Chapter 25

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanovic)

Boltzmann’s mechanical formulation of statistical medhanSinai, Ruelle

and Bowen (SRB) have generalized Boltzmann’s notion ofdigity for a
constant energy surface for a Hamiltonian system in eqiulib to dissipative
systems in nonequilibrium stationary states. In this mageegal setting the
attractor plays the role of a constant energy surface, aadSRB measure of
sect. 16.1 is a generalization of the Liouville measure.hSueasures are purely
microscopic and indierent to whether the system is at equilibrium, close to éagitim
or far from it. “Far for equilibrium” in this context refer®tsystems with large
deviations from Maxwell's equilibrium velocity distribon. Furthermore, the
theory of dynamical systems has yielded new sets of micpsclynamics formulas
for macroscopic observables such giudiion constants and the pressure, to which
we turn now.

THE ADVANCEs in the theory of dynamical systems have brought a new life to

We shall apply cycle expansions to the analysidrahsport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assionptare made, and
the all correlations are taken into account by the inclusibeycles of all periods.
The infinite extent systems for which the periodic orbit ttyegields formulas for
diffusion and other transport dtieients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The ratitm are physical
problems such as beam defocusing in particle acceleratmtsaotic behavior of
passive tracers in-2dimensionalotating flows, problems which can be described
as deterministic diusion in periodic arrays.

In sect. 25.1 we derive the formulas forfidision codicients in a simple
physical setting, the 2 dimensionaperiodic Lorentz gas. This system, however,
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Figure 25.1: Deterministic dffusion in a finite horizon :
periodic Lorentz gas. (T. Schreiber):

is not the best one to illustrate the theory, due to its corapid symbolic dynamics.
Therefore we apply the theory first tafidision induced by a2dimensionalmaps
in sect. 25.2.

25.1 D#tusion in periodic arrays

The 2— dimensional Lorentz gais an infinite scatterer array in whichftlision

of a light molecule in a gas of heavy scatterers is modeledhbyntotion of a
point particle in a plane bouncingf@an array of reflecting disks. The Lorentz gas
is called “gas” as one can equivalently think of it as colrgjsbf any number
of pointlike fast “light molecules” interacting only witthé stationary “heavy
molecules” and not among themselves. As the scatterer @&rhyilt up from
only defocusing concave surfaces, it is a pure hyperbolgtesy, and one of
the simplest nontrivial dynamical systems that exhibittedeinistic difusion,
figure 25.1. We shall now show that tiperiodic Lorentz gas is amenable to a
purely deterministic treatment. In this class of open dyicahsystems quantities
characterizing global dynamics, such as the Lyapunov exmiprpressure and
diffusion constant, can be computed from the dynamics resttictine elementary
cell. The method applies to any hyperbolic dynamical systesh is a periodic
tiling M = Urer Ma of the dynamical state spad@f by translates My of an
elementary celiM, with T the abelian group of lattice translations. If the scattgrin
array has further discrete symmetries, such as reflectiomstry, each elementary
cell may be built from dundamental domairM by the action of a discrete (not
necessarily abelian) group. The symbolM refers here to the full state space,
i.e.,, both the spatial coordinates and the momenta. Thebkpamponent ofMm

is the complement of the disks in thdolespace.

We shall now relate the dynamics M to diffusive properties of the Lorentz
gas inM.
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Figure 25.2: Tiling of M, a periodic lattice of . .
reflecting disks, by the fundamental domaimt.

Indicated is an example of a global trajectox{t)” ‘
together with the corresponding elementary cell

trajectoryx(t) and the fundamental domain trajectory
X(t). (Courtesy of J.-P. Eckmann) . ‘ - .

These concepts are best illustrated by a specific exampleremtz gas based
on the hexagonal lattice Sinai billiard of figure 25.2. Wetidguish two types
of diffusive behavior; thénfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our colesation to the finite
horizon case, with disks fiiciently large so that no infinite length free flight is
possible. In this case theffiision is normal, withx(t)? growing liket. We shall
discuss the anomalousfiision case in sect. 25.3.

As we will work with three kinds of state spaces, good mannegsiire that
we repeat what tildes, nothings and hats atop symbols gignif

fundamental domain, triangle in figure 25.2
elementary cell, hexagon in figure 25.2
full state space, lattice in figure 25.2 (25.1)

Itis convenient to define an evolution operator for each efXlsases of figure 25.2.
%(t) = fY(X) denotes the point in the global spaA‘:ereached by the flow in time
t. x(t) = f'(xo) denotes the corresponding flow in the elementary cell; e t
are related by

fr(x0) = fi(x0) - f'(x0) € T, (25.2)

the translation of the endpoint of the global path into treereintary celM. The
quantity X(t) = fY(X) denotes the flow in the fundamental domatify fi(%) is
related tof!(X) by a discrete symmetry € G which mapsx(t) € Mto x(t) € M. chapter 21

Fix a vector@ € RY, whered is the dimension of the state space. We will
compute the diusive properties of the Lorentz gas from the leading eigevaf
the evolution operator (17.11)

SB) = Jim T log(e? 00, (25.3)
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where the average is over all initial points in the elemegntail, x € M.

