Chapter 23

Why doesit work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
throughit.”

—Felix Bloch, Heisenberg and the early days of
guantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovit)

S WE SHALL Seg, the trace formulas and spectral determinants work well,
A sometimes very well. The question is: Why? And it still is.eTteuristic
manipulations of chapters 18 and 6 were naive and recklessjeaare
facing infinite-dimensional vector spaces and singulagrdl kernels.

We now outline the key ingredients of proofs that put thedraed determinant
formulas on solid footing. This requires taking a closerkl@i the evolution
operators from a mathematical point of view, since up to nosvhave talked
about eigenvalues without any reference to what kind of a&tfan space the
corresponding eigenfunctions belong to. We shall restrictonsiderations to the
spectral properties of the Perron-Frobenius operator fggsnas proofs for more
general evolution operators follow along the same linesatMre refer to as a “the
set of eigenvalues” acquires meaning only within a pregispécified functional
setting: this sets the stage for a discussion of the anayypcoperties of spectral
determinants. In example 23.1 we compute explicitly themsgectrum for the
three analytically tractable piecewise linear exampleselct. 23.3 we review the
basic facts of the classical Fredholm theory of integrala¢igns. The program
is sketched in sect. 23.4, motivated by an explicit study igémspectrum of
the Bernoulli shift map, and in sect. 23.5 generalized tagigse real-analytic
hyperbolic maps acting on appropriate densities. We shova e@ery simple
example that the spectrum is quite sensitive to the regylaroperties of the
functions considered.

For expanding and hyperbolic finite-subshift maps anatytiteads to a very
strong result; not only do the determinants have betterytioi#y properties than
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the trace formulas, but the spectral determinants areesir@it as entire functions
in the complexs plane. remark 23.1

The goal of this chapter is not to provide an exhaustive ve\oé the rigorous
theory of the Perron-Frobenius operators and their speldtarminants, but rather
to give you a feeling for how our heuristic considerations t& put on a firm
basis. The mathematics underpinning the theory is both dnaddorofound.

If you are primarily interested in applications of the pei®orbit theory, you
should skip this chapter on the first reading.

fast track:
W chapter 13, p. 251
23.1 Linear maps. exact spectra

We start gently; in example 23.1 we work out #wa@cteigenvalues and eigenfunctions
of the Perron-Frobenius operator for the simplest examiplestable, expanding
dynamics, alinearddimensionamap with one unstable fixed point. . Ref. [23.6]
shows that this can be carried ovedtdimensions. Not only that, but in example 23.5
we compute the exact spectrum for the simplest example ohardical system

with aninfinity of unstable periodic orbits, the Bernoulli shift.

Example 23.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 19.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f(x) = AX, Al > 1,

and only one fixed point Xy = 0. The action of the Perron-Frobenius operator (16.10) is

Lo(y) = f dxa(y - AX) 9(x) = Kﬂ(p(y/m. (23.1)

From this one immediately gets that the monomials y* are eigenfunctions:

1
./:yk—myk, k=0,12,... (23.2)

What are these eigenfunctions? Think of eigenfunctionsefSchrodinger
equation:k labels thekth eigenfunctionx® in the same spirit in which the number
of nodes labels thkth quantum-mechanical eigenfunction. A quantum-meclanic
amplitude with more nodes has more variability, hence adridgimetic energy.
Analogously, for a Perron-Frobenius operator, a higheigenvalue 1A|AK is
getting exponentially smaller because densities thatvemme rapidly decay more
rapidly under the expanding action of the map.
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Example 23.2 The trace formula for a single fixed point: The eigenvalues A¥1
fall off exponentially with k, so the trace of L is a convergent sum

1
Y Z |A|(1 AT T ifOy -1

in agreement with (18.7). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (18.10):

o

1

zek > 7
_ L e = 23.3
é 1-ze  ZIL-AT] IAJAK (23.3)

The left hand side of (23.3) is a meromorphic function, wita teading zero
atz=|A|. So what?

Example 23.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

he) = 2=2

o

with a, b real and positive and a < b. Within the spectral radius |7 < b the function h
can be represented by the power series

(e

h(z) = Z oz,

k=0

where o9 = a/b, and the higher order coefficients are given by oj = (a— b)/ bi+l,
Consider now the truncation of order N of the power series

N

) a  2a—b)(1—2'/bN)
n(2) = kZ; oz =g (1-2zb)

Let 2y be the solution of the truncated series hy(2y) = 0. To estimate the distance
between a and 2y it is sufficient to calculate hy(a). It is of order (a/b)N*2, so finite order
estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pbke Ieading
eigenvalue off) from a finite truncation of a trace formula converges exptiady,
and (2) the non-leading eigenvaluesfie outside of the radius of convergence
of the trace formula and cannot be computed by means of suté expansion.
However, as we shall now see, the whole spectrum is reachahble extra &ort,
by computing it from a determinant rather than a trace.

converg - 9nov2008 ChaosBook.org version13.3, Sep 23 2010



f(x)

Figure 23.1: The Bernoulli shift map. X

Example 23.4 The spectral determinant for a single fixed point: The spectral
determinant (19.3) follows from the trace formulas of example 23.2:

= z S z
det(1-z£) = (1——)= -t)"Qn, t=—, 234
(1-2L) er[) TG Z;)( )"Qn T (23.4)
where the cummulants Q,, are given explicitly by the Euler formula exercise 23.3
1 A—l A—n+1
Qn (23.5)

T1-_AT1-A2 T 1_Am

The main lesson to glean from this simple example is thatdinenculantsQy,
decay asymptoticalljasterthan exponentially, a& "("~1/2_ For example, if we
approximate series such as (23.4) by the first 10 terms, tbeiarthe estimate of
the leading zero is: 1/A50!

So far all is well for a rather boring example, a dynamicateyswith a single
repelling fixed point. What about chaos? Systems where th#auof unstable
cycles increases exponentially with their length? We nom to the simplest
example of a dynamical system with an infinity of unstableqabc orbits.

