Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.
—Sayings of Vattay Gabor

relaxation exponents (dynamo rates) of vector fields caxjpessed in terms

I N THIS APPENDIX W€ show that the multidimensional Lyapunov exponents and
of leading eigenvalues of appropriate evolution operators

G.1 Evolution operator for Lyapunov exponents

,
J Lyapunov exponents were introduced and computed fedimensional
maps in sect. 17.3.2. For higher-dimensional flows only #u®Bian matrices are
multiplicative, not individual eigenvalues, and the coustion of the evolution
operator for evaluation of the Lyapunov spectra requiregitension of evolution
equations to the flow in the tangent space. We now developethgsite theory.

Here we construct a multiplicative evolution operator (Gvhose spectral
determinant (G.8) yields the leading Lyapunov exponentadamensional flow
(and is entire for Axiom A flows).

The key idea is to extend the dynamical system by the tangemesof the
flow, suggested by the standard numerical methods for ei@tuaf Lyapunov
exponents: start aty with an initial infinitesimal tangent space vector in the
dimensional tangent spaeg0) € T My, and let the flow transport it along the
trajectoryx(t) = f'(xo).

The dynamics in the tangent bundbe §x) € T M is governed by the system
of equations of variations (4.2):

Xx=v(), n=AXn.
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HereA(X) is (4.3), the stability matrix (velocity gradients majrof the flow. We
write the solution as

X() = f'(%), n(t) = I'(x0) 1m0, (G.1)

with the tangent space vectptransported by the Jacobian matdixxg) = ax(t)/dxo
(4.6).

As explained in sect. 4.1, the growth rate of this vector idtiplicative along
the trajectory and can be representedh@¥ = |n(t)|/|7(0) u(t) whereu(t) is a
“unit” vector in some nornjl.||. For asymptotic times and for almost every initial
(%0, n(0)), this factor converges to the leading eigenvalue ofitiearized stability
matrix of the flow.

We implement this multiplicative evaluation of Flogquet mipliers by adjoining
thed-dimensional transverse tangent spaceT My; n(X) - V(xX) = 0 to the @+1)-
dimensional dynamical evolution space M c R%1. In order to determine the
length of the vector; we introduce a homogeneoudtdrentiable scalar function
a(n) = linll. It has the propertg(An) = |Alg(n) for any A. An example is the
projection of a vector to itdth component

n
g 772 = |ndl .

d

Any vectorn(0) € T My can now be represented by the prodpet Au, where
uis a “unit” vector in the sense that its norm|jig| = 1, and the factor

A'(%0, U) = g(n() = 9(3'(x0)o) (G.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretctaictor is multiplicative
along the trajectory:

A"™(%0, u) = A" (X(1), u(t)) A" (X0, Uo).
exercise G.1

Theu evolution constrained tBT 4, the space of unit transverse tangent vectors,
is given by rescaling of (G.1):

U =R(xu) = J'(X)u. (G.3)

1
AY(x,u)
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Egs. (G.1), (G.2) and (G.3) enable us to defimawtiplicative evolution operator
on the extended spatéx ETgy

S(U = R(x, u))

L5 x ) = 6(X - (%) IAY(x, u)pp-t

(G.4)

whereg is a variable.

To evaluate the expectation value of |ad(x, u)| which is the Lyapunov exponent
we again have to take the proper derivative of the leadingre@ue of (G.4).
In order to derive the trace formula for the operator (G.4)need to evaluate
TrL' = [dxdul'(u, x; u,X). The [ dxintegral yields a weighted sum over prime
periodic orbitsp and their repetitions:

. © o(t-1Ty)
L o= ZplTprZ:;|det(l— M[))IA‘”’
fd 8(u— R (xp, u)
; :

A =
p.r |ATpI' (Xp7 u)lﬂ—l

(G.5)

whereMy is the prime cyclep transverse stability matrix. As we shall see below,
Ap, is intrinsic to cyclep, and independent of any particular periodic poipt

We note next that if the trajectorff(x) is periodic with periodr, the tangent
space containd periodic solutions

eDx(T +t) =eV(x(t), i=1..d,

corresponding to the unit eigenvectorge®, &2, . .. | eld} of the transverse stability
matrix, with “stretching” factors (G.2) given by its eigeaiues

Mp(XeV(¥) = Apie”(x), i=1,..d.  (nosummation of)

Thefduintegral in (G.5) picks up contributions from these periosiblutions. In
order to compute the stability of thilh eigen-direction solution, it is convenient to
expand the variation around the eigenve&®rin the stability matrix eigenbasis
su = Y éuy el) . The variation of the map (G.3) at a complete petiedT is then
given by

T ) Mou  MeD (8g(e(i)) )
RED = e~ g\ au
_ N Aok (o 0 99EY)
- ;Ap,i (e ¢ SUy . (G.6)
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Thesu; component does not contribute to this sum sig@ + due®) = 1+ dy
impliesdg(e")/au; = 1. Indeed, infinitesimal variation& must satisfy

ag(u) _
ouy =0

’

d
gu+suy=guy=1 = Zéu[;
=1

so the allowed variations are of form

(e
Su = Z (e(k> . e(')%k))ck, lod < 1,

k#i

and in the neighborhood of tié8) eigenvector thg duintegral can be expressed

fgdu:fndq(.

