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narrow; we keep the exposition focused on prerequisitebe@pplications to

be developed in this text. We assume that the reader is &amith dynamics
on the level of the introductory texts mentioned in remark, &nd concentrate here on
developing intuition about what a dynamical system can dowill be a coarse brush
sketch—a full description of all possible behaviors of dyiwal systems is beyond human
ken. While for a novice there is no shortcut through this tepgletour, a sophisticated
traveler might bravely skip this well-trodden territorycaembark upon the journey at
chapter 15.

WE START OUT With a recapitulation of the basic notions of dynamics. Oun &

The fate has handed you a flow. What are you to do about it?

1. Define yourdynamical systergM, f): the space of its possible statd$, and the
law f! of their evolution in time.

2. Pinit down locally—is there anything about it that is ista&ry? Try to determine its
equilibria/fixed pointgChapter 2).

3. Slice it, represent as a map from a section to a sectionp{€ha).

4. Explore the neighborhood Biearizing the flow—check thdinear stability of its
equilibria/ fixed points, their stability eigen-directions (Chapter 4)

5. Go global: partition the state spacef 1-dimensional maps. Label the regions by
symbolic dynamic&Chapter 11).

6. Now venture global distances across the system by camgreigenvectors into
stable/ unstable manifolds Their intersectiongartition the state spacén a
dynamically invariant way (Chapter 12).

7. Guided by this topological partition, compute a sepefiodic orbitsup to a given
topological length (Chapter 13).

Along the way you might want to learn about dynamical invatsa(chapter 5), nonlinear
transformations (chapter 6), classical mechanics (chaftebilliards (chapter 8), and
discrete (chapter 9) and continuous (chapter 10) symrsaifidynamics.
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Chapter 1

Overture

If | have seen less far than other men it is because | have
stood behind giants.
—Edoardo Specchio

holes large enough to steam a Eurostar train through theme e learn

about harmonic oscillators and Keplerian ellipses - butreligethe chapter
on chaotic oscillators, the tumbling Hyperion? We have gugintized hydrogen,
where is the chapter on the classical 3-body problem andrfsidations for
quantization of helium? We have learned that an instantensislution of field-
theoretic equations of motion, but shouldn’t a stronglylimear field theory have
turbulent solutions? How are we to think about systems wttengs fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sensehtba aire

This chapter fiers a quick survey of the main topics covered in the book.
Throughout the book

%3% indicates that the section is on a pedestrian level - you gpeated to
know/learn this material

@ indicates that the section is on a somewhat advanced, tchasled

,
J indicates that the section requires a hearty stomach ancbimlply best
skipped on first reading

W fast track points you where to skip to

3 tells you where to go for more depth on a particular topic

[exercise 1.2] on margin links to an exercise that might clarify a point ie thxt



indicates that a figure is still missing—you are urged toHfétc

We start out by making promises—we will right wrongs, no lenghall you sffer
the slings and arrows of outrageous Science of Perplexigralégate a historical
overview of the development of chaotic dynamics to appeAdand head straight
to the starting line: A pinball game is used to motivate ahgitate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you shewddle to follow
the thread of the argument without constant excursionsuses. Hence there are
no literature references in the text proper, all learnedar&sand bibliographical
pointers are relegated to the “Commentary” section at tideoeach chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
SOrrows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton'’s first frustraf@mgl unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is mcéyistems governed
by simple deterministic laws whose asymptotic dynamicscamaplex beyond
belief, systems which are locally unstable (almost) evésng but globally recurrent.
How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a detarthitake a
logarithm. It would hardly merit a learned treatise, wengoit for the fact that this
determinant that we are to compute is fashioned out of iefinitnany infinitely
small pieces. The feel is of statistical mechanics, and ithabw the problem
was solved; in the 1960’s the pieces were counted, and in9f@'d they were
weighted and assembled in a fashion that in beauty and im dapks along with
thermodynamics, partition functions and path integralemagst the crown jewels
of theoretical physics.

This book isnot a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, shortet dynamically invariant
compact sets (equilibria, periodic orbits, partially hgaic invariant tori) and
the global long-time evolution of densities of trajectsrieChaotic dynamics is
generated by the interplay of locally unstable motions, gnedinterweaving of
their global stable and unstable manifolds. These feaarebust and accessible
in systems as noisy as slices of rat brains. Poincaré, stédiunderstand deterministic
chaos, already said as much (modulo rat brains). Once fhoéagy is understood,
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a powerful theory yields the observable consequences atichdynamics, such
as atomic spectra, transport €ibgents, gas pressures.

That is what we will focus on in ChaosBook. The book is a selitained
graduate textbook on classical and quantum chaos. Youegsof does not know
this material, so you are on your own. We will teach you how valgate a
determinant, take a logarithm—fitlike that. Ideally, this should take 100 pages
or so. Well, we fail-so far we have not found a way to travelse inaterial in
less than a semester, or 200-300 page subset of this textingdd be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did statt with the
widespread use of the personal computer. Chaotic systevesblesn studied for
over 200 years. During this time many have contributed, badield followed no
single line of development; rather one sees many interwetramds of progress.

In retrospect many triumphs of both classical and quantugsipk were a
stroke of luck: a few integrable problems, such as the harnascillator and
the Kepler problem, though ‘non-generic,’ have gotten uy var. The success
has lulled us into a habit of expecting simple solutions toEé equations—an
expectation tempered by our recently acquired ability tmercally scan the state
space of non-integrable dynamical systems. The initiak@sgion might be that
all of our analytic tools have failed us, and that the chasystems are amenable
only to numerical and statistical investigations. Neveldls, a beautiful theory
of deterministic chaos, of predictive quality comparaldehat of the traditional
perturbation expansions for nearly integrable systemsady exists.

In the traditional approach the integrable motions are wederoth-order
approximations to physical systems, and weak nonlineargire then accounted
for perturbatively. For strongly nonlinear, non-integeabystems such expansions
fail completely; at asymptotic times the dynamics exhibitsazingly rich structure
which is not at all apparent in the integrable approximatiorlowever, hidden
in this apparent chaos is a rigid skeleton, a self-similee tof cycles(periodic
orbits) of increasing lengths. The insight of the modernastgital systems theory
is that the zeroth-order approximations to the harshly thatynamics should
be very diferent from those for the nearly integrable systems: a goedirsg
approximation here is the stretching and folding of bakéoagh, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get satiregéor how
and why unstable cycles come about, we start by playing a géupiaball. The
reminder of the chapter is a quick tour through the mateaaéoed in ChaosBook.
Do not worry if you do not understand every detail at the fiesiding—the intention
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Figure 1.1: A physicist's bare bones game of pinball

is to give you a feeling for the main themes of the book. Detaill be filled out
later. If you want to get a particular point clarified rightwg@section 1.4] on the section 1.4
margin points at the appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read the
rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surpris@yone who has tried
pool, billiards or snooker—the game is about beating clemsve start our story
about what chaos is, and what to do about it, with a gan@rdfall. This might
seem a trifle, but the game of pinball is to chaotic dynamicatvehpendulum is
to integrable systems: thinking clearly about what ‘chdnsa game of pinball
is will help us tackle more diicult problems, such as computing thefdsion
constant of a deterministic gas, the dragfiiogent of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bmesramong the
pinball machine’s disks, and only high-school level Euefid geometry is needed
to describe its trajectory. A physicist’'s pinball game is tame of pinball strip-
ped to its bare essentials: three equidistantly placedcteftedisks in a plane,
figure 1.1. A physicist’s pinball is free, frictionless, ptiike, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot adigles from random starting
positions and angles; they spend some time bouncing bettheatisks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelraibniz was
confident that given the initial conditions one knew eveingha deterministic
system would do far into the future. He wrote [1.2], antitipa by a century and
a half the oft-quoted Laplace’s “Given for one instant aeliilgence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an establisheding$s just
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Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other separate
exponentially with time. 2313

as certain as that three times three is nine. [...] If, fomexi, one sphere
meets another sphere in free space and if their sizes armdpitkis and
directions before collision are known, we can then foreaeltl calculate
how they will rebound and what course they will take afterithpact. Very
simple laws are followed which also apply, no matter how msplgeres
are taken or whether objects are taken other than spheres this one
sees then that everything proceeds mathematically—thafadlibly—in the
whole wide world, so that if someone could have #isient insight into
the inner parts of things, and in addition had remembranderdelligence
enough to consider all the circumstances and to take therastdount, he
would be a prophet and would see the future in the presentaminror.