Example 23.5 Eigenfunction of Bernoulli shift map. (continued from example 11.7) The
Bernoulli shift map figure 23.1

fo(X) = 2x, xelg=1[0,1/2)
f(x) = { B0 =2x-1. xel=(1/2.1] (23.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-
ator (16.9) assembles p(y) from its two preimages

o) = 2p(2) + %p(%l) | (23.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials B,(X). These polynomials are
generated by the Taylor expansion of the generating function

teXt = tk 1
G = 5 = é B¥)py. Bo(9 =1, Bi)=x-3....
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The Perron-Frobenius operator (23.7) acts on the generating function G as

1(te?  te2ev2)  t 2 S (t/2)
L6 = é(er_ﬁﬁ) ST kZ; B

hence each By(X) is an eigenfunction of £ with eigenvalue 1/2¥.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2" branches
the above calculations carry over, yielding the same trace (2" — 1) for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

det(1-zL) = exp[— Z% an—le = 1_[ (1— 2_Z|<) , (23.8)

n=1 k=0

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, .. .,
/20, . ...

The Bernoulli map spectrum looks reminiscent of the singledipoint spectrum
(23.2), with the dference that the leading eigenvalue here is 1, rather tfian 1
The diference is significant: the single fixed-point map is a repeliéh escape
rate (1.7) given by thel leading eigenvalug = In|A|, while there is no escape
in the case of the Bernoulli map. As already noted in discussi the relation
(19.23), for bound systems the local expansion rate (heng e ln 2) is balanced section 19.4
by the entropy (here In 2, the log of the number of preimdggs yielding zero
escape rate.

So far we have demonstrated that our periodic orbit formatascorrect for
two piecewise linear maps in 1 dimension, one with a singledfigoint, and one
with a full binary shift chaotic dynamics. For a single fixenint, eigenfunctions
are monomials irx. For the chaotic example, they are orthogonal polynomials o
the unit interval. What about higher dimensions? We checgkfaumulas on a
2 — dimensionahyperbolic map next.

Example 23.6 The simplest of 2 — dimensionalmaps - a single hyperbolic fixed
point: We start by considering a very simple linear hyperbolic map with a single
hyperbolic fixed point,

f(X) = (f]_(X]_, X2), fz(X]_, X2)) = (ASX]_, AUXZ) y 0< |AS| <1, |Au| >1.

The Perron-Frobenius operator (16.10) acts on the 2— dimensionablensity functions as

1
Lp(X1, X2) = mp(xl/l\s, X2/ Ay) (23.9)

What are good eigenfunctions? Cribbing the 1 — dimensionaleigenfunctions for the
stable, contracting X1 direction from example 23.1 is not a good idea, as under the
iteration of L the high terms in a Taylor expansion of p(X1, X2) in the X, variable would
get multiplied by exponentially exploding eigenvalues 1/A'§. This makes sense, as in

converg - 9nov2008 ChaosBook.org version13.3, Sep 23 2010



the contracting directions hyperbolic dynamics crunches up initial densities, instead of
smoothing them. So we guess instead that the eigenfunctions are of form

Pl (X1, X0) = X2/ X ki, ke =0,1,2,..., (23.10)

a mixture of the Laurent series in the contraction X, direction, and the Taylor series in
the expanding direction, the X, variable. The action of Perron-Frobenius operator on
this set of basis functions

ki

Lo 0. %) = A Pkl = Asling

is smoothing, with the higher ky, ko eigenvectors decaying exponentially faster, by
A‘él/AEZJfl factor in the eigenvalue. One verifies by an explicit calculation (undoing
the geometric series expansions to lead to (19.9)) that the trace of L indeed equals
1/|det@ - M)| = 1/|(1 - Ay)(1— As)|, from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized

around the fixed point of form f(Xy...., Xd) = (A1X1, A2Xo, . . ., AdXd).

So far we have checked the trace and spectral determinantiias derived
heuristically in chapters 18 and 19, but only for the case ef dimensional
and 2- dimensionalinear maps. But for infinite-dimensional vector spaces thi
game is fraught with dangers, and we have already been mhible@iecewise
linear examples into spectral confusions: contrast thetspef example 16.1 and
example 17.4 with the spectrum computed in example 18.2.

We show next that the above results do carry over to a sizédss of piecewise
analytic expanding maps.

23.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes fkagtige way to look at
operators is through their matrix representations. Ei@iubperators are moving
density functions defined over some state space, and asenaj@re can implement
this only numerically, the temptation is to discretize ttegesspace as in sect. 16.3.
The problem with such state space discretization appreattia they sometimes
yield plainly wrong spectra (compare example 17.4 with #selt of example 18.2),
so we have to think through carefully what is it that rgally measure.

An expanding mag (x) takes an initial smooth densigy,(x), defined on a
subinterval, stretches it out and overlays it over a langirval, resulting in a new,
smoother density,,1(X). Repetition of this process smoothes the initial density,
so it is natural to represent densitiggx) by their Taylor series. Expanding

y

on(y) = Z¢<k’(0)k,, ¢n+1(y)k=z aO)7 -

(=0
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62,0 = [ ax 800~ 1000, x= 0.
and substitute the two Taylor series into (16.6):

Ires(y) = (L) (¥) = fM dxa(y — £ (X)) én().

The matrix elements follow by evaluating the integral

(23.11)

o XK
L= — fde(y, X)—
ay’ ko

we obtain a matrix representation of the evolution operator

fde(yx) _Z&ka, kK =012...

which maps thex* component of the density of trajectorieg(x) into the y
component of the density,.1(y) one time step later, withi = f(X).