Inserting these variations into tlfedu integral we obtain

fdu 5(e" + su-RT (€M) - 6RT(€V) + ..
g

- fﬂdq((i((l—Ak/Ai)Cw---)

ki

d
Ap,r :Z|Ar

1 1
. g
. _11_[|1_Ar,k/Ar_| (G )

The corresponding spectral determinant is obtained byreingethat the Laplace
transform of the trace (18.23) is a logarithmic derivative/{s) = —dislog F(s)
of the spectral determinant:

esTpr

F(B.9 =exp|= ) | det (1 M) |

p.r

Apr(B)|- (G.8)

This determinant is the central result of this section. &g correspond to the
eigenvalues of the evolution operator (G.4), and can beuated by the cycle
expansion methods.
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The leading zero of (G.8) is called “pressure” (or free epgrg

P®) = so(B). (G.9)

The average Lyapunov exponent is then given by the firstakirasof the pressure
atp = 1:

1=P(1). (G.10)

The simplest application of (G.8) is to 2-dimensional hjgodic Hamiltonian
maps. The Floguet multipliers are related By = 1/A, = A, and the spectral
determinant is given by

Z"r 1
F(B,2 = exp|- A
Af 1-B Al -3
Apr(B) = TR Ty (G.11)

1-1/A%F  1-1/AF

The dynamics (G.3) can be restricted ta anit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobixn&m this neighborhood
the largest eigenvalue of the Jacobi matrix is the only fix@dtpand the spectral
determinant obtained by keeping only the largest term\fyesum in (G.7) is also
entire.

In case of maps it is practical to introduce the logarithmhef keading zero
and to call it “pressure”

P(B) = log zo(B).

The average of the Lyapunov exponent of the map is then giyethd first
derivative of the pressure At= 1.

1=P'(1).

By factorizing the determinant (G.11) into products of Zetactions we can
conclude that the leading zero of the (G.4) can also be reedvfeom the leading
zeta function

1/40(8,2) = exp[— Z ﬂ] (G.12)

r
p.r rIAIO

This zeta function plays a key role in thermodynamic apfibices, see chapter K.
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G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An plaisithe magnetic
field of the Sun which is “frozen” in the fluid motion. A pasdiyevolving vector
field V is governed by an equation of the form

AV +Uu-VV -V-Vu=0, (G.13)

whereu(x, t) represents the velocity field of the fluid. The strength ef wlector
field can grow or decay during its time evolution. The ampdifion of the vector
field in such a process is called the "dynanfteet.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the figh an exponent

V(x,1) ~ V(X)€" (G.14)

wherev is called the fast dynamo rate. The goal of this section ishtawsthat
periodic orbit theory can be developed for such a highly troatial system as
well.

We can write the solution of (G.13) formally, as shown by Gaud.etx(t, a)
be the position of the fluid particle that was at the paimttt = 0. Then the field
evolves according to

V(X 1) = @ tV(a0) |, (G.15)

whereJ(a, t) = d(x)/d(a) is the Jacobian matrix of the transformation that moves
the fluid into itselfx = x(a, t).

We writex = f'(a), wheref! is the flow that maps the initial positions of the
fluid particles into their positions at tinte Its inversea = f~!(x), maps particles
at timet and positiorx back to their initial positions. Then we can write (G.15)

Vi(x,t):Zfd3a£}j(x,a)Vj(a,0) , (G.16)
j

with
_ ~tgyy) X
Li(x,a) = 5(a— f7(x) Ga; (G.17)

For large times, theftect of £! is dominated by its leading eigenvalues' with
Revo) > Rgvj), 1 = 1,2, 3,.... In this way the transfer operator furnishes the fast
dynamo ratey = vp.
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The trace of the transfer operator is the sum over all pariodiit contributions,
with each cycle weighted by its intrinsic stability

6(t —1T)). (G.18)

TrLot = ZTpZ ’det

We can construct the corresponding spectral determinaung e

tr M,
F(s) = exp|- ZZ ’detlr V) S (G.19)

Note that in this formuli we have omitted a term arising frdra §acobian transformation
along the orbit which would give * tr My in the numerator rather than just

the trace ofM[). Since the extra term corresponds to advection along thig orb
and this does not evolve the magnetic field, we have chosegnire it. It

is also interesting to note that the negative powers of tlkeklan occur in the
denominator, since we have! in (G.17).