If all odd derivatives vanish by symmetry, there is no drifidahe second
derivatives

0 0 1 .
20Dy = poansf) = Jim SO - RO - Du

=0

yield a difusion matrix. This symmetric matrix can, in general, be @inipic
(i.e., haved distinct eigenvalues and eigenvectors). The spatiBlglon constant
is then given by the Einstein relation (17.13)

_ 1 & 1 ,
D= 2.2, @S(ﬂ)‘ﬂ:o = fim 5= (@0 - D)

where tha sum is restricted to the spatial componenptsf the state space vectors
X = (g, p), i.e., if the dynamics is Hamiltonian, the sum is over thihe degrees
of freedom.

We now turn to the connection between (25.3) and periodidatih the
elementary cell. As the fulM — M reduction is complicated by the non-abeliamark 25.5
nature ofG, we discuss only the abeliail — M reduction.

25.1.1 Reduction fromMto M

The key idea follows from inspection of the relation

(F000) = ﬁ Xy EI05(5 — f1(x).
JeM

IM| = fM dxis the volume of the elementary cdll. Due to translational symmetry,
it suffices to start with a density of trajectories defined over dsielgmentary cell
M. Asin sect. 17.2, we have used the identity }fMdy(S(y — X(t)) to motivate the
introduction of the evolution operatdi!(y, ). There is a unique lattice translation
N such thaty™= y — N, with the endpoiny € M translated back to the elementary
cell, andft(x) given by (25.2). The dierence is a translation by a constant lattice
vectorn, and the Jacobian for changing integration frdinto dy equals unity.
Therefore, and this is the main point, translation invaréaoan be used to reduce
this average to the elementary cell:

(PO = ﬁ dedyé'(fVX)—X)(S(y— f{(x)) . (25.4)
X,ye

As this is a translation, the Jacobiand§/dy| = 1. In this way the globaf(x)
flow, infinite volume state space averages can be computeollbwing the flow
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f!(xo) restricted to the compact, finite volume elementary adll The equation
(25.4) suggests that we study the evolution operator

Ly, ¥) = Oy — £1(x), (25.5)

wherex(t) = f!(x) e Mis the displacement in the full space, butf'(x), y € M.
It is straightforward to check that this operator satisfles semigroup property
(17.25),

f dZLtz (y, Z).[:tl (Z, X) — £t2+tl(y’ X) .
M

ForB = 0, the operator (25.5) is the Perron-Frobenius operatoflQ}6with the
leading eigenvalue® = 1 because there is no escape from this system (see the
flow conservation sum rule (22.11)).

The rest is old hat. The spectrum gfis evaluated by taking the trace section 18.2
tr Lt = f dx &M Ms5(x — x(1)) .
M

Hereri(X) is the discrete lattice translation defined in (25.2). Twalk of orbits
periodic in the elementary cell contribute. A periodic orisi calledstanding

if it is also periodic orbit of the infinite state space dynasjif '°(x) = x, and it

is calledrunning if it corresponds to a lattice translation in the dynamicstiua
infinite state spacef Tr(x) = x + Np. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ fridrfrom chapter 9. In
the theory of area—preserving maps such as the standard imeg@ample 7.6
these orbits are calledccelerator modesas the diusion takes place along the
momentum rather than the position coordinate. The trawdilenceny = fir (Xo)

is independent of the starting poixy, as can be easily seen by continuing the path
periodically in M.

The final result is the spectral determinant (19.6)

© -Ap—sTp)r
dets() - A) = [ [exp|-> 1 Enr | (25.6)
b =1 |det(1- mp)
or the corresponding dynamical zeta function (19.15)
elB-1p-STp)
1/¢(B,9) = 1-—. 25.7
.9 = [ [1- ) (25.7)

p
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The dynamical zeta function cycle averaging formula (2Dt the difusion
constant (17.13), zero mean dr®) = 0, is given by

1 <22>g 11 Z’ (_l)k+l(ﬁp1 tooot ﬁpk)2

_ 1 _ 1 25.8
2d(T), ~ 2d (T), Apy - Apd (258)

where the sum is over all distinct non-repeating combimatioprime cycles. The
derivation is standard, still the formula is strangeff@@ion is unbounded motion
across an infinite lattice; nevertheless, the reductiohéetementary cell enables
us to compute relevant quantities in the usual way, in teripeigodic orbits.