We already have some practice with evaluating derivatteg)) = 5‘—[/5(y) from

sect. 16.2. This yields a representation of the evolutiogratpr centered on the
fixed point, evaluated recursively in terms of derivativeghe mapf:

(L)ex

Xk
f dxs©O(x - ()

Cx=1(x)
_ o L(d 1\
rldx () k

The matrix elements vanish fdr < k, soL is a lower triangular matrix. The
diagonal and the successivéf-diagonal matrix elements are easily evaluated
iteratively by computer algebra

(23.12)

x=f(X)

Lo = 1 L _ (k+ 27
For chaotic systems the map is expanding > 1. Hence the diagonal terms drop
off exponentially, as AA <1, the terms below the diagonal falif@ven faster, and
truncatingL to a finite matrix introduces only exponentially small escor

The trace formula (23.3) takes now a matrix form

zL L
trl—zL _trl—zL . (23.13)
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Figure 23.2: A nonlinear one-branch repeller with a
single fixed pointv,.

In order to illustrate how this works, we work out a few exaal

In example 23.7 we show that these results carry over to aalytansingle-
branch 1- dimensionakepeller. Further examples motivate the steps that lead to
a proof that spectral determinants for general analytiddimensionakxpanding
maps, and - in sect. 23.5, fortimensionahyperbolic mappings - are also entire
functions.

Example 23.7 Perron-Frobenius operator in a matrix representation: As in
example 23.1, we start with a map with a single fixed point, but this time with a nonlinear
piecewise analytic map f with a nonlinear inverse F = 1, sign of the derivative
o =o(F") = F’/|F’|, and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point X = Wg,

Lo(y) = fdxé(y— f(X) ¢(x) = o F'(y) 6(F(¥)) .
Assume that F is a contraction of the unit disk in the complex plane, i.e.,

IF(9l<0<1 and |[F'(9|<C<oo for |74 <1, (23.14)
and expand ¢ in a polynomial basis with the Cauchy integral formula

- dw  ¢(w) dw  ¢(w)
$@ =) Z¢n=Q5= —=. =0 5= "
nZ=c:) 2wl

2ni w—2z’

Combining this with (23.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

dw o F/(W)(FW))"

- T (23.15)

Low) = > WL, Linn =
mn

Taking the trace and summing we get:

3 _ fdw o F(w)
L= tm= Pog wFw

n>0

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w").
Hence exercise 23.6
F’(w* 1
tr L= o F'(W) = .
1-F(w) [f(w) -1
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This super-exponential decay of cummula@igs ensures that for a repeller
consisting of a single repelling point the spectral detaant (23.4) isentirein
the complexz plane.

In retrospect, the matrix representation method for sgltfre density evolution
problems is eminently sensible — after all, that is the wag enlves a close
relative to classical density evolution equations, ther&dinger equationWhen
available, matrix representations férenable us to compute many more orders
of cumulant expansions of spectral determinants and mamg gigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas suc(il8s25) imply that
the dynamical zeta function is a meromorphic function. Treefical import of
this observation is that it guarantees that finite ordernegts of zeroes of dyn-
amical zeta functions and spectral determinants convergenentially, or - in
cases such as (23.4) - super-exponentially to the exacesjalnd so the cycle
expansions to be discussed in chapter 20 repredem gerturbativeapproach to
chaotic dynamics.

Before turning to specifics we summarize a few facts abowsadal theory
of integral equations, something you might prefer to skipficst reading. The
purpose of this exercise is to understand that the Fredhodory, a theory that
works so well for the Hilbert spaces of quantum mechanics aae necessarily
work for deterministic dynamics - the ergodic theory is mbaeinder.

fast track:
W sect. 23.4, p. 441
23.3 Classical Fredholm theory

He who would valiant be 'gainst all disaster
Let him in constancy follow the Master.

—John BunyanPRilgrim’s Progress
,
J The Perron-Frobenius operator
£609 = [ dyoc- 1) 00)
has the same appearance as a classical Fredholm integrataype

Ko(x) = fM dyK(x y)e() (23.16)

and one is tempted to resort too classical Fredholm theooyder to establish
analyticity properties of spectral determinants. Thishp@t enlightenment is

converg - 9nov2008 ChaosBook.org version13.3, Sep 23 2010



blocked by the singular nature of the kernel, which is a itistion, whereas the
standard theory of integral equations usually concered wgth regular kernels
K(x,y) € L>(M?). Here we briefly recall some steps of Fredholm theory, teefor
working out the example of example 23.5.

The general form of Fredholm integral equations of the seéd¢amd is
o9 = | dyKoyen) + €09 (23.17)

whereé(x) is a given function in.2(M) and the kernek (x,y) € L2(M?) (Hilbert-
Schmidt condition). The natural object to study is then thedr integral operator
(23.16), acting on the Hilbert spaté(M): the fundamental property that follows
from theL?(Q) nature of the kernel is that such an operataoisipact that is close

to a finite rank operator.A compact operator has the projkaiyfor everys > 0
only afinite number of linearly independent eigenvectors exist comegmg to
eigenvalues whose absolute value excéeds we immediately realize (figure 23.5)
that much work is needed to bring Perron-Frobenius operattw this picture.

We rewrite (23.17) in the form
Te =§, T=1-%. (23.18)

The Fredholm alternative is now applied to this situatioficdlews: the equation

T ¢ = £ has a unique solution for evety e L2(M) or there exists a non-zero
solution of7 ¢ = 0, with an eigenvector ok corresponding to the eigenvalue 1.
The theory remains the same if instead’oive consider the operatar, = 1-AK
with 1 # 0. AsK is a compact operator there is at most a denumerable a3dbof
which the second part of the Fredholm alternative holdsrtdpam this set the
inverse operator (4.177)~! exists and is bounded (in the operator sense). When
is suficiently small we may look for a perturbative expression fartsan inverse,
as a geometric series

(1-2%)7 = 1+ 2K + 2K? + -+ = 1+aW, (23.19)

whereK™ is a compact integral operator with kernel

KO(x,y) = fM da o dz K z) K.

andW is also compact, as it is given by the convergent sum of cohqpearators.
The problem with (23.19) is that the series has a finite radiusonvergence,
while apart from a denumerable set 8§ the inverse operator is well defined.
A fundamental result in the theory of integral equationssists in rewriting the
resolving kernefW as a ratio of twanalytic functions ofa

D(X,Y; 1)

Wxy) = 0
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If we introduce the notation

( X1... % ) _ ‘ Kx,y) - KX ¥n)

Yi...Yn KXY ... K, Yn)

we may write the explicit expressions

- AN z...7
_ 1\ 1
D) = 1+nZ:::L( N andzl...dz,ﬂ(( zl...zn)
= exp(—Z—tr?(m) (23.20)
m=1 m
. _ X R (_/l)n X 71 ... Zj
DXY; ) = “K(y)+n2:;—n! Mndzl"'dZ"(K(y 2 ...z

The quantityD(2) is known as the Fredholm determinant (see (19.24)):it is an
entire analytic function oft, andD(1) = 0 if and only if 1/ is an eigenvalue of
K.

