Chapter 8

Billiards

THE pyNaMmics that we have the best intuitive grasp on, and find easiest to
grapple with both numerically and conceptually, is the dahgits of billiards.

For billiards, discrete time is altogether natural; a géetimoving through

a billiard sufers a sequence of instantaneous kicks, and executes sirmpm

in between, so there is no need to contrive a Poincaré seciie have already
used this system in sect. 1.3 as the intuitively most adolesskample of chaos.
Here we define billiard dynamics more precisely, anticigatihe applications to
come.

8.1 Billiard dynamics

A billiard is defined by a connected regiéh c RP, with boundarydQ c RP-1
separatingQ from its complemen®RP \ Q. The regionQ can consist of one
compact, finite volume component (in which case the billiptthse space is
bounded, as for the stadium billiard of figure 8.1), or canrif@ite in extent,
with its complemenRP \ Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as fodikk Binball game
in figure 1.1). In what follows we shall most often restrict attention toplanar
billiards.

A point particle of massnand momentunp, = mv, moves freely within the
billiard, along a straight line, until it encounters the hdary. There it reflects
specularly g§pecular = mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momentumauant normal to
the boundary,

p =p-2(p- M), (8.1)

with A the unit vector normal to the boundad®) at the collision point. The angle
of incidence equals the angle of reflection, as illustratefigure 8.2. A billiard is
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Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radiusd = 1 connected by two straight walls
of length 2. At the points where the straight
walls meet the semi-circles, the curvature of the
border changes discontinuously; these are the only
singular points of the flow. The lengéis the only
parameter.

Figure 8.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory anglg both
measured counterclockwise with respect to th
outward normah” (b) The Birkhdf phase space
coordinate pairg, p) fully specifies the trajectory,
wherep = |p|sing is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily setro= |p| = 1. (a)
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a Hamiltonian system with al2dimensional phase spage- (g, p) and potential
V(q) =0forge Q, V(q) = oo for g € 9Q. remark 2.1

A billiard flow has a natural Poincaré section defined by Bafk coordinates
S, the arc length position of th@h bounce measured along the billiard boundary,
and p, = |plsing,, the momentum component parallel to the boundary, where
¢n is the angle between the outgoing trajectory and the norontie boundary.
We measure both the arc lengihand the parallel momentumcounterclockwise
relative to the outward normal (see figure 8.2 as well as fi@uBg InD = 2,
the Poincaré section is a cylinder (topologically an ans)lfigure 8.3, where
the parallel momentunp ranges for—|p| to |p|, and thes coordinate is cyclic
along each connected componenv@. The volume in the full phase space is
preserved by the Liouville theorem (7.31). The Birkhcoordinatesx = (s, p) €
P, are the natural choice, because with them the Poincanenretap preserves
the phase space volume of tre [f) parameterized Poincaré section (a perfectly

good coordinate ses(¢) does not do that). exercise 8.6
section 8.2

Without loss of generality we set = |v| = |p| = 1. Poincaré section condition
eliminates one dimension, and the energy conservipion 1 eliminates another,
so the Poincaré section return m@yis (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P: (Sm pn) = (Sn+1a pn+1) (8-2)
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1
Figure 8.3: In D = 2 the billiard Poincaré section

is a cylinder, with the parallel momentumranging pg
over p € {—1,1}, and with thes coordinate is cyclic
along each connected componend@t The rectangle
figure 8.2 (b) is such cylinder unfolded, with periodic ~
boundary conditions glueing together the left and the
right edge of the rectangle.
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from thenth collision to the (1 + 1)st collision. The discrete time dynamics map
P is equivalent to the Hamiltonian flow (7.1) in the sense tr@hlgescribe the
same full trajectory. Let, denote the instant afth collision. Then the position
of the pinballe Q at timet, + v < t,,1 is given by D — 2 Poincaré section
coordinates €., pn) € # together withr, the distance reached by the pinball along
thenth section of its trajectory (as we have set the pinball spedd the time of

flight equals the distance traversed).

Example 8.1 3-disk game of pinball: In case of bounces off a circular disk, the
position coordinate s = r0 is given by angle 6 € [0, 2r]. For example, for the 3-disk
game of pinball of figure 1.6 and figure 3.3 we have two types of collisions: exercise 8.1
"= —¢ + 2arcsin
Po: {¢ o+ a P back-reflection (8.3)
p=-p+gsing’
' = ¢ — 2arcsi 2r/3
T reflect to 3rd disk. (8.4)
P =p-gsing’

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsin- one only
needs to compute one square root per each reflection, and the simulations can be very
fast. exercise 8.2

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py's and
P1’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for
any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discretméi billiard systems.
Infinitesimal equations of variations (4.2) do not applyt bue multiplicative
structure (4.44) of the finite-time Jacobian matrices désshey are more physical
than most maps studied by dynamicists, let us work out tHetoil stability in
some detail.
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On the face of it, a plane billiard phase space is 4-dimemasidtiowever, one
dimension can be eliminated by energy conservation, anottiez by the fact that
the magnitude of the speed is constant. We shall now show lavg ¢o a local
frame of motion leads to a §2] Jacobian matrix.