A sleepy reader might protest the(l ) — x(0) is manifestly equal to zero for
a periodic orbit. That is correcty,in the above formula refers to a displacement
X(Tp) on theinfinite periodic lattice, whilep refers to closed orbit of the dynamics
f'(x) reduced to the elementary cell, with a periodic point in the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodibitsrhavex; = 0,
and contribute only to the time normalizatigh),. The mean square displacement

<>“<2>( gets contributions only from the periodic runaway trajees; they are

closed in the elementary cell, but on the periodic latticeheane grows like

X(t)? = (Ap/Tp)?t? = V32 So the orbits that contribute to the trace formulas

and spectral determinants exhibit either ballistic transpr no transport at all:

diffusion arises as a balance between the two kinds of motiomghtesl by the

1/IApl measure. If the system is not hyperbolic such weights mayheranally

large, with Y|Ap| = 1/Tp? rather than 1A | ~ e el whereA is the Lyapunov
exponent, and they may lead to anomalouudion - accelerated or slowed down
depending on whether the probabilities of the running orstia@ding orbits are
enhanced. section 25.3

We illustrate the main idea, tracking of a globallyfdsing orbit by the associated
confined orbit restricted to the elementary cell, with aslafsimple dimensional
dynamical systems where all transport fiméents can be evaluated analytically.

25.2 D#tusion induced by chains oflL — dimensionamaps

In a typical deterministic diusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers irbonece, and then the
process is repeated. As was shown in chapter 11, the esg@ntiaf this process

is the stretching along the unstable directions of the flowg & the crudest
approximation the dynamics can be modeled bydimensionakxpanding maps.
This observation motivates introduction of a class of pattirly simple Xdimensional
systems.
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Figure 25.3: (a) f(f(), the full space sawtooth 1 i
map (25.9),A > 2. (b) f(x), the sawtooth map " .

restricted to the unit circle (25.12), = 6. (@) (b) ©

Example 25.1 Chains of piecewise linear maps. We start by defining the map f on
the unit interval as

o[ AR %€ 0,1/2)
f(x)_{A>“<+1—A ge(l21 @ A>2 (25.9)

and then extending the dynamics to the entire real line, by imposing the translation
property

f(x+0) = f(R+h ReZ. (25.10)

As the map is discontinuous at X = 1/2, f (1/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. The map is antisymmetric under the
X-coordinate flip

f(® = -f(-%, (25.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating function
(17.11) with respect to B, evaluated at 8 = 0, will vanish.

The map (25.9) is sketched in figure 25.3 (a). Initial points sufficiently close to
either of the fixed points in the initial unit interval remain in the elementary cell for one
iteration; depending on the slope A, other points jump i cells, either to the right or to
the left. Repetition of this process generates a random walk for almost every initial
condition.

The translational symmetry (25.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the unit
interval curled up into a circle. Associated to f (X) we thus also consider the circle map

f9=f®-[f®]. x=x-[xe[0.1] (25.12)

figure 25.3 (b), where [- -] stands for the integer part (25.2). For the piecewise linear
map of figure 25.3 we can evaluate the dynamical zeta function in closed form. Each
branch has the same value of the slope, and the map can be parameterized by a single
parameter, for example its critical value a = f (1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = A/2. The larger A is, the stronger
is the stretching action of the map.
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As noted in sect. 25.1.1, the elementary cell cycles coors$o either standing
or running orbits for the map on the full line: we shall referfi, € Z as the
jumping numbenof the p cycle, and take as the cycle weight

tp = Z%M/|Ap. (25.13)

The diffusion constant formula (25.8) forddimensionamaps is

1),

= , 25.14
20z ( )
where the “mean cycle time” is given by (20.22)
n “+n
(N, = g T e 25.15
¢ 52((0 2l Z D A Anl |Ap1 A|ok| ( )
and the “mean cycle displacement squared” by (20.25)
. 82 (h -+ fip, )
2 1)K pLt Px
f , 25.16

the primed sum indicating all distinct non-repeating camakions of prime cycles.
The evaluation of these formulas for the simple system ofmpta 25.1 will
require nothing more than pencil and paper.