Leibniz chose to illustrate his faith in determinism pretyswith the type of
physical system that we shall use here as a paradigm of ‘Chélis claim is
wrong in a deep and subtle way: a state of a physical systemesaambe specified
to infinite precision, and by this we do not mean that evehtubk Heisenberg
uncertainty principle kicks in. In the classical, deterigiic dynamics there is no
way to take all the circumstances into account, and a simgjectory cannot be
tracked, only a ball of nearby initial points makes physgeise.

1.3.1 Whatis ‘chaos’?

| accept chaos. | am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present stat@iinciple fully determined
by its initial conditions, in contrast to a stochastic syste

For a stochastic system the initial conditions determieduture only partially,
due to noise, or other external circumstances beyond ouraiorithe present
state reflects the past initial conditions plus the pariicubalization of the noise
encountered along the way.

A deterministic system with shiciently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling therdenistic from the
stochastic is the main challenge in many real-life settifigsm stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?
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Figure 1.3: Unstable trajectories separate with time. x(0) X(1)

In a game of pinball, any two trajectories that start out velgse to each
other separate exponentially with time, and in a finite (amgbriactice, a very
small) number of bounces their separatixit) attains the magnitude df, the
characteristic linear extent of the whole system, figure 1This property of
sensitivity to initial conditiongan be quantified as

lx(t)| ~ e"16x(0)|

where 1, the mean rate of separation of trajectories of the systeroalled the
Lyapunov exponentFor any finite accuracyx = |6x(0)| of the initial data, the section 17.3
dynamics is predictable only up to a finitgapunov time

1
TiLyap ~ ) Injox/LI, (1.2)

despite the deterministic and, for Baron Leibniz, infadilsimple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to ch&mse could try
to play 1- or 2-disk pinball game, but it would not be much obang; trajectories
would only separate, never to meet again. What is also nesdmiking the
coming together again and again of trajectories. Whilellptiae nearby trajectories
separate, the interesting dynamics is confined to a globaltg region of the state
space and thus the separated trajectories are necessétiyg back and can re-
approach each other arbitrarily closely, infinitely mamyds. For the case at hand
there are 2topologically distinctn bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectorieghw bounces can be
quantified as section 15.1

N(n) ~ €M

whereh, the growth rate of the number of topologically distinctjédories, is
called the‘topological entropy” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in dat@stic dynamics
there is no chaos in the everyday sense of the word; evegytinoteeds mathematically—
that is, as Baron Leibniz would have it, infallibly. When aypltist says that a
certain system exhibits ‘chaos,” he means that the systeysaketerministic laws
of evolution, but that the outcome is highly sensitive to Bmacertainties in the
specification of the initial state. The word ‘chaos’ has iis ttontext taken on a
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Figure 1.4: Dynamics of achaotic dynamical

system is (a) everywhere locally unstable (positive $
Lyapunov exponent) and (b) globally mixing
(positive entropy). (A. Johansen) @) (b)

narrow technical meaning. If a deterministic system is llgaastable (positive
Lyapunov exponent) and globally mixing (positive entregigure 1.4—it is said
to bechaotic

While mathematically correct, the definition of chaos assifiee Lyapunov
+ positive entropy’ is useless in practice, as a measurenighese quantities is
intrinsically asymptotic and beyond reach for systems ofeskin nature. More
powerful is Poincaré’s vision of chaos as the interplayoofl instability (unstable
periodic orbits) and global mixing (intertwining of thetable and unstable manifolds).
In a chaotic system any open ball of initial conditions, naterehow small, will
in finite time overlap with any other finite region and in thense spread over the
extent of the entire asymptotically accessible state sp@uee this is grasped,
the focus of theory shifts from attempting to predict indival trajectories (which
is impossible) to a description of the geometry of the spdgmssible outcomes,
and evaluation of averages over this space. How this is guisimd is what
ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Iniwety, the word
refers to irregular behavior of an infinite-dimensional dymcal system described
by deterministic equations of motion—say, a bucket of staslvater described by
the Navier-Stokes equations. But in practice the word tlahbce’ tends to refer
to messy dynamics which we understand poorly. As soon as ropienon is
understood better, it is reclaimed and renamed: ‘a routbdo<, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamicofe dimens-
ional attractors visualized as a succession of nearly gierlmt unstable motions.
In the same spirit, we shall think of turbulence in spati@ktended systems in
terms of recurrent spatiotemporal patterns. Pictoriaiynamics drives a given
spatially extended system (clouds, say) through a repertdiunstable patterns;
as we watch a turbulent system evolve, every so often we @atglhmpse of a
familiar pattern:

9@)’9‘5
| other swirls —>

)

For any finite spatial resolution, a deterministic flow fallo approximately for a
finite time an unstable pattern belonging to a finite alphabatimissible patterns,
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and the long term dynamics can be thought of as a walk thrdugbkgace of such
patterns. In ChaosBook we recast this image into mathesatic

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical
fractals.

— Richard P. Taylor [1.4, 1.5]

When should we be mindful of chaos? The solar system is ‘atiaget
we have no trouble keeping track of the annual motions ofgitan The rule
of thumb is this; if the Lyapunov time (1.1)-the time by whiahstate space
region initially comparable in size to the observationatuaacy extends across
the entire accessible state space—is significantly shtréer the observational
time, you need to master the theory that will be developeé.heiThat is why
the main successes of the theory are in statistical mechanantum mechanics,
and questions of long term stability in celestial mechanics

In science popularizations too much has been made of thecingbachaos
theory,” so a number of caveats are already needed at this poi

At present the theory that will be developed here is in pcactipplicable only
to systems of a low intrinsidimension— the minimum number of coordinates
necessary to capture its essential dynamics. If the syserary turbulent (a
description of its long time dynamics requires a space df higrinsic dimension)
we are out of luck. Hence insights that the theoffiis in elucidating problems of
fully developed turbulence, quantum field theory of stromigriactions and early
cosmology have been modest at best. Even that is a caveatjudttfications.
There are applications—such as spatially extended (noifiggum) systems, plumber’s
turbulent pipes, etc.,—where the few important degreeseeflom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success whpliegto the very
noisy systems so important in the life sciences and in ec@sonitven though
we are often interested in phenomena taking place on timessoauch longer
than the intrinsic time scale (neuronal inter-burst indésy cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmentaisechas been very hard.

