Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...]e Th
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its attenti
to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

periodic, and aperiodic, refine the ‘aperiodic’ into wandgrand non-
wandering sets, decompose the non-wandering into chainrent sets,
and illustrate various cases with concrete examples, tisslBr'and Lorenz systems.

WE perINE a dynamical systeniM, f), classify its solutions as equilibria,

fast track:
W chapter 16, p. 310

2.1 Dynamical systems o .
XX

In a dynamical system we observe the world as it evolves witk.t We express

our observations as numbers and record how they change; it¥eiently detailed

information and understanding of the underlying naturalslawe see the future

in the present as in a mirror. The motion of the planets agdives celestial section 1.3

firmament provides an example. Against the daily motion efgtars from East

to West, the planets distinguish themselves by moving antbadfixed stars.
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Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space potafter a x
timet, the point is atf!(x).

Ancients discovered that by knowing a sequence of planetstipns—latitudes
and longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longitudaércelestial sphere
sufices to completely specify the planet’'s apparent motionpédisible values for
positions and velocities of the planets form fifease spacef the system. More
generally, a state of a physical system, at a given instdimhi can be represented
by a single point in an abstract space calitate spaceé\ (mnemonic: curly M’
for a ‘manifold’). As the system changes, so doesrépgesentative poirith state
space. We refer to the evolution of such pointglgsamics and the functionf!
which specifies where the representative point is at tiasetheevolution rule  remark 2.1

If there is a definite ruld that tells us how this representative point moves in

M, the system is said to be deterministic. For a determindstiamical system,
the evolution rule takes one point of the state space and map® exactly
one point. However, this is not always possible. For examktewing the
temperature today is not enough to predict the temperatumerrow; knowing
the value of a stock today will not determine its value torastr The state
space can be enlarged, in the hope that in facsently large state space it is
possible to determine an evolution rule, so we imagine timatving the state
of the atmosphere, measured over many points over the gidinet should be
suficient to determine the temperature tomorrow. Even thattiguibe true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a uniqueduso trajectories
cannot intersect. We say ‘almost’ because there might exgst of measure zero
(tips of wedges, cusps, etc.) for which a trajectory is ndineéel. \We may think chapter 12
such sets a nuisance, but it is quite the contrary—they wdbée us to partition
state space, so that the dynamics can be better understood.

Locally, the state spac#l looks likeRY, meaning that a dynamical evolution
is an initial value problem, withld numbers sfiicient to determine what will
happen time later. Globally, it may be a more complicated manifold fochimy
patching together several piecesRS forming a torus, a cylinder, or some other
geometric object. When we need to stress that the dimemk@nM is greater
than one, we may refer to the pointe M asx; wherei = 1,2, 3,...,d. If the
dynamics is described by a set of PDEs (partiffiedential equations), the state
space is the infinite dimensional function space. The eaiuule f' : M — M
tells us where a point is in M after a time intervat.

The pair M, f) constitute alynamical system
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Figure 2.2: The evolution ruleftcan be used to map a
region M; of the state space into the regi6t{M;).

The dynamical systems we will be studying are smooth. Théxgessed
mathematically by saying that the evolution rifecan be dferentiated as many
times as needed. Its action on a poiis sometimes indicated by(x,t) to
remind us thaf is really a function of two variables: the time and a pointtate
space. Note that time is relative rather than absolute, §otba time interval
is necessary. This follows from the fact that a point in stgiace completely
determines all future evolution, and it is not necessaryntmkanything else. The
time parameter can be a real varialile R), in which case the evolution is called
a flow, or an integert( € Z), in which case the evolution advances in discrete
steps in time, given biteration of amap The evolution parameter need not be
the physical time; for example, a time-stationary solutidra partial diterential
equation is parameterized by spatial variables. In suciatsiins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy Tramnifest them-
selves through their trajectories: given an initial poigitthe evolution rule traces
out a sequence of poinkgt) = f'(xo), thetrajectorythrough the poinky = x(0).
A trajectory is parameterized by the timand thus belongs td{(xg),t) € MxR. exercise 2.1
By extension, we can also talk of the evolution of a regidnof the state space:
just apply f! to every point inM; to obtain a new regiori'(M;), as in figure 2.2.