Example 25.2 Unrestricted symbolic dynamics. Whenever A is an integer
number, the symbolic dynamics is exceedingly simple. For example, for the case A = 6
illustrated in figure 25.3 (b), the elementary cell map consists of 6 full branches, with
uniform stretching factor A = 6. The branches have different jumping numbers: for
branches 1 and 2 we have h = 0O, for branch 3 we have h = +1, for branch 4 i = -1,
and finally for branches 5 and 6 we have respectively i = +2 and i = -2. The
same structure reappears whenever A is an even integer A = 2a: all branches are
mapped onto the whole unit interval and we have two i = O branches, one branch

for which i = +1 and one for which i = —1, and so on, up to the maximal jump
Al = a— 1. The symbolic dynamics is thus full, unrestricted shift in 2a symbols
{0;, 1,,...,(@a-1),, (a-1)_, ..., 1, 0_}, where the symbol indicates both the length

and the direction of the corresponding jump.

For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps, tsq = tstq. For
the map of figure 25.3 there are 6 distinct weights (25.13):

ty

t3

th = z/A
/N, tu=ePz7yA, ts=6P7AN, tg=ePzA.
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The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (20.7). The exact dynamical zeta function (15.15) is given
by the fixed point contributions:

1/¢(8.2)

1-tg, —to — - —t@1), —ta@1).

a-1
1- §[1+Zcoshﬁj)]. (25.17)
=1

The leading (and only) eigenvalue of the evolution operator (25.5) is

a-1
s(B) = |og{£ [1 + Z coshg j)]} . A=2a, ainteger. (25.18)
ji=1

The flow conservation (22.11) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative S(0) vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift (Xy = 0. The second derivative S(B)” yields the diffusion constant

(25.14):
1 i~ 0 12 22 (a— 1)
(M =2a+ =1, <X>4‘2X+2X+2X+”'+2 (25.19)
Using the identity ¥p_, k* = n(n+ 1)(2n+ 1)/6 we obtain
1
D = Zl(A -1)(A-2), A even integer. (25.20)
Similar calculation for odd integer A = 2k — 1 yields exercise 25.1
D= 2—14(1\2— 1), A odd integer. (25.21)
25.2.1 Higher order transport codficients
The same approach yields higher order transporficients
1 ok
Be= goxsB) 8,=D, (25.22)
VAN P

known fork > 2 as the Burnett cdicients. The behavior of the higher order
codficients yields information on the relaxation to the asymiptdistribution
function generated by thefilisive process. Herg is the relevant dynamical
variable andBy’s are related to momen(s‘({() of arbitrary order.

Were the ditusive process purely Gaussian

1 f+00 . o 2

ts(B) _ o PBX—X/(4Dt) _ Dt

gsh) = dg e = (25.23)
V47TDt —00

the onlyB codficient diferent from zero would b8, = D. Hence, nonvanishing
higher order cofficients signal deviations of deterministididision from a Gaussian
stochastic process.
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Figure 25.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping humber
Ax) I = {0,,1,,2,,2.,1 ,0_}. The partition is
Markov, as the critical point is mapped onto the
right border of M;,. (b) The transition graph
for this partition. (c) The transition graph in the
compact notation of (25.26) (introduced by Vadim
Moroz). ) (b)
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Example 25.3 B4 Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B, is easily evaluated. For example, using (25.18) in the
case of even integer slope A = 2a we obtain exercise 25.2

By = —ﬁ)(a— 1)(2a-1)(4a*-9a+7). (25.24)

We see that deterministicfélision is notn Gaussian stochastic process. Higher
order even cd@cients may be calculated along the same lines.

25.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtainecheviee the critical

points are mapped in finite numbers of iterations onto pamtiboundary points,
or onto unstable periodic orbits. We will work out here anragée for which

this occurs in two iterations, leaving other cases as es&sci The key idea
is to construct aMarkov partition (11.2), with intervals mappednto unions of

intervals.

Example 25.4 A finite Markov patrtition. As an example we determine a value
of the parameter 4 < A < 6 for which f (f(1/2)) = 0. As in the integer A case,
we partition the unit interval into six intervals, labeled by the jumping number A(X) €
{Mo,, My, , Mo, Mo, Ma_, Mo_}, ordered by their placement along the unit interval,
figure 25.4 (a).