In 1980’s something happened that might be without pardhed is an area of
science where the advent of cheap computation had actwddtyasted from our
collective understanding. The computer pictures and nizadeplots of fractal
science of the 1980’'s have overshadowed the deep insightseeaf970's, and
these pictures have since migrated into textbooks. By ettedple oversight,
ChaosBook has none, so ‘Untitled 5’ of figure 1.5 will have ¢cad the illustration
of the power of fractal analysis. Fractal science posit$ teatain quantities remark 1.6
(Lyapunov exponents, generalized dimensions, . ..) castbae&ed on a computer.
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5, the
drawing used by K. Jones-Smith and R.P. Taylor to te==]
the fractal analysis of Pollock’s drip paintings [1.6].

While some of the numbers so obtained are indeed mathenhatieasible character-
izations of fractals, they are in no sense observable anduraale on the length-
scales and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal gégnud nature is
circumstantial [1.7], in studies of probabilistically assbled fractal aggregates
we know of nothing better than contemplating such quastitien deterministic
systems we can dmuchbetter.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fastenseat belts
and turn df all electronic devices. But first, a disclaimer: If you urgtand the
rest of this chapter on the first reading, you either do nod itleis book, or you are
delusional. If you do not understand it, it is not becausepi@ple who figured
all this out first are smarter than you: the most you can hopatfthis stage is to
get a flavor of what lies ahead. If a statement in this chaptestifregintrigues,
fast forward to a section indicated by [section ...] on thegim read only the
parts that you feel you need. Of course, we think that you teézhrn ALL of it,
or otherwise we would not have included it in ChaosBook infitst place.

Confronted with a potentially chaotic dynamical systent,analysis proceeds
in three stages; |. diagnose, Il. count, lll. measure. Fingt determine the
intrinsic dimensiorof the system—the minimum number of coordinates necessary
to capture its essential dynamics. If the system is veryuterti we are, at present,
out of luck. We know only how to deal with the transitional ireg between
regular motions and chaotic dynamics in a few dimensionat iBstill something;
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Figure 1.6: Binary labeling of the 3-disk pinball 0 ' ]
trajectories; a bounce in which the trajectory returns

to the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

even an infinite-dimensional system such as a burning flaom¢ éan turn out to

have a very few chaotic degrees of freedom. In this regimeh@etic dynamics

is restricted to a space of low dimension, the number of egieparameters is

small, and we can proceed to step Il; @gintandclassifyall possible topologicallghapter 11
distinct trajectories of the system into a hierarchy whaggessive layers requirehapter 15
increased precision and patience on the part of the obseFes we shall do in

sect. 1.4.2. If successful, we can proceed with step llkestigate theveightsof

the diferent pieces of the system.

We commence our analysis of the pinball game with steps Iliignose,
count. We shall return to step lll-measure—in sect. 1.5. thhee sections thatchapter 20
follow are highly technical, they go into the guts of what the book is about. Is
today is not your thinking day, skip them, jump straight totsé.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck—it is a low dimensiosgktem, free

motion in a plane. The motion of a point particle is such tHagraa collision

with one disk it either continues to another disk or it escapk we label the

three disks by 1, 2 and 3, we can associate every trajectahyamiitinerary, a
sequence of labels indicating the order in which the diskyaited; for example,

the two trajectories in figure 1.2 have itinerari@813, 23132321 respectively. exercise 1.1
Such labeling goes by the narsgmbolic dynamicsAs the particle cannot collidesection 2.1
two times in succession with the same disk, any two consersiimbols must

differ. This is an example gfruning a rule that forbids certain subsequences

of symbols. Deriving pruning rules is in general &idult problem, but with the

game of pinball we are lucky—for well-separated disks tlaeeeno further pruning

rules. chapter 12

The choice of symbols is in no sense unique. For example, escatbounce
we can either proceed to the next disk or return to the previisk, the above
3-letter alphabet can be replaced by a bin@yi} alphabet, figure 1.6. A clever
choice of an alphabet will incorporate important featuriethe dynamics, such as
its symmetries. section 11.6

Suppose you wanted to play a good game of pinball, that isthgepinball
to bounce as many times as you possibly can—what would berangistrategy?
The simplest thing would be to try to aim the pinball so it boem many times
between a pair of disks—if you managed to shoot it so it startsn the periodic
orbit bouncing along the line connecting two disk centersyauld stay there
forever. Your game would be just as good if you managed to tgtt keep
bouncing between the three disks forever, or place it on @nipgic orbit. The
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Figure 1.7: The 3-disk pinball cycled232 and
121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitti
two disks in a sequence requires a much sharper
with initial conditions that hit further consecutive disk
nested within each other, as in Fig. 1.9.

only rub is that any such orbit isnstable so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear tii@ne is interested in
playing well, unstable periodic orbits are important—thesmn the skeleton onto
which all trajectories trapped for long times cling.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting positi and momentum. We
shall sometimes refer to the set of periodic points thatrzpto a given periodic
orbit as acycle

Short periodic orbits are easily drawn and enumerated—ampbe is drawn
in figure 1.7—but it is rather hard to perceive the systeraaifoorbits from their
configuration space shapes. In mechanics a trajectorylysdiodl uniquely specified
by its position and momentum at a given instant, and no twiindisstate space
trajectories can intersect. Their projections onto aabjtrsubspaces, however,
can and do intersect, in rather unilluminating ways. In tivdall example the
problem is that we are looking at the projections of a 4-dish@mal state space
trajectories onto a 2-dimensional subspace, the configarapace. A clearer
picture of the dynamics is obtained by constructing a setatésspace Poincaré
sections.

Suppose that the pinball has just bouncé&dlsk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. tNoth happens in
between the bounces—the ball just travels at constantityeldong a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional Prtapt takes the
coordinates of the pinball from one disk edge to another élikle. The trajectory
just after the moment of impact is defined by the arc-length position of the
nth bounce along the billiard wall, ang, = psing, the momentum component
parallel to the billiard wall at the point of impact, see figur.9. Such section of a
flow is called aPoincaré section In terms of Poincaré sections, the dynamicsei&mple 3.2
reduced to the set of sixaps R, : (S, Pn) = (Shr1, Pnsa), With s € {1, 2,3},
from the boundary of the diskto the boundary of the next disgk section 8
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with Xo = (S, Po) - (&) Strips of initial points

M2, Miz which reach disks 2, 3 in one bounce,

23 \131

respectively. (b) Strips of initial point&1;21, Miz1
M3 and M3 which reach disks 1, 2, 3 in two
bounces, respectively. The Poincaré sections for
trajectories originating on the other two disks are
obtained by the appropriate relabeling of the strips. ) )
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Next, we mark in the Poincaré section those initial condgi which do not

wo

escape in one bounce. There are two strips of survivorsedsdjlectories originating
from one disk can hit either of the other two disks, or escajleout further ado.
We label the two strips\li2, M13. Embedded within them there are four strips
Ma21, Ma2s, Miz1, Mizp of initial conditions that survive for two bounces, and
so forth, see figures 1.8 and 1.9. Provided that the diskauéieisntly separated,
after n bounces the survivors are divided int® @stinct strips: theM;th strip
consists of all points with itinerary = $15S3... S, S = {1,2,3}. The unstable
cycles as a skeleton of chaos are almost visible here: eathmaich contains
a periodic points;$S3. .. S, with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further atfueiy the strips shrink

but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it pded a navigation

chart through chaotic state space. There exists a uniqiextoey for every

admissible infinite length itinerary, and a unique itingréabels every trapped
trajectory. For example, the only trajectory labeledlldyis the 2-cycle bouncing

along the line connecting the centers of disks 1 and 2; arer dthjectory starting
outas 12.. either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate

What is a good physical quantity to compute for the game oball? Such
a system, for which almost any trajectory eventually leawdmite region (the
pinball table) never to return, is said to be open, a@eller. The repellelescape
rate is an eminently measurable quantity. An example of such asurement
would be an unstable molecular or nuclear state which candtleapproximated
by a classical potential with the possibility of escape irtaia directions. In an
experiment many projectiles are injected into a macroscopack box’ enclosing

example 17.4

a microscopic non-confining short-range potential, and thean escape rate is

measured, as in figure 1.1. The numerical experiment mighgisbof injecting
the pinball between the disks in some random direction akthghow many

times the pinball bounces on the average before it escapesdion between the

disks.

