5.

(a) 2-cyclesl?, 13, 23, and 3-cycled23 and132

(not drawn). (b) The fundamental domain, i.e., the
small ¥6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed poinfs 1. See figure 9.6

for cycle10 and further examples. @)

(b)

The first 2 disks initialize the trajectory and its direction; 3 +— 1+ 2+ ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size state space partitions, and are

coded by a single binary sequence. (continued in example 12.7) exercise 12.7

exercise 14.2
Binary symbolic dynamics has two immediate advantages thesternary

one; the prohibition of self-bounces is automatic, and tbding utilizes the
symmetry of the 3-disk pinball game in an elegant manner. exercise 11.2

The 3-disk game of pinball is tiled by six copies of thumdamental domaijn
a one-sixth slice of the full 3-disk system, with the symmeixes acting as
reflecting mirrors, see figure 12.12 (b). Every global 3-disi§ectory has a
corresponding fundamental domain mirror trajectory atediby replacing every
crossing of a symmetry axis by a reflection. Depending on yinengetry of the
full state space trajectory, a repeating binary alphabatkbtorresponds either
to the full periodic orbit or to a relative periodic orbit @xples are shown in
figure 12.12 and table 12.2). A relative periodic orbit cep@nds to a periodic
orbit in the fundamental domain.

Table 12.2 lists some of the shortest binary periodic orhittgether with
the corresponding full 3-disk symbol sequences and orbiinsgtries. For a
number of deep reasons that will be elucidated in chaptdif@is much simpler
in the fundamental domain than in the full system, so wheneessible our
computations will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball: (continued from example 12.6) The
D3 recoding can be worked out by a glance at figure 12.12 (a) (continuation of example 9.14).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by a
disk segment and the two adjacent sections of the symmetry axes that act as mirrors
(see figure 12.12(b)). The three symmetry axes divide the space into six copies of

the fundamental domain. Any trajectory on the full space can be pieced together
from bounces in the fundamental domain, with symmetry axes replaced by flat mirror
reflections. The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has a
simple geometric interpretation, figure 12.2: a collision of type O reflects the projectile

to the disk it comes from (back—scatter), whereas after a collision of type 1 projectile
continues to the third disk. For example, 23 = ---232323 -- maps into - --000--- = 0
(and so do 12 and 13), 123= ---12312--- maps into - --111--- = 1 (and so does 132),

and so forth. Such reductions for short cycles are given in table 12.2, figure 12.12 and
figure 9.7.
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Table 12.2: D3 correspondence between the binary labeled fundamentahidgonime
cyclesp and the full 3-disk ternary labeled cyclpstogether with théds transformation
that maps the end point of thgcycle into the irreducible segment of tipecycle, see
sect. 9.12. Breaks in the above ternary sequences marksepéiae irreducible segment;
for example, the full space 12-cycle 121231312323 conefsi®12 and its symmetry
related segments 3131, 2323. The multiplicitypoéycle ismp = 6ng/np. The shortest
pair of fundamental domain cycles related by time revetsat o spatial symmetry) are
the 6-cycle9901011 and01101.

p p b p p 9%
0 12 012 000001 121212131313 T3
1 123 C 000011 121212313131232323 (2
01 1213 03 000101 121213 e
001 121232313 C 000111 121213212123 12
011 121323 013 001011 121232131323 003
0001 12121313 023 001101 121231323213 13
0011 121231312323 (2 001111  121231232312313123 C
0111 12132123 o12 010111 121312313231232123 (2
00001 121212323231313C 011111 121321323123 13
00011 1212132323 13 0000001 12121212323232313131%
00101 1212321213 012 0000011 12121213232323 013
00111 12123 e 0000101 12121232121213 12
01011 121312321231323C 0000111 1212123 e
01111 1213213123 023 .. e e
Résume

In the preceding and this chapter we start witd-dimensional state space and
end with a 1l-dimensional return map description of the dyinamThe arc-
length parametrization of the unstable manifold maintaines1-to-1 relation of
the full d-dimensional state space dynamics and its 1-dimensiomatnrenap
representation. To high accuraop information about the flow is lodiy its
1-dimensional return map description. We explain why Larequilibria are
heteroclinically connected (it is not due to the symmetan¢d how to generate
all periodic orbits of Lorenz flow up to given length. This we, éh contrast to the
rest of the thesis, without any group-theoretical jargohlitod you with.

For 1-dimensional maps the folding point is the criticalpiand easy to
determine. In higher dimensions, the situation is not sarcleone can attempt
to determine the (fractal set of) folding points by lookirigttzeir higher iterates
- due to the contraction along stable manifolds, the fold getoe exponentially
sharper at each iterate. In practice this set is essentialtpntrollable for the
same reason the flow itself is chaotic - exponential growtéradrs. We prefer to
determine a folding point by bracketing it by longer and lengycles which can
be determined accurately using variational methods ofteh&?9, irrespective of
their period.