Worth emphasizing again: the Fredholm theory is based ondh®actness
of the integral operator, i.e., on the functional propsrtisummability) of its
kernel. As the Perron-Frobenius operator is not compaetetis a bit of wishful
thinking involved here.

23.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrablé', or square-integrablé? on interval [Q1]
are mapped into themselves by the Perron-Frobenius opeaatdin both cases
the constant functiogy = 1 is an eigenfunction with eigenvalue 1. If we focus
our attention orL.! we also have a family df* eigenfunctions,

1

$u) = ) exp(@riky)y s

k+0

(23.21)

with complex eigenvalue 2, parameterized by complexwith Re § > 0. By
varying 6 one realizes that such eigenvalues fill out the entire usk.diSuch
essential spectrumthe casek = 0 of figure 23.5, hides all fine details of the
spectrum.
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What's going on? Spacés andL? contain arbitrarily ugly functions, allowing
any singularity as long as it is (square) integrable - andethe no way that
expanding dynamics can smooth a kinky function with a ndfedeéntiable singularity,
let's say a discontinuous step, and that is why the eigetgpeds dense rather
than discrete. Mathematicians love to wallow in this kindnafick, but there
is no way to prepare a nowhereffdrentiableL! initial density in a laboratory.
The only thing we can prepare and measure are piecewise Isrfreat-analytic)
density functions.

For a bounded linear operatct on a Banach spac®, the spectral radius
is the smallest positive numbpgpec such that the spectrum is inside the disk of
radiuspspes While the essential spectral radius is the smallest pesitumber
pPessSuch that outside the disk of radipsssthe spectrum consists only of isolated
eigenvalues of finite multiplicity (see figure 23.5). exercise 23.5

We may shrink the essential spectrum by letting the Perrobdnius oper-
ator act on a space of smoother functions, exactly as in teebaanch repeller
case of sect. 23.1. We thus consider a smaller splt€, the space ok times
differentiable functions whoskth derivatives are Holder continuous with an
exponent O< « < 1: the expansion property guarantees that such a space is
mapped into itself by the Perron-Frobenius operator. Irstlip 0< Ref < k+ «
mostgy Will cease to be eigenfunctions in the spae®; the functiong,, survives
only for integer valued = n. In this way we arrive at a finite set dgolated
eigenvalues 1271, ..., 27K and an essential spectral radjtggs= 2+,

We follow a simpler path and restrict the function space duether, namely
to a space of analytic functions, i.e., functions for which Taylor expansion is
convergent at each point of the interval IQ. With this choice things turn out easy
and elegant. To be more specific, ¢ebe a holomorphic and bounded function on
the diskD = B(0, R) of radiusR > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions providedR)12 < R so all we
need is to choos® > 1. If Fg, s € {0, 1}, denotes thes inverse branch of the
Bernoulli shift (23.6), the corresponding action of therBefFrobenius operator
is given by Lsh(y) = o F4(y) ho Fs(y), using the Cauchy integral formula along
the 9D boundary contour:

dw h(w)Fs(y)

Lshly) = 50 211 W— Fg(y)

(23.22)

For reasons that will be made clear later we have introdusggnar = +1 of the
given real branchF’(y)| = o F’(y). For both branches of the Bernoulli shéft= 1,

but in general one is not allowed to take absolute valuesiasctiuld destroy
analyticity. In the above formula one may also replace thenalo D by any
domaincontaining [Q 1] such that the inverse branches maps the closuteiotfo

the interior ofD. Why? simply because the kernel remains non-singular under
this condition, i.e.w — F(y) # 0 whenevew € gD andy € Cl D. The problem

is now reduced to the standard theory for Fredholm detemtsnaect. 23.3. The
integral kernel is no longer singular, traces and determighare well-defined, and
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we can evaluate the trace 6 by means of the Cauchy contour integral formula:

_ L dw oF'(w)
tr .[:F = ﬁg W——F(V\I) .

Elementary complex analysis shows that sifcemaps the closure dD into its
own interior,F has a unique (real-valued) fixed pokitwith a multiplier strictly
smaller than one in absolute value. Residue calculus thergields exercise 23.6

CoF(x) 1
TR 0 -1

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 23.8 Perron-Frobenius operator in a matrix representation: As in
example 23.1, we start with a map with a single fixed point, but this time with a nonlinear
piecewise analytic map f with a nonlinear inverse F = 1, sign of the derivative
o=oc(F)=F/F|

L#(2) = f dxo(z— f(x) () = o F'(2) ¢(F ().
Assume that F is a contraction of the unit disk, i.e.,

IF(9l<8<1 and |F'(29<C<o for |4 <1, (23.23)

and expand ¢ in a polynomial basis by means of the Cauchy formula

dw (W) [ dw g(w)

00= 2,200 Poi =Py

Combining this with (23.22), we see that in this basis L is represented by the matrix

dw o F/(w)(F(w))"

o T (23.24)

-£¢(W) = Z Wml-mn(ﬁn , Lmn=
mn

Taking the trace and summing we get:

dw o F’(w)
tr L= Ln=Q0 — ———~.
£ Z m 2ni w— F(w)

n>0
This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w").
Hence

CoFPWw) 1
L= T Ew) T w1

We worked out a very specific example, yet our conclusiondeageneralized,
provided a number of restrictive requirements are met bydimeamical system

under investigation: exercise 23.6
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1) the evolution operator imultiplicativealong the flow,