For a theorist, a good game of pinball consists in predicingurately the
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asymptotic lifetime (or the escape rate) of the pinball. \&& show how periodic
orbit theory accomplishes this for us. Each step will be sop that you can
follow even at the cursory pace of this overview, and st#l tasult is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial comlitiget thinned
out, yielding twice as many thin strips as at the previousniceu The total area
that remains at a given time is the sum of the areas of thesstpthat the fraction
of survivors aftem bounces, or theurvival probabilityis given by

- Mol  IMq] - Mool [Miol  IMoal  [IMaa
—_— I, = + + + ,

MM 2TOME I T TIME T M

1 (n)

— - 1.2

N Z M. (1.2)

wherei is a label of theth strip, M| is the initial area, andiM;| is the area of

theith strip of survivors.i = 01,10, 11,... is a label, not a binary number. Since

at each bounce one routinely loses about the same fractitrajettories, one
expects the sum (1.2) to falffttexponentially withn and tend to the limit chapter 22

fn+1/fn = e_y"‘ g e_y. (13)

The quantityy is called theescape ratérom the repeller.

1.5 Chaos for cyclists

Etant données des équations ... et une solution paéieuli
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vraigé
trés longue), telle que lafilerence entre les deux solutions
soit aussi petite qu’on le veut, pendant un temps aussi long
qu’on le veut. D’ailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c'est qu’elles sont, pour ans
dire, la seule bréche par ol nous puissions esseyer de
pénétrer dans une place jusqu’ici réeputée inabordable

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape ratean be extracted from a highly convergent
exact expansion by reformulating the sum (1.2) in terms of unstgi@riodic
orbits.

If, when asked what the 3-disk escape rate is for a disk otigadlj center-
center separation 6, velocity 1, you answer that the cootisuime escape rate
is roughlyy = 0.4103384077693464893384613078192 you do not need this
book. If you have no clue, hang on.
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x(t) 0% = I '5x(0)

Figure 1.10: The Jacobian matrixJ® maps an X(O)
infinitesimal displacemerdix at X into a displacement
J(x0)5x finite timet later. ox(0

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological exidg of the strips,
but, as we shall now show, they also determine their size. tfaectory evolves,
it carries along and distorts its infinitesimal neighborthobet

X(t) = f'(x)

denote the trajectory of an initial poih = x(0). Expandingf(xp + 6Xo) to
linear order, the evolution of the distance to a neighbotiagectoryx;(t) + 6x;(t)
is given by the Jacobian matrik

ox0)

o (1.4)

d
o = > Foohoxo. I =
i=1

A trajectory of a pinball moving on a flat surface is specifigdtlyo position
coordinates and the direction of motion, so in this cdse 3. Evaluation of
a cycle Jacobian matrix is a long exercise - here we just st@eesult. The section 8.2
Jacobian matrix describes the deformation of an infinitasineighborhood of
X(t) along the flow; its eigenvectors and eigenvalues give thections and the
corresponding rates of expansion or contraction, figur@.IThe trajectories that
start out in an infinitesimal neighborhood separate aloegutiistable directions
(those whose eigenvalues are greater than unity in magnjtagpproach each
other along the stable directions (those whose eigenvauedess than unity
in magnitude), and maintain their distance along the mardiirections (those
whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectorsedafocused along
the unstable eigen-direction of the Jacobian matrix

As the heights of the strips in figure 1.9 arffeetively constant, we can
concentrate on their thickness. If the heighti&, then the area of thi¢h strip is
M; ~ LI; for a strip of widthl;.

Each stripi in figure 1.9 contains a periodic poirt. The finer the intervals,
the smaller the variation in flow across them, so the cortiohufrom the strip
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of width I; is well-approximated by the contraction around the pedqgubint x;
within the interval,

li = a/IAil, (1.5)

where A; is the unstable eigenvalue of the Jacobian mali{x;) evaluated at

theith periodic point fort = Ty, the full period (due to the low dimensionality,

the Jacobian can have at most one unstable eigenvalue). tl@nipagnitude of

this eigenvalue matters, we can disregard its sign. Theagiwka reflect the

overall size of the system and the particular distributibstarting values ok. As

the asymptotic trajectories are strongly mixed by bouncimgotically around the

repeller, we expect their distribution to be insensitivestoooth variations in the
distribution of initial points. section 16.4

To proceed with the derivation we need thgperbolicity assumption: for
large n the prefactorsy ~ O(1) are overwhelmed by the exponential growth of
Aj, so we neglect them. If the hyperbolicity assumption isfiest, we can replacesection 18.1.1
IMi| ~ Llj in (1.2) by J/|A;] and consider the sum

(n)

T =), L/IAil,

where the sum goes over all periodic points of periotlve now define a generating
function for sums over all periodic orbits of all lengths:

I'(2) = i . (1.6)
n=1

Recall that for largen the nth level sum (1.2) tends to the lindiy, — e, so the
escape ratg is determined by the smallest € for which (1.6) diverges:

ze?’
1-ze7r’

INCAES i (ze)" = (1.7)
n=1

This is the property of (2) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of perioditsorb

(n)
N

Me
N,

I'(2

z,z,z 2z 2z z
Aol  IA1l  |Aocol 1Ao1l  |IA10l  |A11l
z z z z

+ + + + +...
|Aood  [Acodl  |Aoid  |Azod

(1.8)
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For suficiently smallz this sum is convergent. The escape raig now given by section 18.3
the leading pole of (1.7), rather than by a numerical extetmm of a sequence

of y, extracted from (1.3). As any finite truncation < ngync of (1.8) is a
polynomial inz, convergent for any, finding this pole requires that we know
something abouft,, for anyn, and that might be a tall order.

We could now proceed to estimate the location of the leadingugarity
of I'(2) from finite truncations of (1.8) by methods such as Padé&aqimants.
However, as we shall now show, it pays to first perform a simegimmation
that converts this divergence int@aroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces prime cycler times, its expanding eigenvalue[rép. A
prime cyclep is a single traversal of the orbit; its label is a non-repepgymbol
string of n, symbols. There is only one prime cycle for each cyclic peatioi
class. For examplgy = 0011=1001= 1100= 0110 is prime, bub101= 01 is not.

By the chain rule for derivatives the stability of a cyclelig tsame everywhereexercise 15.2
along the orbit, so each prime cycle of lengthcontributesn,, terms to the sumsection 4.5
(1.8). Hence (1.8) can be rewritten as

i 7 \' nptp Zp
'@ = anZ (m) = T tp = . (1.9)
p r=1 p p p p

where the indexp runs through all distincprime cycles. Note that we have
resummed the contribution of the cyqéo all times, so truncating the summation
up to givenp is nota finite timen < n, approximation, but an asymptoticfinite
time estimate based by approximating stabilities of alleyby a finite number of
the shortest cycles and their repeats. Tip#" factors in (1.9) suggest rewriting
the sum as a derivative

d
r@=-zg Zp: In(1-tp).