For a generic dynamical system a subshift of finite type is ekeeption
rather than the rule. Its symbolic dynamics can be arbigraomplex; even for
the logistic map the grammar is finite only for special parnealues. Only
some repelling sets (like our game of pinball) and a few pureathematical
constructs (called Anosov flows) are structurally stabler-rhost systems of
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interest an infinitesimal perturbation of the flow destrogd/ar creates an infinity

of trajectories, and specification of the grammar requisgsrthination of pruning

blocks of arbitrary length. The repercussions are dran@atct counterintuitive;

for example, the transport ciieients such as the deterministididision constant

of sect. 25.2 are emphaticallyot smooth functions of the system parameters.
Importance of symbolic dynamics is often grossly unappaited; as we shall se&ection 25.2
in chapters 20 and 23, the existence of a finite grammar isrtlotet prerequisite

for construction of zeta functions with nice analyticityoperties. This generic

lack of structural stability is what makes nonlinear dynesrso hard.

The conceptually simpler finite subshift Smale horseshaof&s to motivate
most of the key concepts that we shall need for time being. Sategy is akin
to bounding a real number by a sequence of rational approxénae converge
toward the non—wandering set under investigation by a semguef self-similar
Cantor sets. The rule that everything to one side of the pguftont is forbidden
might is striking in its simplicity: instead of pruning a Ganset embedded within
some larger Cantor set, the pruning front cleanly cuts aarapactregion in the
symbol square, and that is all - there are no additional poumniules. A ‘self-
similar’ Cantor set (in the sense in which we use the word)hisra Cantor set
equipped with asubshift of finite typsymbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules,fegsiding a finite
subsequences; S, . .. $,_. Here the notations; s, . .. $,- stands fom consecutive
symbolss; 1, s, ..., S, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topolaigpruning into
pruning rules for inadmissible sequences; those are ingaiéad by constructing
transition matrices anidr graphs, see chapters 14 and 15.

Commentary

Remark 12.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invariant
manifolds, see Abraham and Shaw [9.11]. Construction cdriant manifolds by map
iteration is described in Simo [12.34]. Fixed point stablenstable manifolds and their
homoclinic and heteroclinic intersections can be compusédg DsTool [12.58, 12.59,
12.60]. Unstable manifold turning points were utilized éfs. [12.12, 22.2, 12.31, 12.32,
12.33] to partition state space and prune inadmissible sysgfjuences. The arclength
parameterized return maps were introduced by Christiagsah [12.62], and utilized
in ref. [12.36]. Even though no dynamical system has beetiesfumore exhaustively
than the Lorenz equations, the analysis of sect. 11.2 is nEle desymmetrization
follows Gilmore and Lettelier [9.14], but the key new ideaagen from Christianseat
al. [12.62]: the arc-length parametrization of the unstablaifoéd maintains the 1-to-1
relation of thefull d-dimensional state space dynamics and its 1-dimensiotahrenap
representation, in contrast to 1-dimensigmajectionsof the (d-1)-dimensional Poincaré
section return maps previously deployed in the literatlr@ther words, to high accuracy
no information about the flow is lobly its 1-dimensional return map description.

Remark 12.2 Smale horseshoe. S.Smale understood clearly that the crucial ingredient
in the description of a chaotic flow is the topology of its naindering set, and he
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provided us with the simplest visualization of such setsissections of Smale horseshoes.
In retrospect, much of the material covered here can alreadlyund in Smale’s fundamental
paper [1.27], but an engineer or a scientist who has run imttweatic time series in his
laboratory might not know that he is investigating the atfdifferentiable) of a Lie group

G on a manifoldM, and that the Lefschetz trace formula is the way to go.

Remark 12.3 Pruning fronts. The ‘partition conjecture’ is due to Grassberger and
Kantz [29.3]. The notion of a pruning front and the ‘prunifignt conjecture’ was
formulated by Cvitanovi@t al.[12.12], and developed by K.T. Hansen for a number of
dynamical systems in his Ph.D. thesis [12.19] and a seripaérs [12.20]-[12.24]. The
‘multimodal map approximation’ is described in the K.T. l4an thesis [12.19]. Hansen’s
thesis is still the most accessible exposition of the prgrireory and its applications.
Detailed studies of pruning fronts are carried out in ref2.13, 12.15, 12.14]; ref. [29.5]
is the most detailed study carried out so far. The rigoroasmof pruning fronts has
been developed by Y. Ishii [12.16, 12.17] for the Lozi mapd @& de Carvalho [12.18]

in a very general setting. Beyond the orbit pruning and ifimity of admissible unstable
orbits, an attractor of H&non type may also own an infinitptfactive orbits coexisting
with the strange attractor [12.63, 12.64]. Wgeo heuristic arguments and numerical
evidence that the coexistence of attractive orbits doedesgitoy the strange attract@peller,
which is also in this case described by the @imensionabanish pastry plot.
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Exercises

12.1. A Smale horseshoe. The Hénon map of example 3.7

/I

maps the X, y] plane into itself - it was constructed

by Hénon [3.6] in order to mimic the Poincaré section

of once-folding map induced by a flow like the one
sketched in figure 11.10. For definitiveness fix thg2 3.
parametersta=6,b = —1.