2) the symbolic dynamics isfanite subshift

3) all cycle eigenvalues arkyperbolic (exponentially bounded in
magnitude away from 1),

4) the map (or the flow) iseal analytic i.e., it has a piecewise analytic
continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfifieldynamical
systems that we actually desire to understand. Still, threyat devoid of physical
interest; for example, nice repellers like our 3-disk garhpiball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution topexs a finite
matrix in an appropriate basis; properties 3 and 4 enabl® ®und the size
of the matrix elements and control the eigenvalues. To ses wdn go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by tbloiving
weighted evolution operator

£4y.%) = NPy - 1) .

whereA!(X) is an eigenvalue of the Jacobian matrix transverse to the 8emiclassical
quantum mechanics suggest operators of this formgvithL/2.The problem with
such operators arises from the fact that when consideriegdlcobian matrices

Jan = JaJp for two successive trajectory segmemtgndb, the corresponding
eigenvalues are in generabt multiplicative, Agp # AaAp (Unlessa, b are iterates

of the same prime cyclp, s0J,Jp = J[;‘”b). Consequently, this evolution operator

is not multiplicative along the trajectory. The theoremguiee that the evolution

be represented as a matrix in an appropriate polynomiasbasd thus cannot

be applied to non-multiplicative kernels, i.e., kernelatttio not satisfy the semi-
group propertylt £t = £+,

Property 2 is violated by the 4 dimensionatent map (see figure 23.3 (a))
f)=a(l — 1-2X), 1/2<a<l.

All cycle eigenvalues are hyperbolic, but in general théaai pointx; = 1/2 is
not a pre-periodic point, so there is no finite Markov pastiteand the symbolic
dynamics does not have a finite grammar (see sect. 12.4 fanitatefs). In
practice, this means that while the leading eigenvalug ofight be computable,
the rest of the spectrum is very hard to control; as the paemds varied, the
non-leading zeros of the spectral determinant move wiltdtyud

Property 3 is violated by the map (see figure 23.3 (b))

[ x+2¢¢ | xelg=[0,4]
f(X)_{Z—ZX , Xelp=[3,1] °
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1 1
f(x) f(x)
0.5~ R 0.5~
Figure 23.3: (a) A (hyperbolic) tent map without o ‘ ! ‘ 0 ‘
a finite Markov partition. (b) A Markov map with 0 05 1 0 I,
amarginal fixed point. (@) (b)

Here the interval [01] has a Markov patrtition into two subintervdisandl, and

f is monotone on each. However, the fixed poinkat 0 has marginal stability
Ao = 1, and violates condition 3. This type of map is called “imétent” and
necessitates much extra work. The problem is that the dyszamthe neighborhood
of a marginal fixed point is very slow, with correlations dgiog as power laws
rather than exponentially. We will discuss such flows in ¢aag4.

Property 4 is required as the heuristic approach of chagtéaces two major
hurdles:

1. The trace (18.8) is not well defined because the integrakkés singular.

2. The existence and properties of eigenvalues are by nosbear.

Actually, property 4 is quite restrictive, but we need ithe fpresent approach,
so that the Banach space of analytic functions in a disk sepved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter akpeoblems. First,
in higher dimensions life is not as simple. Multi-dimensibresidue calculus is
at our disposal but in general requires that we find poly-dosédirect product
of domains in each coordinate) and this need not be the casen®, and perhaps
somewhat surprisingly, the ‘counting of periodic orbitsépents a diicult problem.
For example, instead of the Bernoulli shift consider theldiog map (11.8) of the
circle, x = 2x mod 1,x € R/Z. Compared to the shift on the interval, [J the
only difference is that the endpoints 0 and 1 are now glued togetheauBe these
endpoints are fixed points of the map, the number of cyclesrgithn decreases
by 1. The determinant becomes:

n_
det(1-z£) = exp[— Z % %] =1-z (23.25)

The valuez = 1 still comes from the constant eigenfunction, but the Beliho
polynomials no longer contribute to the spectrum (as theyat periodic). Proofs
of these facts, however, ardfittult if one sticks to the space of analytic functions.
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Third, our Cauchy formulaa priori work only when considering purely expanding
maps. When stable and unstable directions co-exist we laesort to stranger
function spaces, as shown in the next section.

23.5 Hyperbolic maps

| can give you a definion of a Banach space, but | do not
know what that means.
—Federico BonnettdBanach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the followimggox: If f is an
area-preserving hyperbolic and real-analytic map of, fangple, a 2-dimensional
torus then the Perron-Frobenius operator is unitary ongheesofL? functions,
and its spectrum is confined to the unit circle. On the otherdhavhen we
compute determinants we find eigenvalues scattered arosigkithe unit disk.
Thinking back to the Bernoulli shift example 23.5 one woukeIto imagine
these eigenvalues as popping up from tRespectrum by shrinking the function
space. Shrinking the space, however, can only make thergpestmaller so this
is obviously not what happens. Instead one needs to inteodtimixed’ function
space where in the unstable direction one resorts to andlytctions, as before,
but in the stable direction one instead considers a ‘duaespd distributions on
analytic functions. Such a space is neither included in noludesL? and we
have thus resolved the paradox. However, it still remainseteseen how traces
and determinants are calculated.