Hencel (2) is a logarithmic derivative of the infinite product

Zp

1:@ =] |@-tp),
p

This function is called thelynamical zeta functignin analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definitios H/(2). This is the
prototype formula of periodic orbit theory. The zero ¢¢ () is a pole ofl'(2),
and the problem of estimating the asymptotic escape rates finite n sums
such as (1.2) is now reduced to a study of the zeros of the dgahmeta function
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(1.10). The escape rate is related by (1.7) to a divergenc&pfandl’(2) diverges section 22.1
whenever 1£(2) has a zero. section 19.4

Easy, you say: “Zeros of (1.10) can be redtitbe formula, a zero

for each term in the product. What'’s the problem?” Dead wrong

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computimdetigths and
eigenvalues of the shortest cycles. This usually requioesesnumerical work,

such as the Newton method searches for periodic solutioashall assume that

the numerics are under control, and th#itshort cycles up to given length have

been found. In our pinball example this can be done by elesmgigeometrical chapter 13
optics. It is very important not to miss any short cycles,hesdalculation is as

accurate as the shortest cycle dropped—including cyclegelothan the shortest

omitted does not improve the accuracy (unless expongntiadiny more cycles

are included). The result of such numerics is a table of tletsst cycles, their

periods and their stabilities. section 29.3

Now expand the infinite product (1.10), grouping together tifrms of the
same total symbol string length

1/¢ (1 —to)(1 —t1)(1 - t10)(1 —typ0) - -
= 1-to—t1 —[tio— tato] — [(tro0 — taoto) + (tr01 — tiot1)]
—[(tz000 - tot100) + (t1110— tat110)

+(t1001 — tatoo1 — tioato + tiotots)] — ... (1.11)

The virtue of the expansion is that the sum of all terms of #iaestotal length chapter 20
n (grouped in brackets above) is a number that is expongnsatialler than a
typical term in the sum, for geometrical reasons we explaifé next section. section 20.1

The calculation is now straightforward. We substitute adiset of the eigenvalues
and lengths of the shortest prime cycles into the cycle esipar{1.11), and obtain
a polynomial approximation to/Z. We then varyz in (1.10) and determine the
escape rate by finding the smallest = € for which (1.11) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you fimtl out that the
convergence is very impressive: only three input numbéest(to fixed point®,
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, togethe
with their linearized neighborhoods, (right frame]
Indicated are segments of two 1-cycles and a 2-cy«
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, at
then the other.

1 and the 2-cycld0) already yield the pinball escape rate to 3-4 significagitsd
We have omitted an infinity of unstable cycles; so why does@pmating the section 20.2.2
dynamics by a finite number of the shortest cycle eigenvakak so well?

The convergence of cycle expansions of dynamical zetaifurscts a consequence
of the smoothness and analyticity of the underlying flow. uilintely, one can
understand the convergence in terms of the geometricairpisketched in figure 1.11;
the key observation is that the long orbits armdowedy sequences of shorter
orbits.

Atypical termin (1.11) is a dierence of a long cyclgb} minus its shadowing
approximation by shorter cyclga} and{b}

Aap
tab — tath = tan(1 — tatp/tan) = tan 1—‘ 2 ‘ : (1.12)
AalAp

wherea andb are symbol sequences of the two shorter cycles. If all oebis
weighted equallyt, = z™), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in st@hbinations almost
cancel.

This can be understood in the context of the pinball gamelisv® Consider
orbits0, 1 and01. The first corresponds to bouncing between any two diskig wh
the second corresponds to bouncing successively aroutttred,, tracing out an
equilateral triangle. The cyclel starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk@so on, so its
itinerary is2321. In terms of the bounce types shown in figure 1.6, thedtajy is
alternating between 0 and 1. The incoming and outgoing anghen it executes
these bounces are very close to the corresponding anglésafat 1 cycles. Also
the distances traversed between bounces are similar sih¢hicycle expanding
eigenvalueAy; is close in magnitude to the product of the 1-cycle eigeraslu
AoA1.

To understand this on a more general level, try to visualiee fartition of
a chaotic dynamical system'’s state space in terms of cyéghberhoods as a
tessellation (a tiling) of the dynamical system, with snioibdw approximated by
its periodic orbit skeleton, each ‘tile’ centered on a peidgpoint, and the scale
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of the ‘tile’ determined by the linearization of the flow aralthe periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, suctabsand a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs to
start out exponentially close to beat the exponential dnowtseparation with
time. If the weights associated with the orbits are multigive along the flow
(for example, by the chain rule for products of derivativas)l the flow is smooth,
the term in parenthesis in (1.12) fallf exponentially with the cycle length, and
therefore the curvature expansions are expected to beyhlighergent. chapter 23

1.6 Change intime

The above derivation of the dynamical zeta function fornfatathe escape rate
has one shortcoming; it estimates the fraction of surviassa function of the
number of pinball bounces, but the physically interestingrdity is the escape
rate measured in units of continuous time. For continuous fiows, the escape
rate (1.2) is generalized as follows. Define a finite statespagionM such
that a trajectory that exitd1 never reenters. For example, any pinball that falls
of the edge of a pinball table in figure 1.1 is gone forever.rtStéh a uniform
distribution of initial points. The fraction of initiak whose trajectories remain
within M at timet is expected to decay exponentially

Jy dxdys(y - £1(x)) .
Jydx

The integral ovelx starts a trajectory at every € M. The integral ovey tests
whether this trajectory is still itM at timet. The kernel of this integral

I(t) = e,

Ly.%) = 8(y - () (1.13)

is the Dirac delta function, as for a deterministic flow théiah point x maps

into a unique point at timet. For discrete timef"(X) is thenth iterate of the
map f. For continuous flowsf!(x) is the trajectory of the initial poink, and it

is appropriate to express the finite time ker&lin terms of A, the generator of
infinitesimal time translations

section 16.6

very much in the way the quantum evolution is generated byHdmailtonianH,
the generator of infinitesimal time quantum transformagion

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as ¢velution operatofor ad-dimensional
map or ad-dimensional flow.
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Figure 1.12: The trace of an evolution operator is :Rxél»\rchness iﬁ
concentrated in tubes around prime cycles, of leng -
Tp and thickness A |" for the rth repetition of the PR @
prime cyclep. prives repuals

The number of periodic points increases exponentially withcycle length
(in the case at hand, a8)2As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a mattastphfeour computations
will be carried out in then — oo limit. Though a quick look at long-time density
of trajectories might reveal it to be complex beyond beltafs distribution is
still generated by a simple deterministic law, and with sdnok and insight, our
labeling of possible motions will reflect this simplicityf the rule that gets us
from one level of the classification hierarchy to the nextdoet depend strongly
on the level, the resulting hierarchy is approximately-setiilar. We now turn
such approximate self-similarity to our advantage, byingtit into an operation,
the action of the evolution operator, whose iteration eesdtie self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators chamegesything. So
far our formulation has been heuristic, but in the evolutogerator formalism
the escape rate and any other dynamical average are giveraby fermulas,
extracted from the spectra of evolution operators. The @elgtarerace formulas
andspectral determinants

The trace of an operator is given by the sum of its eigenvaliliée explicit
expression (1.13) fo'(x,y) enables us to evaluate the trace. Idengifyith x
and integratex over the whole state space. The result is an expression fbrats
a sum over neighborhoods of prime cycfeand their repetitions section 18.2

o Ot —rTp)

tr Lt = ZTpZ|detl Mf

(1.14)

bl

whereT, is the period of prime cyclg, and the monodromy matrik, is the
flow-transverse part of Jacobian matdigl.4). This formula has a simple geometrical
interpretation sketched in figure 1.12. After ttib return to a Poincaré section,
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the initial tube M, has been stretched out along the expanding eigen-dirsction
with the overlap with the initial volume given by *det(l - M[)) — 1/IApl, the
same weight we obtained heuristically in sect. 1.5.1.