In general the critical value a = f (1/2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
Ma,. Equating f(1/2) with the right border of My,, X = 1/A, we obtain a quadratic
equation with the expanding solution A = 2(\2+1). For this parameter value f(My,) =
Mo, UMy, T(Mz) = Mo_ U Ma1_, while the remaining intervals map onto the whole
unit interval M. The transition matrix (14.1) is given by

do,
o1,
¢2,
6 | (25.25)
d1
do_

=

Il

_4

-

Il
PR R R R R
PR R R RR
OO0 OREK
PP OOO0OO
PR PR R R

e e
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One could diagonalize (25.25) on a computer, but, as we saw in chapter 14, the
transition graph of figure 25.4 (b) corresponding to map figure 25.4(a) offers more
insight into the dynamics. Figure 25.4 (b) can be redrawn more compactly as transition
graph figure 25.4 (c) by replacing parallel lines in a graph by their sum

@ :o;i;—0=t1+t2+t3- (25.26)

The dynamics is unrestricted in the alphabet
ﬂ = {O+$ 1+’ 2+0+’ 2+1+$ 2—1—$ 2—O—$ 1—’ O—}'

Applying the loop expansion (15.15) of sect. 15.3, we are led to the dynamical zeta
function

1/¢(8.2)

1-to, —t1, —t0, -1, -1 =g =t —1o

1- ZXZ (1 + coshp)) — i_zzz (cosh(®B) + cosh(P)) . (25.27)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynam-
ical zeta function we verify that

4 4
1/£(0,1) =1 AT 0,
as required by the flow conservation (22.11). Conversely, we could have started by
picking the desired Markov partition, writing down the corresponding dynamical zeta
function, and then fixing A by the 1/£(0,1) = 0 condition. For more complicated
transition graphs this approach, together with the factorization (25.35), is helpful in
reducing the order of the polynomial condition that fixes A.

The diffusion constant follows from (25.14) exercise 25.3
1 2 o 12 22 3?
<n>§ = 4X +4F, <n >§ = 2X+2F+2F
15+ 2v2
15+2v2 (25.28)
16+ 82

Itis by now clear how to build an infinite hierarchy of finite Kkav partitions:
tune the slope in such a way that the critical vafi&/2) is mapped into the fixed
point at the origin in a finite number of iteratiopsfP(1/2) = 0. By taking higher
and higher values op one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in whitbrrals are densely
embedded in the unit interval. For example, each of the 6 gmnintervals
can be subdivided into 6 intervals obtained by the 2-nd tkecd the map, and
for the critical point mapping into any of those in 2 steps grammar (and
the corresponding cycle expansion) is finite. So, if we cave@rcontinuity of
D = D(A), we can apply the periodic orbit theory to the sawtooth n2&p9) for
a random “generic” value of the parameterfor exampleA = 4.5. The idea is to
bracket this value oA by a sequence of nearby Markov values, compute the exact
diffusion constant for each such Markov partition, and studir tenvergence
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Figure 25.5: The dependence dd on the map L
. . o
parametera is continuous, but not monotone. ST : : ‘ 0.805 ‘ ‘ ‘ ‘
Herea stands for the slopa in (25.9). (From 6 62 64 66 68 7 56 5.62 564
ref. [25.9].) a a

toward the value oD for A = 4.5. Judging how dticult such problem is
already for a tent map (see sect. 15.5), this is not likelyaie tonly a week of
work.

Expressions like (25.20) may lead to an expectation thatitfigsion codficient
(and thus transport properties) are smooth functions admaters controlling
the chaoticity of the system. For example, one might exgeat the difusion
codficient increases smoothly and monotonically as the slopéthe map (25.9)
is increased, or, perhaps more physically, that tfi@ision codicient is a smooth
function of the Lyapunov exponemt. This turns out not to be trueD as a
function of A is a fractal, nowhere flierentiable curve illustrated in figure 25.5.
The dependence & on the map paramete is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratioe
diffusion constant does not necessarily grow.
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Figure 25.6: (a) A map with marginal fixed point. ‘
(b) The map restricted to the unit circle. @) (b) -172

This is a consequence of the lack of structural stabilitgnesf purely hyperbolic
systems such as the Lozi map and thedimensionadiffusion map (25.9). The
trouble arises due to non-smooth dependence of the topalagitropy on system
parameters - any parameter change, no mater how small, teasteation and
destruction of infinitely many periodic orbits. As far agfdsion is concerned
this means that even though local expansion rate is a smoottidn of A, the
number of ways in which the trajectory can re-enter theahitell is an irregular
function of A.

The lesson is that lack of structural stability implies ladlspectral stability,
and no global observable is expected to depend smoothlye@ytem parameters.
If you want to master the material, working through one of tleerministic
diffusion projects othaosBook.org/pages is strongly recommended.

25.3 Marginal stability and anomalous diffusion

What dfect does the intermittency of chapter 24 have on transpogeapties? A
marginal fixed point fiects the balance between the running and standing orbits,
thus generating a mechanism that may result in anomaldusidin.

Example 25.5 Anomalous diffusion. Consider a 1-dimensionamap of the real line
on itself shown in figure 25.6 (a), with the same properties as in sect. 25.2, except for a
marginal fixed point at x = 0. The corresponding circle map is given in figure 25.6 (b).