The linear hyperbolic fixed point example 23.6 is somewhalleading, as
we have made explicit use of a map that acts independenthgaloe stable
and unstable directions. For a more general hyperbolic ithape is no way to
implement such direct product structure, and the wholeraemi falls apart. Her
comes an idea; use the analyticity of the map to rewrite theRd-robenius oper-
ator acting as follows (where denotes the sign of the derivative in the unstable
direction):

3 o h(wyg, wo) dwy dw,
Lhia. 22) = 5656 (2 — f(wi, W) (fo(Wa, W) — 22) 2ni 2ri (23.26)

Here the functiony should belong to a space of functions analytic respectively
outsidea disk andinside a disk in the first and the second coordinates; with
the additional property that the function decays to zerohasfirst coordinate
tends to infinity. The contour integrals are along the botiedeaof these disks.
It is an exercise in multi-dimensional residue calculuseafy that for the above
linear example this expression reduces to (23.9). Suctatpsrform the building
blocks in the calculation of traces and determinants. Ongoave the following:
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Figure 23.4: For an analytic hyperbolic map,
specifying the contracting coordinat, at the initial
rectangle and the expanding coordinatat the image WV"
rectangle defines a unique trajectory between the two
rectangles. In particulamy, andz, (not shown) are W
uniquely specified. h

Theorem: The spectral determinant f@-dimensional hyperbolic analytic maps
is entire. remark 23.8

The proof, apart from the Markov property that is the sameoasghie purely
expanding case, relies heavily on the analyticity of the malpe explicit construction
of the function space. The idea is to view the hyperbolicgyaaross product of a
contracting map in forward time and another contracting mapackward time.

In this case the Markov property introduced above has to akoehted a bit.
Instead of dividing the state space into intervals, onadéwit into rectangles. The
rectangles should be viewed as a direct product of inteifgag horizontal and
vertical), such that the forward map is contracting in, fearaple, the horizontal
direction, while the inverse map is contracting in the \aitdirection. For Axiom

A systems (see remark 23.8) one may choose coordinate asesalthe stablanstable
manifolds of the map. With the state space divided Mt@ctanglegMai, Mo, ..., My},
M; = I"x1Y one needs a complex extensbfix DY, with which the hyperbolicity
condition (which simultaneously guarantees the Markoperty) can be formulated
as follows:

Analytic hyperbolic propertyEither f(M;) N Int(M;) = 0, or for each pair
Wh € CI(Dih), Z, € CI(D‘J.’) there exist unique analytic functions wf, z,; w, =
Wy(Wh, 2) € Int(DY), zn = Zn(Wh, %) € Int(D?), such thatf (Wn, W) = (z, z)-
Furthermore, ifw, € 1" andz, € I, thenwy € 1Y andz, € Ijh (see figure 23.4).

In plain English, this means for the iterated map that onkaogs the coordinates
Zy, Z, at timen by the contracting pam,, wy,, wherew,, is the contracting coordinate
at timen + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (23.26) acts on functiaraydic outside
Dih in the horizontal direction (and tending to zero at infinignd insideD}’ in
the vertical direction. The contour integrals are pregisdbng the boundaries of
these domains.

A map f satisfying the above condition is calleshalytic hyperbolicand the
theorem states that the associated spectral determinamtiris, and that the trace
formula (18.8) is correct.

Examples of analytic hyperbolic maps are provided by snmallydic perturbations
of the cat map, the 3-disk repeller, and the &imensionabaker’s map.
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23.6 Thephysics of eigenvalues and eigenfunctions

,
J We appreciate by now that any honest attempt to look at thetrgpe
properties of the Perron-Frobenius operator involves naathematics, but the
effort is rewarded by the fact that we are finally able to conthe &nalyticity
properties of dynamical zeta functions and spectral detemnts, and thus substantiate
the claim that these objects provide a powerful and welkétmd perturbation
theory.

Often (see chapter 17) physically important part of the spatis just the
leading eigenvalue, which gives us the escape rate fromedieepor, for a general
evolution operator, formulas for expectation values okoiables and their higher
moments. Also the eigenfunction associated to the leadiggnealue has a physical
interpretation (see chapter 16): it is the density of theurgtmeasures, with
singular measures ruled out by the proper choice of the ifumapace. This
conclusion is in accord with the generalized Perron-Fralsetheorem for evolution
operators. In the finite dimensional setting, such a theaeformulated as
follows: remark 23.7

e Perron-Frobenius theorem: Let Lj; be a nonnegative matrix, such that
somen exists for which [");; > 0 Vi, j: then

1. The maximal modulus eigenvalue is non-degenerate medlasitive

2. The corresponding eigenvector (defined up to a constast)dnnegative
coordinates

We may ask what physical information is contained in eigkresé beyond the
leading one: suppose that we have a probability conserwisge® (so that the
dominant eigenvalue is 1), for which the essential specadius satisfies G<
Pess< O < 1 on some Banach spaée Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiudVe denote byii, A2. .., Aum
the eigenvalues outside of this disk, ordered by the sizéaf fabsolute value,
with 1; = 1. Then we have the following decomposition

M
Lo = ) Awilivje + PLy (23.27)
i=1

whenL; are (finite) matrices in Jordan canomical forl & O is a [1x 1] matrix,
asg is simple, due to the Perron-Frobenius theorem), whefeesa row vector
whose elements form a basis on the eigenspace correspaiadingandy; is
a column vector of elements @* (the dual space of linear functionals o8y
spanning the eigenspace &f corresponding tol;. For iterates of the Perron-
Frobenius operator, (23.27) becomes

M
Ll = > Ayilluie + PLY. (23.28)
i=1
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If we now consider, for example, correlation between ihisi@volvedn steps and
final &,

L) = fM dye®) (£79) (y) = fM dw(E o MHWew).  (23.29)

it follows that
L
€LY = Nl 0) + Y AoV ¢) + 00", (23.30)
i=2
where

e = [ dveLivie.
M

The eigenvalues beyond the leading one provide two piecadamation:
they rule the convergence of expressions containing higrepoof the evolution
operator to leading order (th& contribution). Moreover ifw1(é,¢) = 0 then exercise 23.7
(23.29) defines a correlation function: as each term in (3/8nishes exponentially
in then — oo limit, the eigenvaluesly, ..., 1y determine the exponential decay
of correlations for our dynamical system. The prefactordepend on the choice
of functions, whereas the exponential decay rates (givelodarithms of4;) do
not: the correlation spectrum is thusuaiversalproperty of the dynamics (once
we fix the overall functional space on which the Perron-Fnidge operator acts).