Consider a 2-dimensional billiard with phase space coatdsx = (qy, 2, P1, P2)-
Let t, be the instant of thath collision of the pinball with the billiard boundary,
andt, =ty + €, € positive and infinitesimal. With the mass and the speed dqual
1, the momentum direction can be specified by adglg = (g, 2, Sing, cosH).
Now parametrize the 2 dimensional neighborhood of a trajectory segment by
ox = (6z 66), where

6Z = 601 COSH — 60 SiNG, (8.5)

66 is the variation in the direction of the pinball motion. Doesnergy conservation,
there is no need to keep track &fj, variation along the flow, as that remains
constant. {qi1, 69p) is the coordinate variation transverse to ktiesegment of the
flow. From the Hamilton’s equations of motion for a free paejdg/dt = p;,
dpi/dt = 0, we obtain the equations of motion (4.1) for the linearizedyhborhood

d d
a(gg = O, aéz =006. (86)

Let 66, = 66(t;) andoz, = dz(t;)) be the local coordinates immediately after the
nth collision, andsé,, = d6(t,), 6z, = 5z(t,,) immediately before. Integrating the
free flight fromt’ , tot; we obtain

0Zy-1 + Tnobn-1, Th=1th—th1
60”—1 ’ (87)

67,
50,

and the Jacobian matrix (4.43) for thin free flight segment is

M1 (%) = ( s T ) . 8.8)

At incidence angle, (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse Y@nesz, projects onto an
arc on the billiard boundary of lengtiz;,/ cos¢,. The corresponding incidence
angle variation¢, = 6z, /pn COS¢n, pn = local radius of curvature, increases the
angular spread to

0zn
80y = -6 — ———67, (8.9)
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Figure 8.4:. Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

so the Jacobian matrix associated with the reflection is

(8.10)

10 2
M = — = .
%) (fn 1)’ " pncosgy

The full Jacobian matrix fon, consecutive bounces describes a beam of trajectories
defocused byt along the free flight (the,, terms below) and defocuseefocused

at reflections byMg (ther, terms below) exercise 8.4
L1 )10
Mp = (-1)® ( ! )( ) : (8.11)
LL 0 1 m 1

wherery is the flight time of thekth free-flight segment of the orbit, = 2/, COS¢y,
is the defocusing due to theh reflection, andgp, is the radius of curvature of
the billiard boundary at theth scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase space volume presgndetM = 1,
and the eigenvalues are given by (7.22).

This is an example of the Jacobian matrix chain rule (4.52Hfecrete time
systems (the Heénon map stability (4.53) is another exam@eability of every
flight segment or reflection taken alone is a shear with twbeigenvalues,

detMr = det( n ) , detMg= det( 1o ) , (8.12)

1
0 1 m 1

but acting in concert in the interwoven sequence (8.11)¢heyead to a hyperbolic
deformation of the infinitesimal neighborhood of a billidrdjectory. exercise 13.7

As a concrete application, consider the 3-disk pinball esysbf sect. 1.3.
Analytic expressions for the lengths and eigenvalue8, @fand10 cycles follow
from elementary geometrical considerations. Longer cyoéguire numerical exercise 13.8

evaluation by methods such as those described in chapter 13. exercise 8.3
chapter 13
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Résum é

A particulary natural application of the Poincaré sectioethod is the reduction
of a billiard flow to a boundary-to-boundary return map.

Commentary

Remark 8.1 Billiards.  The 3-disk game of pinball is to chaotic dynamics what a
pendulum is to integrable systems; the simplest physicahgte that captures the essence

of chaos. Another contender for the title of the *harmonigitestor of chaos’ is the baker’s

map which is used as the red thread through Ott’s introdad¢tiehaotic dynamics [1.11].