As in sect. 24.2.1, a branch with support in M;, i = 1,2,3,4 has constant slope A;,
while f|p, is of intermittent form. To keep you nimble, this time we take a slightly
different choice of slopes. The toy example of sect. 24.2.1 was cooked up so that the
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1/s branch cut in dynamical zeta function was the whole answer. Here we shall take a
slightly different route, and pick piecewise constant slopes such that the dynamical zeta
function for intermittent system can be expressed in terms of the Jonquiére functiemark 25.7

Jz9) = i /K. (25.29)
k=1

Once the 0 fixed point is pruned away, the symbolic dynamics is given by the
infinite alphabet {1, 2, 3,4,0'1,012,03,0'4}, i, j,k 1 = 1,2, ... (compare with table 24.1).
The parfitioning of the subinterval My is induced by /}/[ok(right) = f(;i'éht) Mz My)
(where f(;iéht) denotes the inverse of the right branch of f|s,) and the same reasoning

applies to the leftmost branch. These are regions over which the slope of f] M, IS
constant. Thus we have the following stabilities and jumping numbers associated to

letters:
K K Kl+a ~
| | _ |1+a ~ _
0102 Ap=753 fp=-1
3, 4 Ap = A fip=1
2.1 Ap=xA fp=-1, (25.30)

where @ = 1/s is determined by the intermittency exponent (24.1), while q is to be
determined by the flow conservation (22.11) for f:

%+2q§(a+1)=1

(where { is the Riemann zeta function), so thatq = (A —4)/(2A{(a+1)). The dynamical
zeta function picks up contributions just by the alphabet’s letters, as we have imposed
piecewise linearity, and can be expressed in terms of a Jonquiére function (25.29):

4 _

1/§O(Zﬂ) =1- XZCOShB — mzcosm . J(Z,a/ + 1) (2531)
Its first zero z(B) is determined by

4 A-4 1

-2+ —7- 1) = .

AZ+ Ag(1+oz)Z Jza+1) coshB

D vanishes by the implicit function theorer(B)|;-; = 0 whene < 1. The

physical interpretation is that a typical orbit will stickrflong times near th@
marginal fixed point, and the ‘trapping time’ will be largerfhigher values of
the intermittency parametar(recalla = 1/9). As always, we need to look more
closely at the behavior of traces of high powers of the temsperator.

The evaluation of transport cfiient requires one more derivative with respect
to expectation values of state space observables (see28et). if we use the
diffusion dynamical zeta function (25.7), we may write thudiion codicient
as an inverse Laplace transform, in such a way that the digtimbetween maps
and flows has vanished. In the case of dimensionabiffusion we thus have

o d2 1 a-+ioco tgl(ﬂ, S)
0= 3% o fa_im ds€ 6.9

(25.32)

5=0
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where the”’ refers to the derivative with respect $o

The evaluation of inverse Laplace transforms for high \&loiethe argument
is most conveniently performed using Tauberian theorems. skl take

w(d) = j:o dxeu(x),

with u(x) monotone ax — oo; then, ast — 0 andx — oo respectively (and
p € (0, ),

1 /(1
if and only if

ux) ~ F—(p)xp IL(v),

whereL denotes any slowly varying function with lim., L(ty)/L(t) = 1. Now

l/go’(e—s,ﬂ) (4 + A{(lm) JEes,a+1)+ s a/))) coshs
1/4o(€h) — 1- geScoshp— thpiseS(es,a+1)coshpd’

Taking the second derivative with respecpBtwe obtain

2

7 (V2" €=p)/HE=R),
_ 24 A((l+a) JE3a+1)+I(€3,a)) 9. (25.33)
(1- tes - hpsesies, a+1))

The asymptotic behavior of the inverse Laplace transforsni32) may then be
evaluated via Tauberian theorems, once we use our estimrateef behavior of
Jonquiére functions near= 1. The deviations from normal behavior correspond
to an explicit dependence Bfon time. Omitting prefactors (which can be calculated
by the same procedure) we have

52 for @ >1
g(t(s) ~ S_(a+l) for o € (O, l)
1/(sIng) for a=1.
The anomalous diusion exponents follow: exercise 25.6

t¢ for @ € (0,1)

(X=%0)) ~ 4 t/Int for a=1 (25.34)
t for a > 1.
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Résum é

With initial data accuracyx = |0x(0)| and system sizk, a trajectory is predictable
only to the finite Lyapunov timé yap ~ A71In|L/6x . Beyond that, chaos rules.
We have discussed the implications in sect. 1.8: chaos i@ gews for prediction
of long term observables such as transport in statisticehangcs.