Example 23.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift
example (23.6) on the space of analytic functions on a disk: apart from the origin
we have only simple eigenvalues 1x = 2%, k = 0,1,.... The eigenvalue 1o = 1

corresponds to probability conservation: the corresponding eigenfunction Bp(X) = 1
indicates that the natural measure has a constant density over the unit interval. If we
now take any analytic function n(X) with zero average (with respect to the Lebesgue
measure), it follows that w1i(n,n) = 0, and from (23.30) the asymptotic decay of the
correlation function is (unless also wi(n,n) = 0)

C,,(n) ~ exp-nlog?2). (23.31)

Thus, —logA; gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be
treated exactly, as for analytic functions we can employ the Euler-MacLaurin summation
formula

1 © - _(m-1) _ (m-1)
n(2) = fo dwnw) + > 7 mm," Qg 2. (23.32)
m=1 )

As we are considering functions with zero average, we have from (23.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

& —myn(,,(m) _ (m 1
Cy() = Z 2)"@™ (1) - 7™(0) fo d20(2Bu(?) .

m!

m=1
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Figure 23.5: Spectrum of the Perron-Frobenius oper
ator acting on the space @ Holder-continuous
functions: onlyk isolated eigenvalues remain betwee
the spectral radius, and the essential spectral rad
which bounds the “essential,” continuous spectrum.

The decomposition (23.32) is also useful in realizing that the linear functionals y; are
singular objects: if we write it as

@ =Y Bu@unnl,
m=0
we see that these functionals are of the form

1
Wilel = fo AW (W)e(w)
where

(W) = (_Il—l)'_l (69 Dw- 1) - 6 Dw)) , (23.33)

wheni > 1 and Wo(W) = 1. This representation is only meaningful when the function
is analytic in neighborhoods of w,w — 1.

23.7 Troublesahead

The above discussion confirms that for a series of examplesm@fasing generality

formal manipulations with traces and determinants aréigdt the Perron-Frobenius

operator has isolated eigenvalues, the trace formulasxateidy verified, and

the spectral determinant is an entire function whose zgrieds the eigenvalues.
Real life is harder, as we may appreciate through the foligwionsiderations:

¢ Ourdiscussion tacitly assumed something that is phygiealiirely reasonable:
our evolution operator is acting on the space of analytictions, i.e., we
are allowed to represent the initial densitfx) by its Taylor expansions
in the neighborhoods of periodic points. This is howeverffam being exercise 23.1
the only possible choice: mathematicians often work with thnction
spaceCk®, i.e., the space of times diferentiable functions whoséth
derivatives are Holder continuous with an exponert @ < 1: then every
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y" with Ren > kis an eigenfunction of the Perron-Frobenius operator and
we have

1
IAIAT

Ly = v, necC.

This spectrum diers markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between therapemtius and a
smaller disk of radius A1, see figure 23.5. In literature the radius of
this disk is called thessential spectral radius

In sect. 23.4 we discussed this point further, with the aic d¢dss trivial

1 - dimensionalexample. The physical point of view is complementary

to the standard setting of ergodic theory, where many ohaotiperties of

a dynamical system are encoded by the presenceahtnuousspectrum,

used to prove asymptotic decay of correlations in the spad& square-

integrable functions. exercise 23.2

A deceptively innocent assumption is hidden beneath muatiwtas discussed
so far: that (23.1) maps a given function space into itselfe @&xpanding
property of the map guarantees that: fifx) is smooth in a domairD
then f(x/A) is smooth on darger domain, providedA| > 1. For higher-
dimensional hyperbolic flows this is not the case, and, asswerssect. 23.5,
extensions of the results obtained for expandingdimensionaimaps are
highly nontrivial.

Itis not at all clear that the above analysis of a simple araeth, one fixed
point repeller can be extended to dynamical systems withitdCaets of
periodic points: we showed this in sect. 23.4.

Résum é

Examples of analytic eigenfunctions for-ldimensionamaps are seductive, and
make the problem of evaluating ergodic averages appeay jeasjntegrate over
the desired observable weighted by the natural measubh¢? rido, generic natural
measure sits on a fractal set and is singular everywhere.pdim¢ of this book
is that you neveneed to construct the natural measure, cycle expansiohdawil
that job.

A

theory of evaluation of dynamical averages by means ofetfacmulas

and spectral determinants requires a deep understanditigiofanalyticity and
convergence. We worked here through a series of examples:

converg -

. exact spectrum (but for a single fixed point of a linear map)
. exact spectrum for a locally analytic map, matrix repnésston

. rigorous proof of existence of discrete spectrum feditnensionahyperbolic

maps
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In the case of especially well-behaved “Axiofi systems, where both the
symbolic dynamics and hyperbolicity are under control,sitpossible to treat
traces and determinants in a rigorous fashion, and straujfseabout the analyticity
properties of dynamical zeta functions and spectral detemts outlined above
follow.

Most systems of interest aret of the “axiom A’ category; they are neither
purely hyperbolic nor (as we have seen in chapters 11 and A2hey have finite
grammar. The importance of symbolic dynamics is generatggly unappreciated;
the crucial ingredient for nice analyticity properties efafunctions is the existence
of a finite grammar (coupled with uniform hyperbolicity).

The dynamical systems which areally interesting - for example, smooth
bounded Hamiltonian potentials - are presumably nevey fitlaotic, and the
central question remains: How do we attack this problem iysdesnatic and
controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 23.1 Surveys of rigorous theory.  We recommend the references listed in
remark 1.1 for an introduction to the mathematical literaton this subject. For a physicist,
Driebe’s monograph [1.19] might be the most accessibl®dhiction into mathematics
discussed briefly in this chapter. There are a number of wevigf the mathematical
approach to dynamical zeta functions and spectral detamtsn with pointers to the
original references, such as refs. [23.1, 23.2]. An alt@&ra@approach to spectral properties
of the Perron-Frobenius operator is given in ref. [23.3].