1-ax + by

. (12.15)

a) Draw a rectangle in thex(y) plane such that
its nth iterate by the Hénon map intersects the
rectangle 2 times.

b) Construct the inverse of the (12.15).

c) lterate the rectangle back in the time; how many
intersections are there between thiorward and 12.4.
mbackward iterates of the rectangle?

d) Use the above information about the intersections
to guess thex y) coordinates for the two fixed
points, a 2-periodic point, and points on the two
distinct 3-cycles from table 15.1. The exact
periodic points are computed in exercise 13.13.

12.2. Kneading Danish pastry. Write down the g y) —
(%, y) mapping that implements the baker's map

cuT
\ ]
l LEFTFO . ,»’\qaennz
- Y
- H A R )l
fixad point 1 I
= ; AN 8
| A
———————————— S e
\\ i
o ) 12.5.

0™ fixed point

al
1ot

100
-}

000} ¢

1

no

FIG. 4. Tterative construction of the symbol plane.

Figure: Kneading danish pastry: symbol square
representation of an orientation reversing once-folding
map obtained by fattening the Smale horseshoe

exerSmale - 20nov2009

intersections of figure 12.4 into a unit square. In
the symbol square the dynamics maps rectangles into
rectangles by a decimal point shifttogether with the

inverse mapping. Sketch a few rectangles in symbol
square and their forward and backward images. (Hint:
the mapping is very much like the tent map (11.4)).

Kneading danish without flipping.  The baker’s map

of exercise 12.2 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the &y) — (X y) mapping that implements an
orientation preserving baker's map (no flip; Jacobian
determinant 1). Sketch and label the first few folds
of the symbol square.

Orientation reversing once-folding map. By adding
areflection around the vertical axis to the horseshoe map
g we get the orientation reversing mggsfiown in the
second Figure abové&), andQ; are oriented ag), and

Q1, so the definition of the future topological coordinate
v is identical to they for the orientation preserving
horseshoe. The inverse intersectidpg and Q;* are
oriented so tha@Q,! is opposite taQ, while Q;* has the
same orientation a®. Check that the past topological
coordinate’ is given by

1-w, ifs,=0
Wn-1 = {Wn " |f:=1’ Wo = %o
§(X) = OWGW_W_p...= Zwl_n/zn (12.16)
n=1

Infinite symbolic dynamics. Let o be a function
that returns zero or one for every infinite binary string:
o {0, — {0,1). Its value is represented by
o(e, €,...) where theg are either 0 or 1. We will
now define an operatdr that acts on observables on the
space of binary strings. A functiamis an observable if

it has bounded variation, that is, if

llall = suplaer, €2, ...)| < .
{ei}

For these functions

T ales, e,...) a0, e, e,...)0(0, €, e,...)

+a(l, e, e,... )01, a,6e,...).
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(a) (easy) Consider a finite versidp of the operator

T
Tna(él, €,..., 61,n) =
a0, €1, €,...,61-1)0(0,€1, €2, ..., 60-1) +
a(l, e, e,...,e-1)0(L, e, €, ...,61-1).

Show thatT, is a 2" x 2" matrix. Show that its

trace is bounded by a number independent. of

(b) (medium) With the operator norm induced by the
function norm, show that is a bounded operator.

(c) (hard) Show thaf™ is not trace class.

12.6. 3-disk fundamental domain cycles. (continued

References

. 3-disk pruning.

in the fundamental domain, and interpret the symbols
{0,1} by relating them to topologically distinct types
of collisions. Compare with table 12.2. Then try to
sketch the location of periodic points in the Poincaré
section of the billiard flow. The point of this exercise
is that while in the configuration space longer cycles
look like a hopeless jumble, in the Poincaré section they
are clearly and logically ordered. The Poincaré section
is always to be preferred to projections of a flow onto
the configuration space coordinates, or any other subse
of state space coordinates which does not respect the
topological organization of the flow.

(Not easy) Show that for 3-disk
game of pinball the pruning of orbits startsRit a =
2.04821419. ., figure 11.6. (K.T. Hansen)
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