Becausef! is a single-valued function, any point of the trajectory barused
to label the trajectory.

If we mark the trajectory by its initial poinkg, we are describing it in the
Lagrangian coordinates

The subset of points\ly, ¢ M that belong to the infinite-time trajectory
of a given pointxg is called theorbit of xp; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbiaismooth continuous
curve; for a map, it is a sequence of points. An orbit dyaamically invariant
notion. While “trajectory” refers to a stat€t) at time instant, “orbit” refers to
the totality of states that can be reached fraynwith state spac@ foliated into
a union of such orbits (eacMy, labeled by a single point belonging to the set,
Xo = X(0) for example).

2.1.1 Aclassification of possible motions?

What are the possible trajectories? This is a grand quesdiwh there are many
answers, the chapters to folloufering some. Here is the first attempt to classify
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Figure 2.3: A periodic point returns to the initial point
after a finite timex = fT°(x). Periodic orbitp is the
set of periodic pointp = M, = {X1, X, - - -} swept out
by the trajectory of any one of them in the finite time
Tp.

1

all possible trajectories:

stationary: f'(x) = x for all t
periodic:  fi(x) = f*Tr(x) for a given minimum period
aperiodic: fi(x) # f'(x)  forallt#t’ .

A periodic orbit (or acyclg p is the set of points\i, ¢ M swept out by a
trajectory that returns to the initial point in a finite tim@/e refer to a point on a
periodic orbit as geriodic point see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rationbérsiare a set of zero
measure on the unit interval. chapter 5

Periodic orbits and equilibrium points are the simplestnepies of ‘non-
wandering’ invariant sets preserved by dynamics. Dynaro&s also preserve
higher-dimensional smooth compact invariant manifoldggstmcommonly en-
countered are th&1-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the supstipm of M incommensurate
frequencies) motion on a smooth torus, and families of Bmistrelated by a
continuous symmetry.

The ancients tried to make sense of all dynamics in termsradglie motions,
epicycles, integrable systems. The embarrassing trutltisdr a generic dynamical
systems almost all motions are aperiodic. So we refine tissitilzation by dividing
aperiodic motions into two subtypes: those that wandgramd those that keep
coming back.

A point x e Mis called avandering pointif there exists an open neighborhood
M of xto which the trajectory never returns

f() g Mo forall t>tmin. (2.1)

In physics literature, the dynamics of such state is oftéerred to agransient
Wandering points do not take part in the long-time dynansosjour first task

is to prune them from\ as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set
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For times much longer than a typical ‘turnover’ time, it malgense to relax
the notion of exact periodicity, and replace it by the notddmecurrence A point
is recurrentor non-wanderingf for any open neighborhoody of x and any time
tmin there exists a later timie such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point teenthe neighborhood
My infinitely often. We shall denote b§ the non—wandering setf f, i.e., the
union of all the non-wandering points #fl. The se, the non—-wandering set of
f, is the key to understanding the long-time behavior of a dynal system; all
calculations undertaken here will be carried out on non-d&gng sets.

So much about individual trajectories. What about cloudsitifl points? If
there exists a connected state space volume that mapssaetbunder forward
evolution (and you can prove that by the method of Lyapunaowtionals, or
several other methods available in the literature), the foglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct dit@sets, each with
its own basin of attraction the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point, a mkci@rbit, aperiodic,
or any combination of the above. The most interesting cag®iof an aperiodic
recurrent attractor, to which we shall refer loosely atrange attractor We say example 2.3
‘loosely’, as will soon become apparent that diagnosing [@ogding existence of
a genuine, card-carrying strange attractor is a highlynaak undertaking.