The baker’'s map is the simplest reversible dynamical systéach is hyperbolic and

has positive entropy. We will not have much use for the bakerap here, as due to its
piecewise linearity it is so nongeneric that it misses athefsubtleties of cycle expansions
curvature corrections that will be central to this treatise chapter 20

That the 3-disk game of pinball is a quintessential exampleéeterministic chaos
appears to have been first noted by B. Eckhardt [8.1]. The hwake studied in depth
classically, semiclassically and quantum mechanicallipbigaspard and S.A. Rice [8.3],
and used by P. Cvitanovi¢ and B. Eckhardt [8.4] to demotestapplicability of cycle
expansions to quantum mechanical problems. It has beenastady the higher order
h corrections to the Gutzwiller quantization by P. Gaspard @nAlonso Ramirez [8.5],
construct semiclassical evolution operators and entgetsgl determinants by P. Cvitanovic
and G. Vattay [8.6], and incorporate théftaction dfects into the periodic orbit theory by
G. Vattay, A. Wirzba and P.E. Rosenqvist [8.7]. Gaspard'siagsaph [1.8], which we
warmly recommend, utilizes the 3-disk system in much moggtdehan will be attained
here. For further links cheakhaosBook. org.

A pinball game does miss a number of important aspects ofticymamics: generic
bifurcations in smooth flows, the interplay between regiofistability and regions of
chaos, intermittency phenomena, and the renormalizatigory of the ‘border of order’
between these regions. To study these we shall have to fatwenopch harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smootbmals. The game of pinball
may be thought of as the infinite potential wall limit of a srittopotential, and pinball
symbolic dynamics can serve as@ering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically rglan unstable cycle onto the
corresponding one for the potential under investigatidéthihgs go well, the cycle will section 29.1
remain unstable and isolated, no new orbits (unaccountetyfadhe pinball symbolic
dynamics) will be born, and the lost orbits will be accourfadby a set of pruning rules.
The validity of this adiabatic approach has to be checkeeffaly in each application, as
things can easily go wrong; for example, near a bifurcatiengame naive symbol string
assignments can refer to a whole island of distinct periodads.

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograph[1.8] is recommended
reading if you are interested in Hamiltonian flows, and &illis in particular. A. Wirzba

has generalized the stability analysis of sect. 8.2 to ex¢atf df 3-dimensional spheres

(follow the links inChaosBook.org/extras). A clear discussion of linear stability for

the generatl-dimensional case is given in Gaspard [1.8], sect. 1.4.
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Exercises

8.1. A pinball simulator.

8.2.

8.3.

8.4.

Implement the disk— disk
maps to compute a trajectory of a pinball for a
given starting point, and a giveRa = (center-to-
center distance):(disk radius) ratio for a 3-disk system.
As this requires only computation of intersections of
lines and circles together with specular reflections,
implementation should be within reach of a high-school
student. Please start working on this program now;
it will be continually expanded in chapters to come,
incorporating the Jacobian calculations, Newton root—
finding, and so on.

Fast code will use elementary geometry (only one
/- per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work withR:a = 6 andor 2.5 values. Draw the
correct versions of figure 1.9 or figure 12.3 Rie= 2.5
andor 6.

Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for
various R:a by color coding the initial points in the
Poincaré section by the number of bounces preceding
their escape. Try als&a = 6:1, though that might
be too thin and require some magnification. The initial
conditions can be randomly chosen, but need not -
actually a clearer picture is obtained by systematic scan
through regions of interest.

Pinball stability.
simulator a routine that computes thexp] Jacobian
matrix. To be able to compare with the numerical
results of coming chapters, work witRa = 6 andor
2.5 values.

Stadium billiard. Consider theBunimovich
stadium [8.9, 8.10] defined in figure 8.1. The Jacobian

References

Add to your exercise 8.1 pinball 8.5.

8.6.

matrix associated with the reflection is given by (8.10).
Here we take = —1 for the semicircle sections of the
boundary, and cag remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bouncesis = 2 cospx. The Jacobian matrix
of one semicircle reflection folowed by the flight to the
next bounce is

_ 1 2cosp 1 0
J = (_1)( 0 1 “ )( -2/cosg 1 )

_ -3 2cosp

- (_1)( 2/ cospy 1 “ )

A free flight must always be followed bk =
1,2,3,--- bounces along a semicircle, hence the natural
symbolic dynamics for this problem isary, with the
corresponding Jacobian matrix given by sheer the
eigenvalues remain equal to 1 throughout the whole
rotation), anck bounces inside a circle lead to

Jk = (—1)"( (8.13)

—-2k-1 2kcosg
2k/cosp 2k-1

The Jacobian matrix of a cycle of lengthny is given

by
1 0
nre 1

Adopt your pinball simulator to the stadium billiard.

Np

=[5 %

k=1

) . (8.14)

A test of your pinball simulator. Test your
exercise 8.3 pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
exercise 13.7 and 13.8.

Birkhoff coordinates. Prove that the Birkhid
coordinates are phase space volume preserving.
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