The classical Boltzmann equation for evolution of 1-pdetidensity is based
on stosszahlansatzeglect of particle correlations prior to, or after a 2tjude
collision. It is a very good approximate description of tklgas dynamics, but
a difficult starting point for inclusion of systematic correcsonlin the theory
developed here, no correlations are neglected - they anecallded in the cycle
averaging formula such as the cycle expansion for tiesion constant

1 1 , (Ap, + - + Ay, )?
D= ——— _1k+l P1 Pk )
2d <T>(Z( ) |Apl"'Apk|

Such formulas ar@xact the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums reduiaetheir evaluation.
Unlike most statistical mechanics, here there are no phenological macroscopic
parameters; quantities such as transportfsnents are calculable to any desired
accuracy from the microscopic dynamics.

For systems of a few degrees of freedom these results argaous footing,
but there are indications that they capture the essenti@rdics of systems of
many degrees of freedom as well.

Though superficially indistinguishable from the probatiti random walk
diffusion, deterministic diiusion is quite recognizable, at least in low dimensional
settings, through fractal dependence of tifeudion constant on the system parameters,
and through non-Gaussion relaxation to equilibrium (nanishing Burnett cd@cients).

That Smale’s “structural stability” conjecture turned aoitbe wrong is not
a bane of chaotic dynamics - it is actually a virtue, perh&gsmost dramatic
experimentally measurable prediction of chaotic dynamAaslong as microscopic
periodicity is exact, the prediction is counterintuitiver fa physicist - transport
codficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere dferentiablefunctions.

Actual evaluation of transport cfiiients is a test of the techniques developed
above in physical settings. In cases of severe pruning #ee tformulas and
ergodic sampling of dominant cycles might be mofieetive strategy than the
cycle expansions of dynamical zeta functions and systereatimeration of all
cycles.
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Commentary

Remark 25.1 Lorentzgas. The original pinball model proposed by Lorentz [25.4]
consisted of randomly, rather than regularly placed scate

Remark 25.2 Who'’s dunnit? Cycle expansions for theffliision constant of a particle
moving in a periodic array have been introduced by R. Art®q] (exact dynamical
zeta function for - dimensionakhains of maps (25.8)), by W.N. Vance [25.6],and by
P. Cvitanovi€, J.-P. Eckmann, and P. Gaspard [25.7] (thedhjcal zeta function cycle
expansion (25.8) applied to the Lorentz gas).

Remark 25.3 Lack of structural stability for D. Expressions like (25.20) may lead to
an expectation that the filision codficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized eikample, by the Lyapunov
exponentl = InA). This turns out not to be trueD as a function ofA is a fractal,
nowhere diterentiable curve shown in figure 25.5. The dependendg ofh the map
parameterA is rather unexpected - even though for largemore points are mapped
outside the unit cell in one iteration, theffdision constant does not necessarily grow.
We refer the reader to refs. [25.15, 25.16] for early work lo@ deterministic dfusion
induced by 1-dimensional maps. The sawtooth map (25.9)mexdiuced by Grossmann
and Fujisaka [25.17] who derived the integer slope form(&&s20) for the dfusion
constant. The sawtooth map is also discussed in refs. [R5Ih@ fractal dependence of
diffusion constant on the map parameter is discussed in refS, 258, 25.10]. Sect. 1.8
gives a brief summary of the experimental implications;thar the current state of the art
of fractal transport ca@cients consult the first part of Klage’s monograph [25.12bWd

be nice if someone would eventually check these predictioegperiments... Statistical
mechanicians tend to believe that such complicated beh#vioot to be expected in
systems with very many degrees of freedom, as the additiariaaye integer dimension
of a number smaller than 1 should be as unnoticeable as asoapi perturbation of a
macroscopic quantity. No fractal-like behavior of the codiility for the Lorentz gas has
been detected so far [25.14]. (P. Cvitanovit and L. Rondoni

Remark 25.4 Symmetry factorization in one dimension. Intheg = 0 limit the dynamics
(25.11) is symmetric under — —X, and the zeta functions factorize into products of zeta
functions for the symmetric and antisymmetric subspacedeacribed in sect. 21.1.1:

11 1
((0’ Z) {S(O, Z) {a(O, Z)
91 191 141

7t = nwnn Lo (25:39)

The leading (material flow conserving) eigenvatue 1 belongs to the symmetric subspace
1/Z4(0,1) = 0, so the derivatives (25.15) also depend only on the synmrstbspace:

0o 1
2922002l
1 0 1
(0,2 %92 7(0,2)

(),

(25.36)

z=1
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| length [ # cycles] £(0,0) | A ]
1 51 -1.216975 -
2 10 | -0.024823| 1.745407
3 32 | -0.021694| 1.719617
4 104 | 0.000329| 1.743494
5 351 | 0.002527| 1.760581
6 1243 | 0.000034| 1.756546

Table 25.1: Fundamental domain, 0.3 .