Conversely, if we can enclose the non—wanderingsby a connected state
space volumeM, and then show that almost all points withivlp, but not in
Q, eventually exitMy, we refer to the non—wandering $@tas arepeller. An
example of a repeller is not hard to come by—the pinball gafreect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are se@kenal that
almost all non-wandering points are aperiodic, that we lgiwen up the ancients’
fixation on periodic motions. Nothing could be further fromath. As longer and
longer cycles approximate more and more accurately fingmseats of aperiodic
trajectories, we shall establish control over non—wamdgesets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set anal lpetter

grip on what chaotic motion might look like, we need to ponfiews in a little
more depth.
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2.2 Flows

[ ]
’ '\
Knowing the equations and knowing the solution are tw8

different things. Far, far away.
— T.D. Lee

A flowis a continuous-time dynamical system. The evolution il a family
of mappings ofM — M parameterized by € R. Becausd represents a time
interval, any family of mappings that forms an evolutionerohust satisfy: exercise 2.2

(@) fO(x) = x (in O time there is no motion)
(b) fY(fY(x) = f*'(X) (the evolution law is the same at all times)

(c) the mappingX,t) — f{(x) from M x R into M is continuous.
We shall often find it convenient to represent functional position by © :’ appendix H.1
frs = flo 5 = fY(f9). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-'group? It may fail to form a group if the dynamiesnot reversible,
and the rulef'(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverse!(f!(x)) = f9(x) =

X, in which case the family of mappind$(x) does not form a group. In exceedingly
many situations of interest—for times beyond the Lyapuriime t for asymptotic
attractors, for dissipative partial féikrential equations, for systems with noise,
for non-invertible maps—the dynamics cannot be run baattsvar time, hence,
the circumspect emphasis eemgroups. On the other hand, there are many
settings of physical interest, where dynamics is revezgiglich as finite-dimens-
ional Hamiltonian flows), and where the family of evolutiomps f' does form a

group.

For infinitesimal times, flows can be defined byféiential equations. We
write a trajectory as

Xt +71) = f%7(x0) = f(f(Xo,1),7) (2.4)

and express the time derivative of a trajectory at pg{tt exercise 2.3
dx .
d_ 0 = an(f(XO’ t)’T)|T:0 = X(t) . (25)

as the time derivative of the evolution rule, a vector evadaat the same point.
By considering all possible trajectories, we obtain thetmeg&(t) at any point
x € M. Thisvector fieldis a (generalized) velocity field:

(1) = V(X) . (2.6)
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Figure 2.4: (a) The 2-dimensional vector field TTTT’ ; S’L%
for the Dufing system (2.7), together with a short TTTTr a0 T lﬁl
trajectory segment. (b) The flow lines. Each PN R T A ¢¢¢¢
T

‘comet’ represents the same time interval of a P KT S N

trajectory, starting at the tail and ending at the TTTI‘\K ¢¢¢¢
head. The longer the comet, the faster the flow TA R p {z¢¢¢¢
in that region. (@ T 18 e (b)

Newton’s laws, Lagrange’s method, or Hamilton’s methodediriamiliar procedures
for obtaining a set of dierential equations for the vector fielfx) that describes
the evolution of a mechanical system. Equations of meckan&y appear fierent

in form from (2.6), as they are often involve higher time datives, but an equation
that is second or higher order in time can always be rewrétea set of first order
eqguations.

We are concerned here with a much larger world of general floveshanical
or not, all defined by a time-independent vector field (2.6).each point of the
state space a vector indicates the local direction in wHiehtrajectory evolves.
The length of the vectdw(X)| is proportional to the speed at the pokytand the
direction and length of(x) changes from point to point. When the state space is a
complicated manifold embeddedii{, one can no longer think of the vector field
as being embedded in the state space. Instead, we have tnéntlagt each point
x of state space has afitirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space ctilethngent bundle

TM.
Example 2.1 A 2-dimensional vector field  Vv(X): A simple example of a flow is
afforded by the unforced Duffing system
Xt = )
yt) = -0.15y(t) + x(t) — x(t) (2.7)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configuration
coordinates (X(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle T M.

The instantaneous velocity vecteis tangent to the trajectory, except at the
equilibrium points where it vanishes.