The ‘spiky’ sum (1.14) is disquieting in the way reminiscerftthe Poisson
resummation formulas of Fourier analysis; the left-haxe & the smooth eigenvalue
sum tre” = ¥ et while the right-hand side equals zero everywhere except fo
the set = rTp. A Laplace transform smooths the sum over Dirac delta fonsti
in cycle periods and yields theace formulafor the eigenspectrurgy, sy, - - - of
the classical evolution operator: chapter 18

0 1
dteSter £t = tr =
0, Ss—-A

o 1
IZ::OS_SQ - ZTPZ‘

(1.15)

The beauty of trace formulas lies in the fact that everytlongthe right-hand-
side—prime cycleg, their periodsT,, and the eigenvalues &fl,—is an invariant
property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zerdeeofippropriate
determinant. One way to evaluate determinants is to expaem in terms of

traces, using the identities exercise 4.1
d d 1
d—slndet(s—ﬂ)_tr&ln(s—ﬂ)_trs_ﬂ, (1.16)

and integrating oves. In this way thespectral determinandf an evolution oper-
ator becomes related to the traces that we have just computed chapter 19

det(s— A) = exp[ D Z e (1.17)

- o ’detl M)

The Yr factor is due to theintegration, leading to the replacemdipt— T,/rTp
in the periodic orbit expansion (1.15). section 19.5

We have now retraced the heuristic derivation of the divergem (1.7) and
the dynamical zeta function (1.10), but this time with norappmations: formula
(1.17) isexact The computation of the zeros of det{ A) proceeds very much
like the computations of sect. 1.5.3.
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1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolutiomigtors which propagate
densities feels like a bit of mathematical voodoo. Nevéedwe something very
radical and deeply foundational has taken place. Undetstgrithe distinction
between evolution of individual trajectories and the etiolu of the densities of
trajectories is key to understanding statistical mectsaigs is the conceptual
basis of the second law of thermodynamics, and the origimefersibility of the
arrow of time for deterministic systems with time-revelsibquations of motion:
reversibility is attainable for distributions whose measin the space of density
functions goes exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and whaiatby some
deterministic machinelf we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white anre red; there
would be no pink. What is more, if we reversed the stirring,waild return to
the perfect whitged separation. However, that cannot be—in a very few tuins o
the stirring stick the thickness of the layers goes fromiosegters to Angstroms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that stdtiegchanics applies
only to systems with very many degrees of freedom. More itesehe realization
that much of statistical mechanics follows from chaoticaiyics, and already at
the level of a few degrees of freedom the evolution of degsiis irreversible.
Furthermore, the theory that we shall develop here gemegatiotions of ‘measure’
and ‘averaging’ to systems far from equilibrium, and trawsp us into regions
hitherto inaccessible with the tools of equilibrium stétigl mechanics.

By going to a description in terms of the asymptotic time atioh oper-
ators we give up tracking individual trajectories for lomges, but trade in the
uncontrollable trajectories for a powerful descriptiortloé asymptotic trajectory
densities. This will enable us, for example, to give exacmiaas for transport
codficients such as theftlusion constants withowny probabilistic assumptions chapter 25
The classical Boltzmann equation for evolution of 1-péetidensity is based
on stosszahlansataneglect of particle correlations prior to, or after a 2tjude
collision. It is a very good approximate description of thllgas dynamics, but
a difficult starting point for inclusion of systematic correcgonlin the theory
developed here, no correlations are neglected - they anecalided in the cycle
averaging formulas such as the cycle expansion for thiesibn constant@D =
limT_0 (x(T)2> /T of a particle dffusing chaotically across a spatially-periodic
array, section 25.1

K+1 (npl -t ﬁpk)z
2d (T)( Z -1) |Ap1 “Apl ’ (1.18)
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whereri, is a translation along one period of a spatially periodioaway’ trajectory
p. Such formulas arexact the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums reddaetheir evaluation.
Unlike most statistical mechanics, here there are no phenotagical macroscopic
parameters; quantities such as transporffaents are calculable to any desired
accuracy from the microscopic dynamics.

The concepts of equilibrium statistical mechanics do help however, to
understand the ways in which the simple-minded periodidt tbory falters. A
non-hyperbolicity of the dynamics manifests itself in povaav correlations and chapter 24
even ‘phase transitions.’

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is
unhappy in its own way.

— Anna Kareninaby Leo Tolstoy

With initial data accuracyx = |6x(0)| and system sizk, a trajectory is predictable
only up to thefinite Lyapunov time (1.1),Tyap ~ A7tIn|L/6x . Beyond that,
chaos rules. And so the most successful applications ob&tigory’ have so far
been to problems where observation time is much longer tiygpical ‘turnover’
time, such as statistical mechanics, quantum mechanidsgaestions of long
term stability in celestial mechanics, where the notionratking accurately a
given state of the system is nonsensical.

So what is chaos good foiftansport! Though superficially indistinguishable
from the probabilistic random walk fiusion, in low dimensional settings the
deterministic difusion is quite recognizable, through the fractal depenelehthe
diffusion constant on the system parameters, and perhaps bhnougGaussion
relaxation to equilibrium (non-vanishing Burnett gogents).

Several tabletop experiments that could measure transporhacroscopic
scales are sketched in figure 1.13 (each a tabletop, but angxp tabletop).
Figure 1.13 (a) depicts a ‘slanted washboard;’ a partickegravity field bouncing
down the washboard, losing some energy at each bounce, argechparticle in
a constant electric field trickling across a periodic cosgelhmatter device. The
interplay between chaotic dynamics and energy loss resulisterminal mean
velocity/conductance, a function of the washboard slant or extetaetrie field
that the periodic theory can predict accurately. Figured {b] depicts a ‘cold
atom lattice’ of very accurate spatial periodicity, with gute cloud of atoms
placed onto a standing wave established by strong lases fidiadteraction of
gravity with gentle time-periodic jiggling of the EM fieldaduces a dfusion of
the atomic cloud, with a éliusion constant predicted by the periodic orbit theory.
Figure 1.13(c) depicts a tip of an atomic force microscop&NA bouncing
against a periodic atomic surface moving at a constant iglo@he frictional
drag experienced is the interplay of the chaotic bouncirthetip and the energy
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Figure 1.13: (a) Washboard mean velocity, (b)
cold atom lattice dtusion, and (c) AFM tip drag

force.

(Y.Lan) (c) velocity

loss at each tijsurface collision, accurately predicted by the periodiitaheory.
None of these experiments have actually been carried @we {sr some numericathaosBook.org/projects
experimentation), but are within reach of what can be meatstoday.