Implementing the symmetry factorization is convenient,rint essential, at this level of
computation.

Remark 25.5 Lorentz gas in the fundamental domain.  The vector valued nature of
the generating function (25.3) in the case under consideratakes it dificult to perform

a calculation of the diusion constant within the fundamental domain. Yet we point
out that, at least as regards scalar quantities, the fuliatgzh to M leads to better
estimates. A proper symbolic dynamics in the fundamentaialo has been introduced
in ref. [25.19].

In order to perform the full reduction for filusion one should express the dynamical
zeta function (25.7) in terms of the prime cycles of the fundatal domainM of the
lattice (see figure 25.2) rather than those of the elemei(t&iigner-Seitz) cellM. This
problem is complicated by the breaking of the rotationalsyetry by the auxiliary vector
B, or, in other words, the non-commutativity of translatiansl rotations: see ref. [25.7].

Remark 25.6 Anomalous diffusion. Anomalous ditusion for :-dimensionaintermittent
maps was studied in the continuous time random walk apprimadfs. [24.10, 24.11].
The first approach within the framework of cycle expansidreséd on truncated dyn-
amical zeta functions) was proposed in ref. [24.12]. Ouattreent follows methods
introduced in ref. [24.13], applied there to investigate tehavior of the Lorentz gas
with unbounded horizon.

Remark 25.7 Jonquiére functions. In statistical mechanics Jonquiére function (25.29)
appears in the theory of free Bose-Einstein gas, see ref23224.23].
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Exercises

25.1.

25.2.

25.3.
25.4.

25.5.

25.6.

Diffusion for odd integer A. Show that when the
slopeA = 2k—11in (25.9) is an odd integer, theftlision
constant is given byD = (A% — 1)/24, as stated in
(25.21).

Fourth-order transport coefficient.
You will need the identity

Verify (25.24).

Z K = in(n +1)2n+ 1)(3% +3n—1).
- 30

Finite Markov partitions.  Verify (25.28).

Maps with variable peak shape: Consider the

following piecewise linear map

13—_’; Xe M
00 =1 3-8 - %) xe Mz (25.37)
1 1%5()(_%(2“5)) X € Mg

where My = [0,3(1-0)|, Mz = [3(1-06). 2(2+9)],

Mz = [%(2 +6), %] and the map in [12, 1] is obtained

by antisymmetry with respectto= 1/2,y = 1/2, Write

the corresponding dynamical zeta function relevant to
diffusion and then show that

_ 0(2+9)
C4(1-9)

Seerefs. [25.21, 25.22] for further details.

Two-symbol cycles for the Lorentz gas. Write down 25.8.

all cycles labeled by two symbols, such as (0 6), (1 7),
(15)and (05).

ChaosBook.org/pages offers several project-length
deterministic difusion exercises.

Accelerated dffusion. (medium dificulty) Consider
a maph, such thath = f of figure 25.6(b), but

References

25.7.

now running branches are turned into standing branches
and vice versa, so that 2, 3,4 are standing while 0
leads to both positive and negative jumps. Build the
corresponding dynamical zeta function and show that

t for a > 2

tint for a =2
a2t ~¢ T for ae(1,2)

t2/Int for a=1

t2 for @ €(0,1)

Recurrence times for Lorentz gas with infinite
horizon. Consider the Lorentz gas with unbounded
horizon with a square lattice geometry, with disk radius
R and unit lattice spacing. Label disks according to
the (integer) coordinates of their center: the sequence
of recurrence timest;} is given by the set of collision
times. Consider orbits that leave the disk sitting at
the origin and hit a disk far away after a free flight
(along the horizontal corridor). Initial conditions are
characterized by coordinateg, () (¢ determines the
initial position along the disk, while: gives the angle

of the initial velocity with respect to the outward
normal: the appropriate measure is th#m cosa da

(¢ € [0,2n), @ € [-n/2,7/2]. Find how¢(T) scales

for large values off': this is equivalent to investigating
the scaling of portions of the state space that lead to a
first collision with disk , 1), for large values oh (as

N con=T).

Diﬂ‘usjon reduced to the fundamental domain.

J Maps such as figure 25.3 are antisymmetric.
Reduce such antisymmetric maps as in example 9.3,
and write down the formula (25.14) for thefidision
constantD in terms of the fundamental domain cycles
(relative periodic orbits) alone (P. Gaspard says it cannot
be done [25.7]).
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