Ergodic theory, as presented by Sinai [23.14] and othemspt® one to describe the
densities on which the evolution operator acts in terms thfeeiintegrable or square-
integrable functions. For our purposes, as we have alrezaty, $his space is not suitable.
An introduction to ergodic theory is given by Sinai, Korrdfednd Fomin [23.15]; more
advanced old-fashioned presentations are Walters [2ardi@Denker, Grillenberger and
Sigmund [23.16]; and a more formal one is given by Peters8ril[Q. W. Tucker [23.28,
23.29, 23.30] has proven rigorously via interval arithmetiat the Lorentz attractor is
strange for the original parameters, and has a long stabiedie orbit for the slightly
different parameters.

Remark 23.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref. [23.4]. A technical introduction dfet theory from an operator
point of view is given in ref. [23.5]. The theory is presentach more general form in
ref. [23.6].

Remark 23.3 Bernoulli shift. ~ For a more in-depth discussion, consult chapter 3 of
ref. [1.19]. The extension of Fredholm theory to the case emBulli shift onCk+

(in which the Perron-Frobenius operatomist compact — technically it is onlguasi-
compact That is, the essential spectral radius is strictly smafian the spectral radius)
has been given by Ruelle [23.7]: a concise and readablerstatef the results is contained
in ref. [23.8]. We see from (23.31) that for the Bernoullifslihe exponential decay
rate of correlations coincides with the Lyapunov exponarttile such an identity holds
for a number of systems, it is by no means a general resultttzar@ exist explicit
counterexamples.

Remark 23.4 Hyperbolic dynamics. When dealing with hyperbolic systems one might
try to reduce to the expanding case by projecting the dynaahing the unstable directions.
As mentioned in the text this can be quite involved techhicat such unstable foliations

are not characterized by strong smoothness propertiesuEbran approach, see ref. [23.3].

Remark 23.5 Spectral determinants for smooth flows.  The theorem on page 446
also applies to hyperbolic analytic mapsdiimensions and smooth hyperbolic analytic
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flows in (d + 1) dimensions, provided that the flow can be reduced to awiseanalytic
map by a suspension on a Poincaré section, complementadimagytic “ceiling” function
(3.5) that accounts for a variation in the section returesntor example, if we take as the
ceiling functiong(x) = ™™, whereT (x) is the next Poincaré section time for a trajectory
staring atx, we reproduce the flow spectral determinant (19.13). Praaf$eyond the
scope of this chapter.

Remark 23.6 Explicit diagonalization. For 1-dimensionatepellers a diagonalization
of an explicit truncatedl ,,, matrix evaluated in a judiciously chosen basis may yieldynan
more eigenvalues than a cycle expansion (see refs. [233101]2. The reasons why one
persists in using periodic orbit theory are partially aesthand partially pragmatic. The
explicit calculation ofL,, demands an explicit choice of a basis and is thus non-inviaria
in contrast to cycle expansions which utilize only the inarinformation of the flow. In
addition, we usually do not know how to constrligt, for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of s&c8, whereas periodic
orbit theory is true in higher dimensions and straightfadhta apply.

Remark 23.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theorem
may be found in ref. [23.12]. For positive transfer operstdhis theorem has been
generalized by Ruelle [23.13].

Remark 23.8 Axiom A systems. The proofs in sect. 23.5 follow the thesis work of
H.H. Rugh [23.9, 23.18, 23.19]. For a mathematical intraiducto the subject, consult
the excellent review by V. Baladi [23.1]. It would take us faoafield to give and explain
the definition of Axiom A systems (see refs. [1.27, 1.28]).idx” A implies, however,
the existence of a Markov partition of the state space frornchvthe properties 2 and 3
assumed on page 435 follow.

Remark 23.9 Left eigenfunctions. We shall never use an explicit form of left eigenfunctions,
corresponding to highly singular kernels like (23.33). Maletails have been elaborated
in a number of papers, such as ref. [23.20], with a daring ichymterpretation.

Remark 23.10 Ulam'sidea. The approximation of Perron-Frobenius operator defined
by (16.14) has been shown to reproduce the spectrum for dkgamaps, once finer
and finer Markov partitions are used [23.21]. The subtle pofrthoosing a state space
partitioning for a “generic case” is discussed in ref. [23.2
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Exercises

23.1. What space does £ act on? Show that (23.2) _ i Fi(u) "
is a complete basis on the space of analytic functions (1-u?(1-u?)?---(1-u9)?
on a disk (and thus that we found tkempleteset of 1 U .
eigenvalues). = 1+ - u)zt + =021 u2)2t

23.2. What space does £ act on?  What can be said about u2(1 + 4u + u?) 3
the spectrum of (23.1) oh'[0, 1]? Compare the result +(1 ZW)2(1— P)2(1 - )2 T

with figure 23.5.
Fk(u) is a polynomial inu, and the cofficients fall df

23.3. Euler formula. Derive the Euler formula (23.5), asymptotically asC, ~ u™”. Verify: if you have a
lu] < 1: proof to all orders, e-mail it to the authors. (See also
o ¢ 2u solution 23.3).
1_[(1 +t) = 1+ + — .
0 1-u (1-uw@-uw 23.5. Bernoulli shift on L spaces.  Check that the family

(23.21) belongs ta.*([0, 1]). What can be said about
the essential spectral radius &A([0,1])? A useful
reference is [23.24].

t3ud
Ta-oa-wa-w

o0 kk-1)
= Z t* u: = 23.6. Cauchy integrals. Rework all complex analysis steps
o Q- (1-u) used in the Bernoulli shift example on analytic functions
on a disk.

23.4. 2-dimensionaproduct expansion*. We conjecture 23.7. Escaperate. Consider the escape rate from a strange
that the expansion corresponding to exercise 23.3 isin  repeller: find a choice of trial functions and ¢ such

the 2— dimensionatase given by that (23.29) gives the fraction on particles surviving afte
. n iterations, if their initial density distribution isg(X).
kyk+1 Discuss the behavior of such an expression in the long
l_[(l + tu) - oS
time limit.
k=0
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