If V(xg) =0, (2.8)

Xq is also referred to as stationary fixed critical, invariant, rest stagnation
point, zero of the vector fieldv, standing waveor steady state our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map, and the trajeory remains forever
stuck atxy. Otherwise the trajectory passing throughat timet = 0 can be
obtained by integrating the equations (2.6):

t
X(t) = ft(xo) =X +‘f; drv(x(1)), X(0) = Xg. (2.9)
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Figure 2.5: Lorenz “butterfly” strange attractor. (3. %9 19 0 10 20
Halcrow) X

We shall consider here ongutonomouslows, i.e., flows for which the velocity
field v; is stationary not explicitly dependent on time. A non-autonomous system

&=y, 210
’

can always be converted into a system where time does noaapgplicitly.  exercise 2.4
To do so, extend (‘suspend’) state space tode ()-dimensional by definingexercise 2.5
x = {y, 7}, with a stationary vector field

V(X) = [ W({’ 7 ] . (2.11)

The new flowx = v(X) is autonomous, and the trajectorft) can be read 6 x(t)
by ignoring the last component af

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X oly—X)
X=v(X)=| Yy |=]| pXx-y—-xz (2.12)
z xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQy = (0, 0, 0) at the
origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at remark 2.3

Xeqy, = (£ vblo— 1), £/blp - 1),p - 1), (2.13)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQy 1-dimensional unstable manifold closes into a
homoclinic orbit at p = 1356.... Beyond that, an infinity of associated periodic orbits
are generated, until p = 24.74. .., where EQq 2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.3. (continued in example 3.5)
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Z(t)

Figure 2.6: A trajectory of the Rossler flow at time
t =250. (G. Simon)

Example 2.3 Rdssler strange attractor: The Duffing flow of figure 2.4 is bit of
a bore—every trajectory ends up in one of the two attractive equilibrium points. Let's
construct a flow that does not die out, but exhibits a recurrent dynamics. Start with a
harmonic oscillator

X=-y, y=X. (2.14)

The solutions are re, ret, and the whole x-y plane rotates with constant angular
velocity 6 = 1, period T = 2r. Now make the system unstable by adding

X=-y, y =X+ ay, a>o0, (2.15)

or, in radial coordinates, t = arsir? 6, § = 1+ (a/2) sind. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, kick it into 3rd dimension when X reaches some value c
by adding

z=b+zx-c), ¢>0. (2.16)

As X crosses ¢, z shoots upwards exponentially, z ~ €*°t. In order to bring it back,
start decreasing X by modifying its equation to

X=-y—-z.
Large z drives the trajectory toward x = O; there the exponential contraction by et

kicks in, and the trajectory drops back toward the X-y plane. This frequently studied
example of an autonomous flow is called the Rossler flow

X+ ay
b+2z(x-c), a=b=02, c=57 (2.17)

N <
Il

(for definitiveness, we fix the parameters a, b, ¢ in what follows). The systemeie@se 2.8
simple as they get—it would be linear, were it not for the sole bilinear term zx Even for
so ‘simple’ a system the nature of long-time solutions is far from obvious.
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There are two repelling equilibrium points (2.8):

Xe (% + % V1 - 4ab/c?)(c, -c/a, c/a)

x. =~ (ab/c,-b/c,b/c), X; = (c,—c/a, c/a)
(x.,y_,z.) = (0.007Q -0.0351, 0.0351)
(X4,Y+,2,) = (5.6929 —28.464, 28.464) (2.18)

One is close to the origin by construction. The other, some distance away, exists
because the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical
integration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 11.10). Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof thategexcise 3.5
an attractor is asymptotically aperiodic—it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.4) (R. Paskauskas)

The Rossler flow is the simplest flow which exhibits many @& kiey aspects
of chaotic dynamics; we shall use it and the 3-pinball (sesptdr 8) systems
throughout ChaosBook to motivate introduction of Poiecgtions, return maps,
symbolic dynamics, cycle expansions, and much else. Ro#slv is integrated
in exercise 2.7, its equilibria are determined in exerci8e i&s Poincaré sections
constructed in exercise 3.1, and the corresponding retint&é map computed
in exercise 3.2. Its volume contraction rate is computeaanase 4.3, its topology
investigated in exercise 4.4, the shortest Rossler flolesyare computed and
tabulated in exercise 13.10, and its Lyapunov exponentaateal in exercise 17.4.