In order to simplifyF(s), we factor the denominator cycle stability determinants
into products of expanding and contracting eigenvaluesaRBadimensional fluid
flow with cycles possessing one expanding eigenvalygwith |[Ap| > 1), and
one contracting eigenvalug, (with |1p| < 1) the determinant may be expanded
as follows:

(L= AA - =1 D7 ATA . (G.20)

=0 k=0

det(1 - m;7)[ " =

With this decomposition we can rewrite the exponent in (G

1(,+ Ar)eSer
|det 1- M)

ZZ

Sy 1‘ |/l |A_j/lkeSTp r(/lr +AI’) ,(GZl)
r pip “p
p

k=0 r=1

which has the form of the expansion of a logarithm:

D> |log(1-elagiay 1A5) +1og (1 - eTllAR 5] . (G.22)
P ik

The spectral determinant is therefore of the form,

F(s) = Fe(9Fc(9) (G.23)
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where

Feo=[[[](a-tA,) . (G.24)

P jk=0
Fo=[[[](-t2). (G.25)

p k=0

with

_ Pl
t9 = o 2 (G.26)

AJ

p

The two factors present ifr(s) correspond to the expanding and contracting
exponents. (Had we not neglected a term in (G.19), thereduoaila third factor
corresponding to the translation.)

For 2 - dimensionalHamiltonian volume preserving systems= 1/A and
(G.24) reduces to

S tp k+1 eSTp
Fe(s):l—“_[( _E) L wiE (G.27)

With op = Ap/IApl, the Hamiltonian zeta function (the = k = O part of the
product (G.25)) is given by

Yay() = [ [ (1- ope’™) . (G.28)
p

This is a curious formula — the zeta function depends onlyhenréeturn times,
not on the eigenvalues of the cycles. Furthermore, theitgient

A+ 1/A . 2
(1-A)A-1/A) I1-A)A-1/A)

when substituted into (G.23), leads to a relation betweenvéttor and scalar
advection spectral determinants:

Fayn(S) = F3(9)/Zayn(9).- (G.29)

The spectral determinants in this equation are entire fgetyolic (axiom A)
systems, since both of them correspond to multiplicativeraiors.
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In the case of a flow governed by a map, we can adapt the forni@las)
and (G.28) for the dynamo determinants by simply making thesttution

=T (G.30)

wheren,, is the integer order of the cycle. Then we find the spectrardahant
Fe(2) given by equation (G.27) but with

Zp
th = —— G.31
T (G.31)
for the weights, and
1/Zayn(@) = T (1 - op2") (G.32)

for the zeta-function

Formapswith finite Markov partition the inverse zeta function (G)32duces
to a polynomial forz since curvature terms in the cycle expansion vanish. For
example, for maps with complete binary partition, and whign fixed point stabilities
of opposite signs, the cycle expansion reduces to

1/Zayn(S) = 1. (G.33)

For suchmapsthe dynamo spectral determinant is simply the square ofdhlais
advection spectral determinant, and therefore all itsszare double. In other
words, for flows governed by such discrete maps, the fastrdgrrate equals the
scalar advection rate.

In contrast, for 3-dimensiondlows the dynamo fect is distinct from the
scalar advection. For example, for flows with finite symbdioamical grammars,
(G.29) implies that the dynamo zeta function is a ratio of emtire determinants:

1/Zayn(S) = Fayn(S)/F3(9) . (G.34)

This relation implies that foflowsthe zeta function has double poles at the zeros

of the scalar advection spectral determinant, with zerohe®fdynamo spectral
determinant no longer coinciding with the zeros of the scativection spectral
determinant; Usually the leading zero of the dynamo spleddtarminant is larger exercise G.2
than the scalar advection rate, and the rate of decay of tlymetia field is no

longer governed by the scalar advection.
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Commentary

Remark G.1 Lyapunov exponents.

Remark G.2 Dynamo zeta.

Sect. G.1is based on ref. [G.1].

The dynamo zeta (G.32) has been introduced by Aurell

and Gilbert [G.3] and reviewed in ref. [G.4]. Our expositiotiows ref. [13.21].

Exercises

G.1.

G.2.

Stretching factor.  Prove the multiplicative property
of the stretching factor (G.2). Why should we extend the
phase space with the tangent space?

Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the
piecewise linear map

f(%) :{

on an appropriate surface of secti@l{ > 2). Suppose
also that the return time is constanfor x < 0 andTy

1+ax if
1-bx if

x<0,

0 (G.35)
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Calculate the dynamo and the escape rates analytically
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What is the diference?
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