Given microscopic dynamics, periodic orbit theory preslmbservable macroscopic
transport quantities such as the washboard mean velogitiiatom lattice diusion
constant, and AFM tip drag force. But the experimental psapds sexier than
that, and goes into the heart of dynamical systems theory. remark A.1

Smale 1960s theory of the hyperbolic structure of the nondseng set (AKA
‘horseshoe’) was motivated by his ‘structural stabilitghgecture, which - in non-
technical terms - asserts that all trajectories of a chayti@mical system deform
smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard indidui3 (a) is
easy to see for a cyclist. Take a trajectory which barelyegdlze tip of one of the
groves. An arbitrarily small change in the washboard slape result in loss of
this collision, change a forward scattering into a backvsarattering, and lead to
a discontinuous contribution to the mean velocity. You nigbld out hope that
such events are rare and average out, but not so - a loss oftagtie leads to a
significant change in the cycle-expansion formula for agpant codicient, such
as (1.18).

When we write an equation, it is typically parameterized bgtof parameters
by as coupling strengths, and we think of dynamical systemteaimed by a smooth
variation of a parameter as a ‘family.” We would expect meaisie predictions to
also vary smoothly, i.e., be ‘structurally stable.’
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But dynamical systems families are ‘families’ only in a narbat the structural
stability conjecture turned out to be badly wrong is, howewet a blow for
chaotic dynamics. Quite to the contrary, it is actually duar perhaps the mosstection 12.2
dramatic experimentally measurable prediction of chasbfitamics.

As long as microscopic periodicity is exact, the predicti®eounterintuitive
for a physicist - transport céigcients argnotsmooth functions of system parametesaijon 25.2
rather they are non-monotoniciowhere dfferentiable functions. Conversely,
if the macroscopic measurement yields a smooth dependdnttee dransport
on system parameters, the periodicity of the microscoptcéais degraded by
impurities, and probabilistic assumptions of traditiosialtistical mechanics apply.
So the proposal is to —by measurimgcroscopic transportconductance, éusion,
drag —observe determinism oanoscalesand —for example— determine whether
an atomic surface is clean.

The signatures of deterministic chaos are even mofféirizato an engineer: a
small increase of pressure across a pipe exhibiting tunbfi@v does not necessarily
lead to an increase in the mean flow; mean flow dependence saupeedrop
across the pipe is also a fractal function.

Is this in contradiction with the traditional statisticaéohanics? No - deterministic
chaos predictions are valid in settings where a few degridesealom are important,
and chaotic motion time and space scales are commensurtitehei external
driving and spatial scales. Further degrees of freedonsautiae that smooths out
the above fractalféects and restores a smooth functional dependence of transpo
codficients on external parameters.

1.9 What is notin ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as | can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book dters everyman a breach into a domain hitherto reputed urabbbgla
domain traditionally traversed only by mathematical pbigss and mathematicians.
What distinguishes it from mathematics is the insistenceamputability and
numerical convergence of methodfeved. A rigorous proof, the end of the
story as far as a mathematician is concerned, might staténtlaagiven setting,
for times in excess of 8 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use tooaest, hard-
working plumber, especially if her hands-on experiencéad within the span of

a few typical ‘turnaround’ times the dynamics seems to saitl a (transient?)
attractor of dimension less than 3. If rigor, magic, frastal brains is your thing,
read remark 1.4 and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unkec the
nuts and bolt of the theory include ODEs, PDEs, stochasti€§)Path integrals,
group theory, coding theory, graph theory, ergodic thelamgar operator theory,
quantum mechanics, etc.. We include material into the texpgr on ‘need-to-
know’ basis, relegate technical details to appendicesgamdpointers to further
reading in the remarks at the end of each chapter.

Résum é

This text is an exposition of the best of all possible thesakdeterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, naterahow small,
will spread over the entire accessible state space. Hercthéory focuses on
describing the geometry of the space of possible outcomes\aluating averages
over this space, rather than attempting the impossibleigg@rediction of individual
trajectories. The dynamics of densities of trajectoriegéscribed in terms of
evolution operators. In the evolution operator formalisra tlynamical averages
are given by exact formulas, extracted from the spectra ofugen operators.
The key tools ar¢race formulasandspectral determinants

The theory of evaluation of the spectra of evolution opesgpoesented here is
based on the observation that the motion in dynamical systérfew degrees of
freedom is often organized around a famndamentatycles. These short cycles
capture the skeletal topology of the motion on a strangadtyrepeller in the
sense that any long orbit can approximately be pieced tegdétbm the nearby
periodic orbits of finite length. This notion is made preciseapproximating
orbits by prime cycles, and evaluating the associated twes A curvature
measures the deviation of a longer cycle from its approdondiy shorter cycles;
smoothness and the local instability of the flow implies exgrdial (or faster)
fall-off for (almost) all curvatures. Cycle expansiorfieoan dficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zetaction was the
hyperbolicity assumption, i.e., the assumption of exptiaeshrinkage of all
strips of the pinball repeller. By dropping tteg prefactors in (1.5), we have
given up on any possibility of recovering the precise disttion of startingx
(which should anyhow be impossible due to the exponent@aityr of errors), but
in exchange we gain anffective description of the asymptotic behavior of the
system. The pleasant surprise of cycle expansions (1.1Batghe infinite time
behavior of an unstable system is as easy to determine akdhdime behavior.

To keep the exposition simple we have here illustrated titig/udf cycles and

their curvatures by a pinball game, but topics covered inadSBaok — unstable
flows, Poincaré sections, Smale horseshoes, symbolicdgaapruning, discrete
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symmetries, periodic orbits, averaging over chaotic sstdution operators, dyn-
amical zeta functions, spectral determinants, cycle esipan, quantum trace
formulas, zeta functions, and so on to the semiclassicahtmagion of helium

— should give the reader some confidence in the broad swaydh#ory. The

formalism should work for any average over any chaotic sethvbatisfies two
conditions:

1. the weight associated with the observable under coraideris multiplicative
along the trajectory,

2. the set is organized in such a way that the nearby pointseirsymbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class ofhtjties characterizing
chaotic systems, such as the escape rates, Lyapunov expdnamsport caécients
and quantum eigenvalues. A big surprise is that the serasiclal quantum mechanics
of systems classically chaotic is very much like the cladsitechanics of chaotic
systems; both are described by zeta functions and cyclensiqres of the same
form, with the same dependence on the topology of the clasiov.
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But the power of instruction is seldom of mucfiieacy,
except in those happy dispositions where it is almost
superfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts.  This text aims to bridge the gap between
the physics and mathematics dynamical systems literatlifee intended audience is

Henri Roux, the perfect physics graduate student with ar#tieal bent who does not

believe anything he is told. As a complementary presemtati® recommend Gaspard’s
monograph [1.8] which covers much of the same ground in dyiglhdable and scholarly

manner.

As far as the prerequisites are concerned—ChaosBook isimtraduction to nonlinear
dynamics. Nonlinear science requires a one semester lmasse(advanced undergraduate
or first year graduate). A good start is the textbook by Stmofda9], an introduction to the
applied mathematician’s visualization of flows, fixed psjmhanifolds, bifurcations. It is
the most accessible introduction to nonlinear dynamic®ek lon diferential equations
in nonlinear disguise, and its broadly chosen examples aalyrexercises make it a
favorite with students. It is not strong on chaos. There éx¢bbok of Alligood, Sauer
and Yorke [1.10] is preferable: an elegant introduction &ps) chaos, period doubling,
symbolic dynamics, fractals, dimensions—a good compati@haosBook. Introduction
more comfortable to physicists is the textbook by Ott [1,ifh the baker's map used
to illustrate many key techniques in analysis of chaotidesys. Ott is perhaps harder
than the above two as first books on nonlinear dynamics. gpr@?] and Jackson [1.13]
textbooks are very useful compendia of the '70s and onwdrads’ literature which we,
in the spirit of promises made in sect. 1.1, tend to pass ovgiténce.