W fast track:
chapter 3, p. 54

2.3 Computing trajectories

o3

On two occasions | have been asked [by members o
Parliament], 'Pray, Mr. Babbage, if you put into the

machine wrong figures, will the right answers come out?’
I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integnamerically
whatever dynamical equations you face. Sooner or laterngaad to implement
some finite time-step prescription for integration of theatgpns of motion (2.6).
The simplest is the Euler integrator which advances thedtajy bysr x velocity
at each time step:

X — X + Vi(X)oT. (2.19)
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This might sufice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are margilext reference texts

and computer programs that can help you learn how to sofiereintial equations
numerically using sophisticated numerical tools, suchsasigo-spectral methods

or implicit methods. If a ‘sophisticated’ integration rong takes days andexercise 2.6
gobbles up terabits of memory, you are using brain-damaggdlével software.

Try writing a few lines of your own Runge-Kutta code in somendane everyday
language. While you absolutely need to master the requisiteerical methods,exercise 2.7
this is neither the time nor the place to expound upon therv;you learn them is

your business. And if you have developed some nice routoresolving problems exercise 2.9
in this text or can point another student to some, let us know. exercise 2.10

Résumé

Chaotic dynamics with a low-dimensional attractor can lseaiized as a succession
of nearly periodic but unstable motions. In the same spinjulence in spatially
extended systems can be described in terms of recurremtspaporal patterns.
Pictorially, dynamics drives a given spatially extendestsgn through a repertoire
of unstable patterns; as we watch a turbulent system evelery so often we
catch a glimpse of a familiar pattern. For any finite spatlotution and finite
time the system follows approximately a pattern belonging finite repertoire of
possible patterns, and the long-term dynamics can be thofigh a walk through
the space of such patterns. Recasting this image into matfenis the subject

of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In this text we denote by the teratate
spacethe set of admissible states of a genekabr co-dimensional dynamical system,
and reserve the terphase spacéo Hamiltonian D-dimensional state spaces, where
D is the number of Hamiltonian degrees of freedom. If the stptece is a continuous
smooth manifold much of the literature refers to it as ‘phapace,” but we find the
control engineering usage sharper: in the state spaceirfg-tlomain’) description of
an autonomous physical system, the state of the systemrisseggied as a vector within
the ‘state space, space whose axes are the state variahtethe set of state variables is
related by first-order dlierential equations. The distinction made here is needederta
where one treats both general dynamical systems and quan&ghanical systems. The
term ‘phase’ has a precise meaning in wave mechanics, quanachanics and dynamics
of integrable systems at the heart of Hamilton’s formulatod Newtonian mechanics,
while ‘state space’ is more descriptive of the way the noisarsed in the general theory of
dynamical systems. Further confusion arises when prefiioszes in ‘spatiotemporal’ is
used in reference to states extended in the (1, 2, or 3-diored$physical configuration
space. They may exhibit spatial wave-like behaviors, beir htate spacés co-dimens-
ional.

Much of the literature denotes the vector field in a first ordidierential equation
(2.6) by f(x) or F(x) or evenX(x), and its integral for timé by the ‘timet forward map’
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X(Xo,t) = D(Xp,t) Or ¢(Xg) or something else. As we shall treat here maps and flows on
equal footing, and need to save Greek letters for mattenstqgomamechanical, we reserve
the notationf (x) for mapssuch as (2.9), and refer to a state space velocity vectordgeld
v(X). We come to regret this choice very far into the text, onlytlog time we delve into
Navier-Stokes equations.

Remark 2.2 Rossler and Duffing flows.  The Dufing system (2.7) arises in the study
of electronic circuits [2.1]. The Rossler flow (2.17) is thienplest flow which exhibits
many of the key aspects of chaotic dynamics. It was introduceef. [2.2] as a set of
equations describing no particular physical system, bptuwang the essence of Lorenz
chaos in a simplest imaginable smooth flow. Otto Rossleraa of classical education,
was inspired in this quest by that rarely cited grandfatifechmos, Anaxagoras (456
B.C.). This, and references to earlier work can be found 8. 12.3, 2.4, 2.5]. We
recommend in particular the inimitable Abraham and Shavgtithted classic [2.6] for its
beautiful sketches of the Rossler and many other flows. ffigndones [2.7] has a number
of interesting simulations on a Drexel website.

Remark 2.3 Lorenz equation.  The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [2.8] (but niite first - the honor goes to Dame
Cartwright [2.9]). Lorenz’s paper, which can be found inriepcollections refs. [2.10,
2.11], is a pleasure to read, and is still one of the best dnittons to the physics
motivating such models. For a geophysics derivation, se¢arRan course notes [2.12].
The equations, a set of ODESsI, exhibit strange attractors [2.13, 2.14, 2.15]. Frayléhdi§]
has a nice brief discussion of Lorenz flow. Frgyland and Alfge17] plot many periodic
and heteroclinic orbits of the Lorenz flow; some of the symiunaines are included

in ref. [2.16]. Guckenheimer-Williams [2.18] and Afraimofa-Bykov-Shilnikov [2.19]
offer in-depth discussion of the Lorenz equation. The mostlddtatudy of the Lorenz
equation was undertaken by Sparrow [2.20]. For a physitaipnetation op as “Rayleigh
number.” see Jackson [2.21] and Seydel [2.22]. Lorenz &tioie to 3 modes is so drastic
that the model bears no relation to the geophysical hydraahycs problem that motivated

it. For a detailed pictures of Lorenz invariant manifoldsisolt Vol I of Jackson [2.21].
Lorenz attractor is a very thin fractal — as we saw, stableifolanthickness is of order
10~* — whose fractal structure has been accurately resolved bsvanath [2.23, 2.24].

If you wander what analytic function theory has to say aboutehz, check ref. [2.25].
Refs. [2.26, 2.27] might also be of interest. (continuedtimark 9.2)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its trajectories are locally taide (positive Lyapunov exponent)
and globally mixing (positive entropy). In sect. 17.3 welktafine Lyapunov exponents,
and discuss their evaluation, but already at this point itilddoe handy to have a few
quick numerical methods to diagnose chaotic dynamics. dr&skequency analysis
method [2.28] is useful for extracting quasi-periodic anebkly chaotic regions of state
space in Hamiltonian dynamics with many degrees of freed&ior. pointers to other
numerical methods, see ref. [2.29].

Remark 2.5 Dynamical systems software: J.D.Meiss [2.30] has maintained for many
yearsSci.nonlinear FAQvhich is now in part superseded by the SIAM Dynamical Systems
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websitewww.dynamicalsystems.org. The website glossary contains most of Meiss’s
FAQ plus new ones, and a up-to-date software list [2.31]h Witks to DSTool, xpp,

AUTO, etc.. Springer on-linEncyclopaedia of Mathematicsaintains links to dynamical
systems software packages on eom.spring#/dé30210.htm. Kuznetsov [1.14] Appendix D.9
gives an exhaustive overview of software available in 20Qgee also remark 12.1)
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The exercises that you should do hawelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars.

Exercises

2.1

2.2

2.3.

2.4.

2.5.

exerFlows - 13jun2008

Trajectories do not intersect. A trajectory in the
state spacéM is the set of points one gets by evolving
x € M forwards and backwards in time:

f() =y

Cx={ye M: forte R}.

Show that if two trajectories intersect, then they are thé2.6. Runge-Kutta integration.

same curve.

Evolution as a group.  The trajectory evolutiorf! is
a one-parameter semigroup, where (2.3)

ft+S — ft o fS.

Show that it is a commutative semigroup.

In this case, the commutative character of the
(semi-)group of evolution functions comes from the

commutative character of the time parameter under
addition. Can you think of any other (semi-)group

replacing time?

Almost ODE’s.
(@) Consider the poink on R evolving according
X = €. Is this an ordinary dferential equation?
(b) Isx = x(x(t)) an ordinary diferential equation?
(c) What abou'= x(t + 1) ?
All equilibrium points are fixed points. Show that

a point of a vector fieldr where the velocity is zero is a
fixed point of the dynamics!.

Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potentiakp

X =-V¢(x)

wherex € RY, andg is a function from that space to the
realsR.

(@) Show that the velocity of the particle is in the

direction of most rapid decrease of the function, o

¢.
(b) Show that all extrema af are fixed points of the
flow.

2.7.

2.8.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

Implement the fourth-
order Runge-Kutta integration formula (see, for
example, ref. [2.32]) fox = v(X):

- ki ke k ke 6
Xni1 = xn+6+3+3+6+0(6r)
ki = otv(X), ko=0drVv(X,+ky/2)

k3 = 5TV(Xn + k2/2)

ks

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

0T V(X + K3) .

Rossler flow.  Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rossler flow (2.17). Does the result look like a ‘strange
attractor’?

Equilibria of the R dssler flow.

(a) Find all equilibrium points Xg,Yyq,Z;) of the
Rossler system (2.17). How many are there?

(b) Assume thato = a. As we shall see, some
surprisingly large, and surprisingly small numbers
arise in this system. In order to understand their
size, introduce parameters

e=a/c, D=1-4¢, p* =1+ VD)/2.

Express all the equilibria in terms of, €, D, p*).

Expand equilibria to the first order in Note that
it makes sense because &= b =0.2,c=5.7in

(2.17),e ~ 0.03. (continued as exercise 3.1)

(Rytis PaSkauskas)

Can you integrate me? Integrating equations
numerically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
differential equations has a solution for all times and
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there are many cases were the solution only exists for  we shall need to compute classical periodic orbits of
a limited time interval, as, for example, for the equation the helium system. In this exercise we commence their
x=x%, x(0)=1. evaluation for the collinear helium atom (7.6)

(a) For what times do solutions of H = 1l 1o 2 2 :
pI+ s P5 + .
) 2 2 ri ra ri+rp
x = X(x(t))

] ) ) The nuclear charge for heliumZs= 2. Colinear helium
exist? Do you need a numerical routine to answer 55 only 3 degrees of freedom and the dynamics can be

this question? visualized as a motion in they(r,), r; > 0 quadrant. In
(b) Let's test the integrator you wrote in exercise 2.6. (r1, r2)-coordinates the potential is singular fior— 0
The equationx = —x with initial conditionsx(0) = nucleus-electron collisions. These 2-body collisions
2 andx = 0 has as solution(t) = (1 + €). can be regularized by rescaling the coordinates, with
Can your integrator reproduce this solution for details given in sect. 6.3. In the transformed coordinates
the intervalt € [0,10]? Check you solution by (X1, X2, P1, p2) the Hamiltonian equations of motion take
plotting the error as compared to the exact result. the form
(c) Now we will try something a little harder. The . p% ) Q§
equation is going to be third order P = 2Q {2 3 Q(1+ ﬁ)}
X +0.6X+Xx—|x+1=0, . p2 2
| j . Py = 2Qz[2——1—Q§(1+%)}
which can be checked—numerically—to be chaotic. 8 R
As initial conditions we will always us&(0) = 10 w10 5
X(0) = x(0) = 0. Can you reproduce the result Q = ZP1Q2’ Q2= ZPZQl' (2.20)

X(12) = 0.8462071873 (all digits are significant)? 5 N2
Even though the equation being integrated is  WhereR=(Q +Q)~*.
chaotic, the time intervals are not long enough
for the exponential separation of trajectories to
be noticeable (the exponential growth factor is

() Integrate the equations of motion by the
fourth order Runge-Kutta computer routine of
exercise 2.6 (or whatever integration routine

~ 2.4). : . . .
) ) o ) . you like). A convenient way to visualize the
(d) Determine the time interval for which the solution 3 - dimensionaktate space orbit is by projecting
of X = %, x(0) = 1 exists. it onto the 2-dimensional r{(t),ra(t)) plane.

(continued as exercise 3.4)
2.10. Classical collinear helium dynamics.  In order to

apply periodic orbit theory to quantization of helium (Gregor Tanner, Per Rosenqvist)
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