An introductory course should give students skills in giadilre and numerical analysis
of dynamical systems for short times (trajectories, fixeid{zp bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaoticesyst For the dynamical
systems material covered here in chapters 2 to 4, as wellrahdoin-depth study of
bifurcation theory we warmly recommend Kuznetsov [1.14]. gédod introduction to
numerical experimentation with physically realistic st is Tufillaro, Abbott, and Reilly [1.15].
Korsch and Jodl [1.16] and Nusse and Yorke [1.17] also empéidmnds-on approach
to dynamics. With this, and a graduate level-exposure tiistal mechanics, partial
differential equations and quantum mechanics, the stage & satyf of the one-semester
advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses.  The courses taught so far (for a listing,
consultChaosBook. org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continuéfferént directions:

Deterministic chaos.Chaotic averaging, evolution operators, trace formulets, functions,
cycle expansions, Lyapunov exponents, billiards, trartspmeficients, thermodynamic
formalism, period doubling, renormalization operators.graduate level introduction
to statistical mechanics from the dynamical point view igegi by Dorfman [1.18]; the
Gaspard monograph[1.8] covers the same ground in more.depédibe monograph [1.19]
offers a nice introduction to the problem of irreversibilitydyinamics. The role of ‘chaos’
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in statistical mechanics is critically dissected by Brigth his highly readable essay
“Science of Chaos or Chaos in Sciencg?.20].

Spatiotemporal dynamical systemsPartial diferential equations for dissipative systems,
weak amplitude expansions, normal forms, symmetries digdaitions, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, lyared Berkooz [1.21] fier

a delightful discussion of why the Kuramoto-Sivashinsky&tipn deserves study as a
staging ground for a dynamical approach to study of turleéen full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace flasnsemiclassical
spectral determinants, billiards, semiclassical heligliffraction, creeping, tunneling,
higher-order: corrections. For further reading on this topic, consultghantum chaos
part ofChaosBook.org.

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textb@ble. role of unstable periodic
orbits was already fully appreciated by Poincaré [1.223], who noted that hidden in the
apparent chaos is a rigid skeleton, a treeyafles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cytiesld be the key to chaotic
dynamics. Periodic orbits have been at core of much of thénemadtical work on the
theory of the classical and quantum dynamical systems avez.s\We refer the reader to
the reprint selection [1.24] for an overview of some of tli@rature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. We recommendriRoh’s advanced graduate
level exposition of dynamical systems theory [1.25] fromaBaperspective. The most
extensive reference is the treatise by Katok and Hasselbla6], an impressive compendium
of modern dynamical systems theory. The fundamental papetisis field, all still
valuable reading, are Smale [1.27], Bowen [1.28] and Siad#9]. Sinai's paper is
prescient and féers a vision and a program that ties together dynamical mgstnd
statistical mechanics. It is written for readers versedtatigical mechanics. For a
dynamical systems exposition, consult Anosov and Sin80]1.Markov partitions were
introduced by Sinai in ref. [1.31]. The classical text (tgbwertainly not an easy read) on
the subject of dynamical zeta functions is Ruel&tatistical Mechanics, Thermodynamic
Formalism[1.32]. In Ruelle’s monograph transfer operator techni¢prethe ‘Perron-
Frobenius theory’) and Smale’s theory of hyperbolic flows applied to zeta functions
and correlation functions. The status of the theory fromlRisgoint of view is compactly
summarized in his 1995 Pisa lectures [1.33]. Further ezoethathematical references on
thermodynamic formalism are Parry and Pollicott’s monpgrfl.34] with emphasis on
the symbolic dynamics aspects of the formalism, and Balad#ar and compact reviews
of the theory of dynamical zeta functions [1.35, 1.36].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic
such as spaces of constant negative curvature, Poinliags tmodular domains, Selberg
Zeta functions, Riemann hypothesis, Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chabsost no powerful method in

its repertoire survives a transplant to a physical systexnytbu are likely to care about.
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Remark 1.6 Sorry, no schmactals! ChaosBook skirts mathematics and empirical
practice of fractal analysis, such as Haustimd fractal dimensions. Addison’s introduction
to fractal dimensions [1.37]fters a well-motivated entry into this field. While in studies
of probabilistically assembled fractals such a$udiion limited aggregates (DLA) better
measures of ‘complexity’ are lacking, for deterministicstgms there are much better,
physically motivated and experimentally measurable dtiest(escape rates, ftlision
codficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Ratbrains?  If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, tigeadine of research in neuronal
dynamics that focuses on possible unstable periodic stdtscribed for example in

refs. [1.38, 1.39, 1.40, 1.41].
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A guide to exercises

God can &ord to make mistakes. So can Dadal
—Dadaist Manifesto

The essence of this subject is incommunicable in print; tilg way to develop

intuition about chaotic dynamics is by computing, and tredes is urged to try

to work through the essential exercises. As not to fragntentext, the exercises

are indicated by text margin boxes such as the one on thisimaugd collected exercise 20.2
at the end of each chapter. By the end of a (two-semestersequu should

have completed at least three small projects: (a) compugeytnng for a 1-
dimensional repeller, (b) compute escape rate for a 3-diskegof pinball, (c)

compute a part of the quantum 3-disk game of pinball, or thie@mespectrum, or

if you are interested in statistical rather than the quantuechanics, compute a
transport cofficient. The essential steps are:

e Dynamics

1. count prime cycles, exercise 1.1, exercise 9.6, exetdise
pinball simulator, exercise 8.1, exercise 13.4

pinball stability, exercise 13.7, exercise 13.4

pinball periodic orbits, exercise 13.5, exercise 13.6
helium integrator, exercise 2.10, exercise 13.11

helium periodic orbits, exercise 13.12

o 0k wN

e Averaging, numerical
1. pinball escape rate, exercise 17.3
e Averaging, periodic orbits

1. cycle expansions, exercise 20.1, exercise 20.2

pinball escape rate, exercise 20.4, exercise 20.5

cycle expansions for averages, exercise 20.1, exer2i8e 2
cycle expansions for fiusion, exercise 25.1

pruning, transition graphs, exercise 15.6
desymmetrization exercise 21.1

No ko

intermittency, phase transitions, exercise 24.6

The exercises that you should do hawelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth a publication. Sohd to some of the
problems are available athaosBook.org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be dudiieacknowledged.
Often going through a solution is more instructive than megdhe chapter that
problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics. As periodic trajectories 1.2. Sensitivity to initial conditions. Assume that two
will turn out to be our main tool to breach deep into the pinball trajectories start out parallel, but separated by
realm of chaos, it pays to start familiarizing oneself with 1 Angstrom, and the disks are of radiess= 1 cm
them now by sketching and counting the few shortest  and center-to-center separati®h = 6 cm. Try to
prime cycles (we return to this in sect. 15.4). Show estimate in how many bounces the separation will grow

that the 3-disk pinball has 32"! itineraries of length to the size of system (assuming that the trajectories
n. List periodic orbits of lengths 2, 3, 4, 5,-. Verify have been picked so they remain trapped for at least
that the shortest 3-disk prime cycles are 12, 13, 23, 123, that long). Estimate the WhoRinball Wizards typical

132, 1213, 1232, 1323, 12123;. Try to sketch them. score (number of bounces) in a game without cheating,
(continued in exercise 12.6) by hook or crook (by the end of chapter 20 you should

be in position to make very accurate estimates).
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